
A Network-Based Approach to Visualize Prevalence and
Progression of Metabolic Syndrome Components
Robin Haring1*., Martin Rosvall2., Uwe Völker3, Henry Völzke4, Heyo Kroemer5, Matthias Nauck1,

Henri Wallaschofski1

1 Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany, 2Department of Physics, Umeå University, Umeå, Sweden,
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Abstract

Background: The additional clinical value of clustering cardiovascular risk factors to define the metabolic syndrome (MetS)
is still under debate. However, it is unclear which cardiovascular risk factors tend to cluster predominately and how
individual risk factor states change over time.

Methods & Results: We used data from 3,187 individuals aged 20–79 years from the population-based Study of Health in
Pomerania for a network-based approach to visualize clustered MetS risk factor states and their change over a five-year
follow-up period. MetS was defined by harmonized Adult Treatment Panel III criteria, and each individual’s risk factor
burden was classified according to the five MetS components at baseline and follow-up. We used the map generator to
depict 32 (25) different states and highlight the most important transitions between the 1,024 (322) possible states in the
weighted directed network. At baseline, we found the largest fraction (19.3%) of all individuals free of any MetS risk factors
and identified hypertension (15.4%) and central obesity (6.3%), as well as their combination (19.0%), as the most common
MetS risk factors. Analyzing risk factor flow over the five-year follow-up, we found that most individuals remained in their
risk factor state and that low high-density lipoprotein cholesterol (HDL) (6.3%) was the most prominent additional risk factor
beyond hypertension and central obesity. Also among individuals without any MetS risk factor at baseline, low HDL (3.5%),
hypertension (2.1%), and central obesity (1.6%) were the first risk factors to manifest during follow-up.

Conclusions: We identified hypertension and central obesity as the predominant MetS risk factor cluster and low HDL
concentrations as the most prominent new onset risk factor.
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Introduction

The metabolic syndrome (MetS) has gained recent attention as

a multifactorial cluster of cardiovascular risk factors linked to

criteria of adiposity, hypertension, dyslipidemia, and hyperglycae-

mia. Although associations between MetS and incident cardiovas-

cular disease (CVD) have been repeatedly observed [1], there is an

ongoing controversy about its clinical value and impact [2–6].

Compared to established CVD risk scores, MetS is a relatively

weak predictor of incident CVD and its single components showed

a comparable or even better predictive utility, respectively [7–9].

We previously showed that there was no added predictive value of

MetS beyond its individual components with respect to mortality

risk [10] and concluded in line with others to redirected attention

to its individual components, particularly central obesity and

hyperglycaemia [10,11]. Also with regard to cardiovascular risk,

MetS was admittedly associated with accelerated central arterial

ageing, but specific clusters of MetS components showed

dramatically increased arterial changes [12]. But although these

outcome associations may give a clue which risk factors drive the

underlying MetS pathophysiology, investigations which MetS

components tend to cluster predominately and how individual risk

factor states change over time are scarce [13,14]. Therefore, we

used a novel network-based approach to visualize clustered MetS

components and their change during a five-year follow-up period

among 3,187 participants from the population-based Study of

Health in Pomerania (SHIP).
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Methods

Ethics statement
The study protocol was consistent with the principles of the

Declaration of Helsinki and approved by the local Ethics

Committee of the University of Greifswald.

Study population
The SHIP is a population-based cohort study conducted in

Northeast Germany. Details about the study’s sampling method,

design, and exams were published previously [15]. A representa-

tive sample comprising of 7,008 individuals was selected using

population registries where all German inhabitants are registered.

Only individuals with German citizenship and main residency in

the study area were included. The net sample (without migrated or

deceased persons) comprised 6,267 eligible individuals. At

baseline, SHIP finally comprised 4,308 (2,116 men) participants

(response 68.8%) with examinations conducted between 1997 and

2001. Between 2002 and 2006, all participants were re-invited to

a five-year follow-up examination, and 3,300 individuals (1,589

men) participated (response 83.5%). All participants gave written

informed consent. Of the 3,300 individuals attending SHIP

baseline and follow-up examinations we excluded individuals with

missing data on MetS components, analyzing a final study

population of 3,187 individuals (1,546 men).

Measures
Baseline and follow-up examinations included a computer-

assisted personal interview, as well as somatometric, medical, and

laboratory measurements. Waist circumference (WC) was mea-

sured to the nearest 0.1 cm using an inelastic tape midway

between the lower rib margin and the iliac crest in the horizontal

plane, with the subject standing comfortably with weight

distributed evenly on both feet. After a resting period of at least

five minutes, systolic and diastolic blood pressure was measured

three times in the right arm of seated participants using a digital

blood pressure monitor (HEM-705CP, Omron Corporation,

Tokyo, Japan) with each reading being followed by a three-minute

pause. The second and third readings were averaged to give the

mean diastolic and systolic blood pressure.

Non-fasting blood samples were taken from the cubital vein in

the supine position between 7:00 a.m. and 7:00 p.m. and prepared

for immediate analysis or for storage at280uC for further analysis.

Serum high-density lipoprotein (HDL) cholesterol concentrations

were measured photometrically at baseline (Hitachi 704, Roche,

Mannheim, Germany), whereas follow-up HDL concentrations

were quantified by lipid electrophoresis (HELENA SAS-3 system,

Helena 7 BioSciences Europe, Tyne & Wear, UK). To ensure

comparability in the longitudinal HDL analyses, we used baseline

HDL concentrations as the reference and calculated corrected

follow-up HDL concentrations based on a previously published

conversion formula [16]. Doing so, we found that the average

HDL concentrations produced by the two methods were virtually

identical, suggesting that the differences in HDL will be small

within the range of practical relevance [17]. Serum triglyceride

and glucose concentrations were determined enzymatically using

reagents from Roche Diagnostics (Hitachi 717, Roche Diagnostics,

Mannheim, Germany). All assays were performed according to the

manufacturers’ recommendations by skilled technical personnel,

and internal quality controls were analyzed daily. In addition, the

laboratory participates in official quarterly German external

proficiency testing programs. Type 2 diabetes mellitus was defined

based on self-reported physicians diagnosis or use of antidiabetic

medication (anatomic-therapeutical-chemical [ATC] code A10) in

the last seven days, or glycated haemoglobin (HbA1c) concentra-

tions .48.0 mmol/mol. CVD was defined one or more

components of a previously published summative score comprising

information about peripheral artery disease, heart failure, angina

pectoris, and a recall of physician’s diagnoses of stroke and

myocardial infarction [18].

Diagnostic criteria for the assessment of MetS components were

defined according the Joint Scientific Statement to harmonize

MetS [19] and modified for the use of non-fasting blood samples,

as previously established in SHIP [20,21] and other large cohorts

[22,23]:

1. elevated WC: men .94 cm, women .80 cm;

2. elevated non-fasting glucose: $8.0 mmol/l or antidiabetic

treatment (ATC code A10A);

3. decreased HDL cholesterol: men ,1.0 mmol/l, women

,1.3 mmol/l, or lipid-lowering treatment (ATC C10AB,

A10AD);

4. elevated non-fasting triglycerides: $2.3 mmol/l or lipid-

lowering treatment (ATC C10AB, A10AD);

5. elevated blood pressure: $130/85 mmHg or antihypertensive

drug treatment (ATC codes C02, C03, C04, C07, C08, C09).

Participants fulfilling at least three out of these five components

were assigned to MetS.

Statistical Analysis
Categorical data are reported as percentages, and continuous

data are reported as median together with the interquartile range.

The individual risk factor burden was classified to states according

to the five MetS components at baseline and follow-up. With five

MetS components, there are 25 = 32 different states and

322 = 1,024 possible transitions between states from baseline to

follow-up. We represented this data as a weighted directed

network with states as nodes and transitions between states as

weighted directed links between the nodes. We used the map

generator at http://www.mapequation.org/mapgenerator/ to

generate a map of risk factor flow between the potential risk

factor states, including the state ‘‘healthy’’ with absence of any

MetS risk factors. Figure 1 shows the risk factor map with link

width and intensity proportional to the weight of the links and

node size proportional to the number of individuals assigned to it

at baseline. The inner circle of a node represents the number of

individuals that remain in that state between baseline and follow-

up (self-links), and the outer ring represents the number of

individuals that transits to a different risk factor state. To evaluate

potential non-response bias due to drop out between baseline and

the five-year follow-up examination, baseline characteristics of

follow-up responder vs. non-responder were compared using x2

tests for categorical data or two-sample t-tests for continuous data.

As expected, we observed that follow-up non-responder were on

average older, male, and exposed adverse cardiometabolic risk

factor profiles compared to follow-up responder, but found no

differences in MetS prevalence, the main outcome of the present

study. Data preparation and descriptive statistics were performed

with Stata 11.0 (Stata Corp., College Station, TX, USA).

Results

Characteristics of the study population at baseline and follow-up

are presented in Table 1. MetS prevalence at baseline was 27.6%

and 42.4% after a median follow-up time of 5.0 years, re-

spectively. The risk factor network in Figure 1 shows the baseline

risk factor profiles of 3,187 individuals and how their profiles

Visualized Risk Factor Clustering and Flow
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change during the follow-up period. For visual simplicity, the

depicted network only shows the 28 most prevalent profiles,

representing 91% of all possible risk factor states at baseline. For

the same reason, we have only included the 39 strongest

connections (13% of links), but nevertheless captured 85% of all

risk factor flow. At baseline, we found the largest fraction (19.3%

of all individuals) in the healthy state without any MetS risk

factors, of which 58% remained risk factor free and 42%

developed risk factors at follow-up (11.1% of all individuals were

without any MetS risk factors at baseline and follow-up) (Table 2).
We identified hypertension (15.4% ‘‘BP’’) and central obesity

(6.3% ‘‘Obesity’’), as well as their combination (19.0%) as the most

common MetS risk factors. In Table 2 we present detailed

information about the most common risk factor states that each

comprised more than 5% of the overall sample. The largest risk

factor flow in terms of number of individuals was the transition

from hypertension and central obesity to additional low HDL

concentrations at follow-up (6.3%). The largest risk factor flows

from the healthy state were to low HDL concentrations (3.5%),

hypertension (2.1%), and central obesity (1.6%) (Table 3). But in
general, most individuals remained in their risk factor state, and

self-links dominated the risk factor flow network during the five-

year follow-up (Table 3).

Discussion

The present network-based analyses of longitudinal data from

3,187 individuals identified hypertension and central obesity as the

most common MetS components. These MetS components also

constituted the predominant risk factor cluster during follow-up.

Analyzing risk factor change, we revealed low HDL concentra-

tions as the most common additional and new onset MetS

component. This is the first network-based approach to pre-

dictively model cardiovascular risk factor burden and expression.

To better understand which MetS components tend to cluster

predominately and how individual risk factor states change over

time, we not only explored the topology of the MetS risk factor

network, but also its dynamic changes over a five-year follow-up

period.

Although the MetS network contains a plethora of potentially

interconnected cardiovascular risk factor states, only some are

truly relevant to the pathophenotype MetS and its suggested

outcome associations with CVD and mortality [12,24–27]. The

commonly as most relevant MetS components considered

cardiovascular risk factors are central obesity and insulin re-

sistance. But although insulin resistance is the hallmark of MetS,

central obesity is the most relevant predisposing factor for insulin

resistance [28]. Thus, the finding of a predominant role of central

obesity, but not glycaemia, in our MetS network is likely explained

Figure 1. Metabolic syndrome network visualizing cardiovascular risk factor burden, clustering, and flow of its components
between baseline and five-year follow-up. ‘‘Healthy’’, no prevalent metabolic syndrome component; ‘‘Obesity’’, waist circumference: men
.94 cm, women . 80 cm; ‘‘Glucose’’, elevated non-fasting glucose: $8.0 mmol/l or antidiabetic treatment (anatomic-therapeutical-chemical [ATC]
codes A10A, A10B); ‘‘HDL’’, decreased high-density lipoprotein cholesterol: men,1.0 mmol/l, women,1.3 mmol/l, or lipid-lowering treatment (ATC
C10AB, A10AD); ‘‘TG’’, elevated non-fasting triglycerides: $2.3 mmol/l or lipid-lowering treatment (ATC C10AB, A10AD); ‘‘BP’’, elevated blood
pressure: $130/85 mmHg or antihypertensive drug treatment. The size of a node is proportional to the number of individuals in the risk factor state
that the node represents. The inner circle of a node denotes individuals remaining in that risk factor state between baseline and follow-up, whereas
the outer circle of a node denotes individuals moving between risk factor states. The networks’ flow between baseline and follow-up is shown for the
39 most important links (13% of all 301 links), representing 84.5% of total flow. The weight and colour shade of a link represent the number of
individuals moving between the two states that the link connects.
doi:10.1371/journal.pone.0039461.g001

Visualized Risk Factor Clustering and Flow
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by our study sample consisting of individuals selected from the

general population, and was also observed in previous population

studies [13,14] because in contrast to patient populations, there is

a large proportion of individuals without any MetS components

and a relatively low cardiovascular risk factor burden.

Obesity is becoming a global epidemic, with a continued

worldwide trend of increasing prevalences over the past four

decades [29]. Its public health impact stems from the notion that

obesity raises CVD risk through other risk factors including

dyslipidemia, hypertension, and hyperglycemia, and is therefore

the underlying risk factor in the pathogenesis of CVD [30]. For

example, the INTERHEART study examined more than 29,000

individuals in 52 countries to show that more than 90% of the risk

for acute myocardial infarction is predicted by nine traditional risk

factors including hypertension and central obesity [31]. In

a substudy of Latin American INTERHEART countries, central

obesity was the most important population-attributable risk factor

for acute myocardial infarction [32]. Using a different statistical

approach, a six-year follow-up of 506 men and 461 women from

the Baltimore Longitudinal Study on Aging identified higher

baseline abdominal obesity or triglycerides, and lower HDL

cholesterol as predictors of incident MetS [13]. Thus, despite

varying definitions of the MetS [19] and study samples, central

Table 1. Baseline and follow-up characteristics of the study population (N = 3,187).

Characteristic Baseline Follow-up p-value

Age, years 50.0 (37.1, 61.6) 55.0 (42.2, 66.4) ,0.001

Sex (women), % 51.5 N.A.

Waist circumference, cm 89.0 (78.8, 98.5) 92.4 (82.5, 102.0) ,0.001

Diastolic blood pressure, mmHg 83.0 (76.0, 90.5) 81.0 (74.0, 88.0) ,0.001

Systolic blood pressure, mmHg 134.0 (121.0, 148.0) 131.0 (119.0, 144.0) ,0.001

High-density lipoprotein cholesterol (HDL-C), mmol/l 1.4 (1.2, 1.7) 1.1 (0.9, 1.4) ,0.001

Total cholesterol, mmol/l 5.7 (4.9, 6.5) 5.5 (4.7, 6.3) ,0.001

Low-density lipoprotein cholesterol, mmol/l 3.5 (2.8, 4.2) 3.5 (2.8, 4.2) 0.014

Triglyceride, mmol/l 1.5 (1.0, 2.3) 1.5 (1.0, 2.2) 0.895

Serum glucose, mmol/l 5.3 (4.9, 5.8) 5.2 (4.8, 5.7) ,0.001

Haemoglobin A1c, mmol/mol 34 (30, 39) 34 (30, 39) 0.447

Antidiabetic medication, % 5.2 8.4 ,0.001

Type 2 diabetes mellitus, % 10.5 12.8 ,0.001

Antihypertensive medication, % 22.6 36.0 ,0.001

Lipid-lowering medication, % 7.5 14.5 ,0.001

Cardiovascular disease, % 16.3 14.6 ,0.001

Metabolic syndrome, % 27.6 42.4 ,0.001

Elevated waist circumference, % 54.4 65.2 ,0.001

Elevated glucose, % 6.7 9.9 ,0.001

Decreased HDL-C, % 23.9 57.3 ,0.001

Elevated triglycerides, % 25.1 22.8 ,0.001

Elevated blood pressure, % 65.1 65.5 ,0.001

Data are presented as percentages or median (25th and 75th percentile).
*p-values based the x2 test (categorical data) or T-test (continuous data).
doi:10.1371/journal.pone.0039461.t001

Table 2. Most dominant risk factor cluster at baseline (.5% of individuals).

Rank Risk factor cluster Baseline (%) Follow-up self-links (%) Follow-up out-flow (%)

1 Healthy 19.3 8.2 11.1

2 Obesity & BP 19.0 6.9 12.1

3 BP 15.4 4.7 10.8

4 Obesity, TG & BP 7.7 0.5 7.2

5 Obesity 6.3 1.5 4.8

6 Obesity, HDL, TG & BP 6.2 2.9 3.3

7 Obesity, HDL & BP 5.1 2.4 2.7

Follow-up self-links refers to the proportion of individuals who did not change their baseline risk factor profile at follow-up. Follow-up out-flow refers to the proportion
of individuals who did change their baseline risk factor profile at follow-up.
doi:10.1371/journal.pone.0039461.t002

Visualized Risk Factor Clustering and Flow
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obesity was identified as a key component showing links between

the other MetS components [33].

The central role of hypertension in our MetS network analysis is

in line with a previous longitudinal investigation from the

Framingham Heart Study that found hypertension as the risk

factor most often associated with MetS diagnosis [14]. Similarly,

prior data from the National Health and Nutrition Examination

Survey (NHANES) showed that hypertension was the most

common MetS component in men and third most common in

women [34]. A recent Principal Components Analysis of MetS risk

Table 3. Risk factor flow for the 39 most important links.

Rank Risk factor cluster from baseline to follow-up
Change in number of
MetS components

Total flow
(%)

1 Healthy Healthy = 8.2

2 Obesity & BP Obesity & BP = 6.9

3 Obesity & BP Obesity, HDL & BP + 6.3

4 BP BP = 4.6

5 Healthy HDL = 3.5

6 Obesity, HDL, TG, BP Obesity, HDL, TG & BP = 2.9

7 Obesity, TG & BP Obesity, HDL, TG & BP + 2.6

8 Obesity, HDL & BP Obesity, HDL & BP = 2.5

9 BP Obesity & BP + 2.2

10 Healthy BP = 2.1

11 Obesity & BP Obesity, HDL, TG & BP + 1.9

12 BP HDL & BP + 1.8

13 BP Obesity, HDL & BP + 1.8

14 BP Healthy = 1.7

15 Obesity Obesity & HDL + 1.7

16 Healthy Obesity = 1.6

17 Obesity, TG & BP Obesity, HDL & BP = 1.6

18 Obesity Obesity = 1.5

19 Obesity, TG & BP Obesity & BP 2 1.5

20 Obesity, HDL, TG & BP Obesity, HDL & BP 2 1.2

21 HDL HDL = 1.1

22 Healthy Obesity & HDL + 0.9

23 Obesity Obesity & BP + 0.9

24 BP HDL = 0.9

25 Obesity, HDL & BP Obesity, HDL, TG, & BP + 0.9

26 Obesity Obesity, HDL & BP + 0.9

27 Obesity, HDL, TG, BP & Glucose Obesity, HDL, TG, BP & Glucose = 0.8

28 Obesity & BP Obesity 2 0.8

29 Obesity & HDL Obesity & HDL = 0.7

30 HDL & BP HDL & BP = 0.7

31 Obesity, HDL, TG & BP Obesity, HDL, TG, BP & Glucose + 0.6

32 Obesity, BP & Glucose Obesity, HDL, BP & Glucose + 0.6

33 BP HDL, TG & BP + 0.6

34 Obesity & BP Obesity & HDL = 0.6

35 Obesity, TG, BP & Glucose Obesity, HDL, TG, BP & Glucose + 0.6

36 Healthy Obesity & BP + 0.5

37 Obesity & HDL Obesity, HDL & BP + 0.5

38 Healthy Obesity, HDL & BP + 0.5

39 Obesity, TG & BP Obesity, TG & BP = 0.5

These 39 most important links represent 13% of all 301 links covering 84.5% of the total flow.
‘‘Obesity’’, waist circumference: men .94 cm, women .80 cm;
‘‘Glucose’’, elevated glucose: $8.0 mmol/l or antidiabetic treatment;
‘‘HDL’’, decreased high-density lipoprotein cholesterol: men ,1.0 mmol/l, women ,1.3 mmol/l, or lipid-lowering treatment;
‘‘TG’’, elevated non-fasting triglycerides: $2.3 mmol/l or lipid-lowering treatment;
‘‘BP’’, elevated blood pressure: $130/85 mmHg or antihypertensive drug treatment.
doi:10.1371/journal.pone.0039461.t003

Visualized Risk Factor Clustering and Flow
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factors, also identified elevated blood pressure as the most

common MetS component [35]. But interestingly, the MetS

components with the highest prevalence prior to MetS de-

velopment, such as elevated blood pressure, are not necessarily

the strongest risk factors of incident MetS [13]. However, despite

the comparably high prevalence of hypertension within our study

region [36], these findings from different study populations and

geographic regions limit the potential impact of regional

differences on our revealed estimates.

Taken together, the predominant cardiovascular risk factor

cluster identified in the present MetS network analysis consists of

hypertension and central obesity. Our results suggest assessing

single cardiovascular risk factors as a simpler alternative to MetS

for CVD risk identification [10], especially in the general

population, before other MetS components appear clinically.

Similarly, the Framingham Heart Study identified a risk factor

combination of central obesity, hypertension, and hyperglycemia,

which more than doubled the risk of incident CVD and mortality

[14]. Analyzing trajectories of entering the MetS, central obesity

was also identified to confer the highest risk of incident MetS [14].

We showed that the contribution of the various cardiovascular

risk factors to the MetS individually and collectively is unbalanced

and therefore requires proper identification to provide adequate

treatment. To avoid obesity-initiated MetS and the downstream

clustering of additional cardiovascular risk factors like hyperten-

sion or dyslipidemia, lifestyle interventions that include increased

physical activity and dietary modifications offer an evidence-based

strategy for managing obesity [29], as well as prehypertension and

prediabetes [37]. Cardio-respiratory fitness has also been identified

as a key explanatory variable for the risks associated with obesity

and MetS. After inclusion of a variable reflecting cardio-

respiratory fitness into a statistical model predicting all-cause

and CVD mortality from MetS and obesity, the risk estimates were

no longer significant [38]. However, the fundamental challenge

remains how to intervene at the public health level to address the

obesity epidemic in the general population. The interventions

proven to be cost-effective and to prevent the transition to MetS

should be prioritized for implementation.

Strengths and limitations
Strengths of the present investigation include the high-quality

longitudinal data from a large-scale population-based epidemio-

logical cohort and its network-based visualization. Limitations may

arise from the use of non-fasting blood samples for the diagnosis of

ATP III defined MetS. But due to logistical concerns in a large-

scale population-based study like SHIP, it was practically

impossible to obtain such. However, the applied MetS definition,

based on non-fasting blood samples, was published in several

previous investigations related to MetS from our cohort

[10,20,21,39] and was suggested to be even the better surrogate

for the diagnosis of MetS, in particular for population-based

epidemiological studies like the present [40]. Furthermore, intra-

individual variation in the repeatedly assessed outcome measures

(including non-fasting triglycerides or glucose) may have caused

classification bias whose extent we were not able to evaluate using

network-based descriptive statistical analyses. However, given the

large sample size and the repeated one-point measurements of

MetS components, potential intra-individual variability is sup-

posed to cause misclassification into both directions.

Conclusions
Harvesting a network-based approach to visualize cardiovascu-

lar risk factor burden, expression, and change, we identified

hypertension and central obesity as the predominant MetS risk

factor cluster and low HDL concentrations as the most prominent

new onset risk factor. Interestingly, the identified subnetwork or

risk factor cluster has been shown to overlap within similar

pathophysiological processes finally leading to MetS, overt clinical

CVD, and mortality. However, prolonged efforts are needed to

identify high-risk individuals and to provide them with effective

evidence-based therapies. By revealing further insights into the

onset and progression of MetS risk factors, we have contributed to

the successful application of systems principles in epidemiology

[41], a new field tentatively named network medicine [42,43].
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