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The binding of platelet-derived growth factor D (PDGF-DD) to the NKp44 receptor
activates a distinct transcriptional program in primary IL-2 expanded human natural
killer (NK) cells. We were interested in knowing if the PDGF-DD-NKp44 pathway of NK cell
activation might play a clinically relevant role in anti-tumor immunity. In order to address
this question, we determined transcriptional signatures unique to resting, IL-2 expanded,
and PDGF-DD activated, NK cells, in addition to different T cell subsets, and established
the abundance of these immune cell phenotypes in The Cancer Genome Atlas (TCGA)
low-grade glioma (LGG) dataset using CIBERSORT. Our results show that LGG patient
tumors enriched for either the PDGF-DD activated NK cell or memory CD8+ T cell
phenotypes are associated with a more favorable prognosis. Combined cell phenotype
analyses revealed that patients with LGG tumors enriched for the PDGF-DD activated NK
cell phenotype and the CD4+ T helper cell phenotype had a more favorable prognosis.
High expression of transcripts encoding members of the killer cell lectin-like receptor (KLR)
family, such as KLRK1 and KLRC2, KLRC3 and KLRC4 in LGG tumors were associated
with more favorable prognosis, suggesting that these NK cell family receptors may play a
prominent role in LGG anti-tumor immunity. Finally, many of the TCGA findings were
reciprocated in LGG patients from the Chinese Glioma Genome Atlas (CGGA) dataset.
Our results provide transcriptomic evidence that PDGF-DD activated NK cells and KLR
family receptors may play an important clinical role in immune surveillance of LGG.
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INTRODUCTION

Diffuse and infiltrative low-grade gliomas (LGGs) are
derived from the malignant transformation of astrocytes or
oligodendrocytes (1). Whilst grade I LGGs are readily resectable
benign tumors, grade II LGG display pathologic traits and
inexorably progress to high grade gliomas, such as glioblastoma
(GBM), with terminal neurological decline (1, 2). Early surgical
excision and temozolomide treatment followed by radiotherapy
underpin current standards of care but are not curative (3–5).
Despite growing understanding of LGG pathogenesis, clinical
outcomes have failed to improve particularly for young adults
(6). Furthermore, variable rates of progression to lethal disease
impede timely clinical intervention and make accurate prognoses
difficult (7). Thus, there is an urgent need to understand effective
anti-tumor immunity in LGG.Whilst the phenotype and function
of tumor-infiltrating lymphocytes (TILs) have been explored for
high grade gliomas (8), the prognostic value of TIL subsets
and the molecular pathways of tumor recognition for LGG
remain unclear.

NK cells preferentially eliminate nascent tumors that have
downregulated MHC class-I (MHC-I) (9–11). In homeostasis,
NK cells are retained in the tissues surrounding the brain
parenchyma by the blood-brain-barrier (BBB) (12, 13). Whilst
NK cells have been identified in brain tumors and the surrounding
tissue microenvironment (14–16), the mechanisms facilitating NK
cell transmigration across the BBB and activation within the brain
are poorly defined, although the BBB is more permeable under
inflammatory conditions (17–20). Glioma cell lines are readily
susceptible to NK cell lysis in vitro (21, 22). However, in vivo
studies reveal a highly vascularized tumor microenvironment that
actively subverts immune control (23, 24) and so the significance
of NK cell surveillance for gliomas remains to be fully understood
(25). Defining immune surveillance mechanisms in those LGG
patients with enhanced survival will therefore be critical for the
development of novel cancer immunotherapies.

Among others, germline-encoded activating receptors, such
as KLRK1 (also known as NKG2D) and the Natural cytotoxicity
receptors (NCRs), such as NKp46 (NCR1), NKp44 (NCR2), and
NKp30 (NCR3), can synergize to overcome inhibitory thresholds
and evoke NK cell anti-tumor functions (26–28). As such, NK
cell anti-tumor activity is sensitive to activating receptor surface
phenotype and the expression of tumor ligands (29). KLRK1
recognizes a range of ligands upregulated by transformed cells,
such as MHC class I chain-related sequence (MIC) A and MICB,
which are major determinants of NK cell tumor cytolysis in
humans (30–33). Of the NCRs, NKp44 also recognizes a range of
cellular and tumor-associated surface ligands, such as Nidogen-1
(34), the heparan sulfate proteoglycan, Syndecan-4 (35), a subset
of HLA-DP molecules (36), a splice variant of the mixed lineage
leukemia 5 (MLL5) gene (37), and proliferating cell nuclear
antigen (PCNA) (38), that have all been reported to positively
or negatively regulate NK cell function (39, 40). Recently, PDGF-
DD was shown to induce signaling from the activating NKp44
immunoreceptor (41).

The platelet-derived growth factor (PDGF) family are
comprised of four polypeptides that assemble into five dimeric
Frontiers in Immunology | www.frontiersin.org 2
isoforms, PDGF-AA, PDGF-BB, PDGF-AB, PDGF-CC, and
PDGF-DD. PDGFs play essential roles in embryonic
development, cell proliferation, cell migration, survival and
chemotaxis by engaging PDGF receptors (PDGFRs) that are
mostly expressed by mesenchymal cells (42). PDGF-DD is a
potent mitogen that plays an important role in wound healing
and blood vessel maturation during angiogenesis by inducing
PDGFR-b signaling on mesenchymal cells (43, 44). In brain
cancer, PDGF-DD binding to PDGFR-b can induce pro-
tumorigenic signaling that drives glioma progression (45–49).

PDGF-DD stimulation of NKp44 induced NK cell secretion
of IFN-g and TNF that arrest tumor cell proliferation in vitro and
may confer a survival benefit in GBM (41). In support of this,
PDGF-DD is abundantly expressed in GBM, suggesting a novel
mode of NK cell tumor surveillance (50), but the clinical
significance of the NKp44-PDGF-DD pathway for anti-tumor
immunity in many other human cancers including LGG
remains unclear.

Here, we employed a computational approach to investigate
the clinical impact of the relative enrichment of resting, IL-2
expanded, and PDGF-DD activated NK cell phenotypes in the
LGG tumor microenvironment. To achieve this, we used
transcriptional signatures from the three NK cell activation
states and estimated their relative abundance in LGG tumor
specimens from TCGA database and tested the association with
curated progression-free survival (51).
METHODS

Material Availability
The R codes for the analyses presented in this study are available at
RAGG3D/LGG_SPANK (github.com). An overview of the
methods used in this study are shown in Supplementary Figure 1.

Data Collection
Gene transcript-abundance and patient clinical information were
collected from TCGA through the GDC Data Portal (52) and the
CGGA (53–56). Progression-free survival information was used
as a measure of clinical outcome (51). The cell-type specific
transcriptional signatures were derived from a large collection of
RNA sequencing samples spanning a wide range of cell types. For
NK cells, experimentally derived dataset for IL-2 expanded (27
biological replicates), PDGF-DD activated via NKp44 signaling
(4 biological replicates), and resting (25 biological replicates from
6 datasets) (41) were included. For other cell types, the data
collected was from the following datasets: BLUEPRINT (57),
Monaco et al. (58), ENCODE (59), Squires et al. (60), GSE77808
(61), Tong et al. (62), PRJNA339309 (63), GSE122325 (64),
FANTOM5 (65), GSE125887 (66), GSE130379 (67),
GSE130286 (68).

Transcriptional Signatures
In order to derive transcriptional signatures of 21 cell types
(memory B cell, naive B cell, immature dendritic myeloid cell,
immature dendritic myeloid cell, endothelial, eosinophil,
epithelial, fibroblast, macrophage M1 and M2, mast cell,
September 2021 | Volume 12 | Article 668391
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monocyte, neutrophil, ReNK, IL2NK, SPANK, memory CD4 T
cell, memory CD8 T cell, naive CD8 T cell, gamma-delta T cell
and helper T cell), a total of 592 highly curated (i.e. for which
identity was confirmed in the literature), non-redundant
biological replicates (including 25 ReNK samples, 27 IL2NK
samples and 4 SPANK samples), have been used. Due to the
sparse nature of heterogeneous data sets, the expected value and
variability of gene transcription abundance was inferred for each
cell type using a publicly available Bayesian statistical model
(github: stemangiola/cellsig), based on a negative binomial data
distribution (69). This model allows to fit incomplete data (e.g.
transcript abundance of one gene for which data is available in a
subset of reference biological replicates) and calculate theoretical
data distributions of cell-type/gene pairs. The cell-type
transcriptional marker selection was based on the pairwise
comparison of each cell type within cell-type categories along a
cell differentiation hierarchy (Supplementary Figure 2) (70). For
example, all cell-type permutations from the root node of level
one (including epithelial, endothelial, fibroblasts and immune
cells) were interrogated in order to select the genes for which the
theoretical transcript abundance distribution (data generated
from the posterior distribution) was higher for one cell type
compared to another. This was executed calculating the distance
of the upper and lower 95% credible intervals, respectively
(obtained from cellsig). From each comparison, the top 5, 10
and 20 genes per cell-type pair were selected from levels 1, 2, and
3 (Supplementary Figure 2), and the union of all genes was
taken as overall marker gene list. This hierarchical approach
favors the identification of marker genes that distinguish broad
cell-type categories as well as specific activation phenotypes.

Estimation of the Association of
Cell-Type Abundance With Relapse-Free
Patient Survival
In order to estimate the cell type relative abundance for each
biological replicate, we used the algorithm CIBERSORT (71) with
our RNA sequencing-derived gene marker signature. In order to
estimate the clinical relevance of NK activation phenotypes (72)
(73),for each cancer-type/cell-type pair, Kaplan-Meier (KM)
survival curves (74) were calculated from the median split
CIBERSORT-inferred proportions through the R framework
tidybulk. Percent survival vs time-to-event statistics were
calculated by the Log-rank (Mantel-Cox) Test (75). Statistics of
KM curves were performed by log-rank test then adjusted by the
Benjamini-Hochberg (BH) procedure. A table of all p-values prior
to adjustment is provided in Supplementary Table 1.

Data analysis and visualization were performed using the R
environment in RStudio (76). Packages include tidyverse (77),
tidybulk (73), tidyHeatmap (78), survminer (79), survival (80,
81), foreach (82), org.Hs.eg.db (83), cowplot (77), ggsci (84),
GGally (85), gridExtra (86), grid (76), reshape (87), Hmisc (88),
and viridis (89).

Benchmark of the Transcriptional
Signatures
In order to visually evaluate the ability of the marker gene
selection in segregating cell types, we first performed principal
Frontiers in Immunology | www.frontiersin.org 3
component analyses (PCA) (90) for three levels of cell
differentiation: (i) the NK activated states, (ii) all NK cells, and
(iii) all cell types. Briefly, the raw read counts were normalized by
trimmed mean of M values (TMM) using tidybulk function
scale_abundance, whilst CGGA transcripts were already
normalized by transcripts per kilobase of exon model per
million mapped reads (TPM) via RNA-seq by expectation
Maximization (RSEM). PCA analyses were performed by
reduce_dimensions(method=“PCA”) (73). To directly test
whether the selected signature for PDGF-DD activated NK
cells was suitable to accurately detect changes in cell
abundance across samples with a censored time-to-event, we
implemented a test on simulated data. First, for a selected
number of patients N, we sampled the progression-free
survival time from the clinical annotation of the LGG patient
cohort. Cell type proportions were simulated using a Dirichlet
distribution, according to a linear model with a slope value S and
a progression-free survival as factor of interest. For each
simulated dataset, the slope S was assigned to only one cell
type, and the slope of 0 to all the others (i.e. only one cell type
changing for each simulated tissue mixture). The intercept
(baseline proportion) was defined to be the same for all cell
types. The simulated proportions were used to compose the in-
silico mixtures. For each simulated dataset, the transcriptional
profile of each cell type was sampled at random from
the reference dataset. In order to test the accuracy of our
method against the presence of foreign cell types (of which
transcriptomic signature was not included in our reference
set), a proportion P of neural cells was added to the mixture.
The framework tidybulk was used to infer the cell type
proportions through CIBERSORT and perform a multiple cox
regression on the predicted proportions (logit-transformed) (81),
with progression-free survival censored time as a covariate. That
is, for half of the N samples, the survival time was censored to
half of its value. The significance calls were compared with the
ground truth to generate a receiver operating characteristic
(ROC) curve. For each simulation condition (values of N, S,
and P), 63 test runs were performed with one variable cell type
each. A range of simulation conditions were tested, ranging N
from 250 to 1000, S from 0.2 to 1, and P from 0 to 0.8.
RESULTS

NK Cell Phenotypes Have Unique
Transcriptional Profiles
Given the innate ability of NK cells to lyse tumor cells and secrete
potent anti-tumor cytokines, such as IFN-g and TNF, prior to
immunization, we hypothesized that NK cells of unique
phenotype may infiltrate different cancers and confer anti-
tumor immunity. Specifically, we were motivated by the recent
discovery of PDGF-DD as a ligand for the activating NK cell
receptor NKp44 (41) and whether this mechanism of NK cell
stimulation might constitute a clinically relevant pathway of anti-
tumor immunity. In order to answer this question, we gathered
publicly available RNA sequencing data from 21 different
September 2021 | Volume 12 | Article 668391
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immune and stromal cell types (see Methods) in order to define
marker genes that may distinguish resting (91), IL-2 expanded,
and PDGF-DD activated, NK cell phenotypes (41).

We next performed a principal component analysis (PCA) to
determine the ability of these marker genes to segregate all three
NK cell phenotypes from each other and from other cell types,
such as T cells (Figure 1A). NK cell activation states are
associated with the first principal components (Figure 1A, left
and middle panels), and NK cells overall are defined by a unique
cluster when compared with other major cell types (Figure 1A,
right panel). NK cell phenotypes segregated from other cell types
and from each other by PCA.

We next performed a benchmark for the inference of changes
in the relative abundance of PDGF-DD activated NK cells in
Frontiers in Immunology | www.frontiersin.org 4
association with survival information for artificial tissue mixtures
built from our reference data set (see Methods). This benchmark
measured the ability of the PDGF-DD activated NK cell
signature to extract clinically-relevant information from TCGA
whole tissue RNA sequencing data (Figure 1B). The benchmark
showed a high accuracy (area under curve) across simulation
settings including magnitude of variability, sample-size, and
proportion of unknown cells (please see Methods). An
accuracy of 0.75 (representing the area under the ROC curve)
was reached for simulation settings that match our findings on
TCGA data (slope and sample size; Figures 1C, D). We refer
to the different NK cell phenotypes as: resting NK cells (ReNK),
IL-2 expanded NK cells (IL2NK), and the signature of PDGF-DD
activated NK cells (SPANK), respectively, and the transcript
A

B C D

FIGURE 1 | Identification of different NK cell phenotypes using transcriptional signatures. (A) Study of transcriptomic signatures for activated NK cells (left), all NK
cell phenotypes (middle), and all cell types (right). On the top the principal components or the t-distributed stochastic neighbor embedding dimensions for the
biological replicate within the reference dataset are shown. On the bottom, the relative transcriptional abundance is shown for marker genes. (B) Test for accuracy of
the inference of PDGF-DD activated NK cell proportion from simulated mixtures. This plot represents the accuracy of the combination of CIBERSORT with Cox-
regression by inferring associations between convoluted tissue composition and survival time. The three facets represent low-to-high proportion of missing information
(proportion of total cells being of neural origin in the simulated mixtures, for which signature was not present in the reference). Data was simulated across a range of
sample-size and slopes. A simulation condition that represents the associations we detected in the TCGA database is circled. (C) Receiver Operating Characteristic
(ROC) curve, measuring the accuracy (true-positive and false-positive) for the simulated mixture circled in panel (C, D) The underlying association between the
positively associated cell types with survival days, of the simulated dataset circled in panel (C).
September 2021 | Volume 12 | Article 668391

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Sun et al. NK Cell Surveillance of Glioma
abundance of each marker gene in these NK cell phenotypes are
shown in Supplementary Table 2.

The SPANK Is Associated With Improved
Prognosis in TCGA LGG Dataset
Previous studies have implicated NK cells in immune responses
to glioma (15, 92–95). We next sought the association of the
ReNK, IL2NK, and SPANK phenotypes with LGG. The SPANK
was more abundant than either the ReNK or IL2NK phenotypes
in LGG tumors from TCGA (Figure 2A). LGG tumors enriched
for the SPANK were associated with greater overall patient
survival compared to the ReNK or IL2NK phenotypes
(Figure 2B). These results show that tumor abundance of a
distinct NK cell phenotype is associated with cancer patient
survival, such as LGG. Moreover, these data also suggest that
LGG tumors express PDGF-DD which may activate pro-
tumorigenic pathways.

PDGFD Expression Is Associated With
LGG Invasion and Poor Prognosis
In contrast to evoking NK cell anti-tumor functions through
PDGF-DD binding to NKp44 (41), PDGF-DD (encoded by
PDGFD) binding to PDGFR-b (encoded by PDGFRB) induces
pro-tumorigenic signaling pathways that are detrimental for
cancer patient survival (42, 47, 96, 97). Expression of a three-
gene signature, comprised of TGFBI, IGFBP3, and CHI3L1, has
previously been associated with glioma tumor cell invasion and
Frontiers in Immunology | www.frontiersin.org 5
migration and poor patient survival (98). Tumor expression of
TGFBI, IGFBP3, and CHI3L1 were positively correlated with
PDGFD and PDGFRB expression in TCGA LGG dataset,
respectively (Figure 3A) (98).

Since PDGFD and PDGFRB were associated with genes
involved in glioma tumor cell invasion and migration, we next
examined the relationship between tumor expression of PDGFD
or PDGFRB and LGG patient survival. LGG patients with low
tumor expression of PDGFD had more favorable prognosis
compared to LGG patients with high tumor expression of
PDGFD (Figure 3B). Higher LGG tumor expression levels of
PDGFRB alone displayed a trend towards poor survival
(Figure 3B) when PDGFD expression was low, but this was
not statistically significant (Figure 3C). These data show that
high tumor expression of PDGFD is primarily associated with
poor prognosis compared to PDGFRB expression in TCGA
LGG dataset.

SPANK Abundance Mitigates the
Pro-Tumorigenic Effects of PDGFD in
TCGA LGG
Anti-tumor immunity would be expected to curtail pro-
tumorigenic factors and benefit patient survival. In addition to
pro-tumor functions, we hypothesized that tumors enriched for
the SPANK would contribute to anti-tumor immunity resulting
in a more favorable TCGA LGG prognosis (41). In order to
assess whether the abundance of these NK cell phenotypes
A

B

FIGURE 2 | Abundance of NK cell phenotypes and association with survival in the TCGA LGG dataset. (A) Abundance of NK cell phenotypes (fraction and
percentage) for TCGA LGG cohort, the SPANK is the most abundant NK cell phenotype in LGG. (B) KM curves for all three NK cell phenotypes for TCGA-LGG; high
tumor abundance of SPANK is associated with a beneficial LGG patient outcome compared to ReNK and IL2NK.
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Sun et al. NK Cell Surveillance of Glioma
counteracted the pro-tumorigenic expression of PDGFD and
thus improve TCGA LGG prognosis, we next determined the
progression-free survival of LGG patients with tumors stratified
for PDGFD expression and abundance of either the ReNK,
IL2NK, or SPANK phenotypes. When LGG tumors were
stratified for PDGFD expression, patients with tumors
enriched for the SPANK had a more favorable prognosis
compared to LGG patients with a lower tumor abundance of
SPANK (e.g. compare HPDGFD/HSPANK, red KM curve, to
HPDGFD/LSPANK, grey KM curve and compare LPDGFD/HSPANK,
yellow curve, to LPDGFD/LSPANK, blue curve) (Figure 4). In
contrast, this was not observed for either ReNK or IL2NK
(Figure 4). These results show that LGG tumors enriched for
the SPANK may mitigate the detrimental effect of PDGFD
Frontiers in Immunology | www.frontiersin.org 6
expression on the prognosis of TCGA LGG patient cohort
compared to the ReNK or IL2NK phenotypes.

Memory CD8+ T Cell Abundance Mitigates
the Pro-Tumorigenic Effects of PDGFD in
TCGA LGG
For a given cancer, it is likely that immune subsets other than NK
cells infiltrate the tumor microenvironment to elicit anti-tumor
immunity, particularly T cells. We were interested in knowing
whether the abundance of a given T cell subset in the LGG tumor
microenvironment is associated with anti-tumor immunity. TCGA
LGG tumors enriched for the memory CD8+ T cell phenotype were
associated with improved prognosis, but not the naïve, gd, CD4+

memory, or Helper, T cell phenotypes (Figure 5A). Our analyses
FIGURE 4 | SPANK abundance alleviates the pro-tumorigenic effects of PDGFD on TCGA LGG prognosis. Combined LGG patient survival analysis stratified for
tumor expression of PDGFD and each NK cell phenotype, ReNK, IL2NK, and SPANK, respectively. KM curves display LGG patient survival plotted in all four
combinations for each stratum, respectively (L/L, L/H, H/L, and H/H). For LGG tumors with either high or low PDGFD expression, a high tumor abundance of
SPANK is associated with improved LGG prognosis.
A B C

FIGURE 3 | PDGFD expression is associated with tumor invasion and poor prognosis compared to PDGFRB in TCGA LGG dataset. (A) Tumor expression of
PDGFD and PDGFRB were positively correlated with the expression of TGFBI, IGFBP3, and CHI3L1 which play important roles in glioma invasion and migration.
(B) KM survival curves constructed for PDGFD or PDGFRB expression in LGG tumors. (C) KM curves constructed for combinations of PDGFD and PDGFRB
abundance in LGG tumors.
September 2021 | Volume 12 | Article 668391
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show that TCGA LGG patients enriched for the memory CD8+ T
cell phenotype have improved prognosis.

In order to determine whether each T cell phenotype might
counteract the detrimental expression of PDGFD on LGG
prognosis, similarly to the SPANK, we next determined
progression-free survival for LGG patients with tumors
stratified for expression of PDGFD and the abundance of each
T cell phenotype, respectively (Figure 5B). Using this approach,
LGG tumors enriched for the memory CD8+ T cell phenotype
were associated with improved prognosis (Figure 5B). These
results show that LGG tumors enriched for the memory CD8+ T
cell phenotype mitigate the pro-tumorigenic effects of PDGFD
because they are associated with improved prognosis.

The SPANK and Helper T cell Phenotype
Are Associated With Improved
LGG Prognosis
Given that the abundance of NK and T cell phenotypes differ
markedly in LGG tumors (Supplementary Figure 3), we were
interested in understanding the relative contribution of SPANK
and T cell phenotypes for LGG prognosis, respectively. We
therefore determined patient survival for TCGA LGG tumors
stratified for the abundance of SPANK and each respective T cell
subset (Figure 5C). Interestingly, LGG tumors enriched for the
Frontiers in Immunology | www.frontiersin.org 7
SPANK and CD4+ T helper phenotypes (TH) had improved
prognosis compared to other strata e.g. compare HSPANK/HTH to
either HSPANK/LTH or LSPANK/HTH or LSPANK/LTH (Figure 5C,
column 1). In contrast, LGG tumors enriched for the SPANK
and memory CD8+ T cell phenotypes (CD8mem) did not further
improve LGG patient survival compared to other strata e.g.
compare HSPANK/HCD8mem to either LSPANK/HCD8mem or
HSPANK/LCD8mem (Figure 5C, column 5). We conclude that
LGG tumors enriched for the SPANK and CD4+ T helper cell
phenotypes are associated with improved LGG prognosis in
TCGA. These results provide new insights into the possible
cooperation between different NK and T cell subsets for LGG
anti-tumor immunity which may inform adoptive cell therapies.

Critical Role for Killer Cell Lectin-Like
Receptor Family Members in LGG Anti-
Tumor Immunity
NK cells express a family of germline-encoded activating and
inhibitory surface receptors that engage in cancer immune
surveillance, which can also be expressed by memory CD8+

T cells. However, the NK cell family receptors most critical for
anti-tumor immunity in LGG remain unclear. Given that LGG
patients in TCGA with tumors enriched for the SPANK or
memory CD8+ T cells were associated with improved prognosis,
A

B

C

FIGURE 5 | Tumor abundance of memory CD8+ and Helper T cells influences TCGA LGG prognosis KM curves displaying the survival of LGG patients split by
median fraction into low (L) and high (H) tumor expression of (A) each T cell phenotype alone, (B) PDGFD and each T cell phenotype, respectively, or (C) each NK
cell and each T cell phenotype, respectively. KM curves display the survival of LGG patients plotted in all combinations for each stratum.
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Sun et al. NK Cell Surveillance of Glioma
we were interested in analyzing whether tumor expression of
transcripts encoding NK cell family receptors was also associated
with improved prognosis for TCGA LGG patients. LGG tumors
with high expression of the KLRK1, KLRC1, KLRC2, KLRC3, or
KLRC4 transcripts encoding the NKG2D, NKG2A, NKG2C,
NKG2E, and NKG2F NK cell receptors, respectively, were
associated with improved prognosis (Figure 6A). In contrast,
high LGG tumor expression of CD226, CD244, CRTAM,
KIR2DL4, NCR1, or NCR3 encoding the DNAM-1, 2B4,
CRTAM, NKp46 and NKp30 NK cell receptors, respectively,
were not associated with prognosis (Supplementary Figure 4).
Moreover, expression of the KLRK1, KLRC1, KLRC2, KLRC3, and
KLRC4 receptor genes were overwhelmingly positively correlated
with the SPANK and memory CD8+ T cell phenotypes in TCGA
LGG tumors (Figure 6B). These results show that high expression
of the Killer cell lectin-like receptor (KLR) family in LGG tumors
is associated with improved prognosis, suggesting that expression
of KLR receptors may be critical for regulating anti-tumor
immunity in LGG.

The SPANK and Memory CD8+ T Cell
Phenotypes Are Associated With KLRC2
Expression and More Favorable Prognosis
in CGGA LGG Patients
Since LGG tumors enriched for expression of the SPANK and
KLR family receptors were associated with improved prognosis in
the TCGA LGG patient cohort, we next sought to validate these
findings using another glioma patient dataset, such as the CGGA
(Figure 7). Similar to TCGA LGG patient cohort, high tumor
Frontiers in Immunology | www.frontiersin.org 8
expression of PDGFD in CGGA LGG patients was associated with
a poor prognosis (Figure 7A). Moreover, LGG tumors enriched
for the SPANK and memory CD8+ T cell phenotypes were
associated with improved prognosis when CGGA tumors were
also stratified for PDGFD expression compared to the IL2NK
phenotype (Figure 7B). In contrast to TCGA LGG dataset, high
tumor expression of KLRC1 and KLRC2 in CGGA LGG patients
were associated with improved prognosis, but not KLRC3, KLRC4
or KLRK1 (Figure 7C). Like TCGA, high expression of KLRC2,
which encodes the activating NKG2C receptor, was also
associated with the SPANK and memory CD8+ T cell
phenotypes in LGG tumors (Figure 7D). However, in contrast
to TCGA, expression of KLRC1, which encodes the inhibitory
NKG2A receptor, was associated with the ReNK phenotype and
not the SPANK or memory CD8+ T cell phenotypes in CGGA
LGG tumors (Figure 7D). Similar to TCGA, these results show
that high tumor expression of PDGFD is associated with poor
CGGA LGG prognosis, and tumors enriched for the SPANK and
memory CD8+ T cell phenotypes have improved prognosis.
Moreover, like TCGA, high LGG tumor expression of KLRC2 is
also associated with the SPANK and memory CD8+ T cell
phenotypes and improved prognosis of CGGA LGG patients.
DISCUSSION

The clinical relevance of NK cells in cancer immune surveillance,
particularly for solid tumors, remains unclear. We hypothesized
that differential tumor enrichment of NK cells in different
A B

FIGURE 6 | Killer cell Lectin-like Receptor family expression is associated with more favorable TCGA LGG prognosis. (A) KM plots displaying progression-free survival
of LGG patients split by median fraction into low (L) and high (H) tumor expression for the NK cell receptor genes: KLRK1, KLRC1, KLRC2, KLRC3, KLRC4, or NCR2.
(B) Heatmap displaying correlations between expression of each NK cell receptor transcript (y-axis) and each NK cell and T cell phenotype (x-axis), respectively.
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activation states may contribute to anti-tumor immunity. To
investigate this important question, we determined TS from
experimental RNA-seq datasets derived from NK cells in three
different functional states; ReNK, IL2NK, and SPANK. Using
this unbiased approach, we found that enrichment of the SPANK
phenotype in LGG tumors was associated with improved
prognosis in TCGA and CGGA datasets. The SPANK was
derived from RNA-seq data from NK cells that had been
stimulated with PDGF-DD, suggesting that PDGF-DD is
expressed in the LGG tumor microenvironment.

In addition to activating NK cells, PDGF-DD binding to
PDGFR-b can induce pro-tumorigenic signaling pathways. We
reasoned that high expression of the genes for PDGF-D and
PDGFR-b in LGG might predict poor LGG cancer prognosis (42,
47, 96, 97). In support of this, PDGFD and PDGFRB were
Frontiers in Immunology | www.frontiersin.org 9
positively correlated with a three-gene signature (TGFBI,
IGFBP3, and CHI3L1) associated with glioma tumor cell
invasion and migration and poor patient survival (98). Indeed,
our analysis shows that LGG patients with high tumor expression
of PDGFD had a poor prognosis in both TCGA and CGGA
cohorts (42, 47, 96, 97). This model awaits confirmation in mouse
models of glioma to determine whether PDGF-DD/PDGFR-b
signaling can be targeted to restrict glioma tumor cell migration
and invasion or even progression to higher glioma grades.

Given that the expression of PDGFD was primarily associated
with pro-tumor pathways and poor prognosis, we further
hypothesized that enrichment of the SPANK phenotype in
LGG tumors may be associated with effective anti-tumor
immunity and improved prognosis. High tumor abundance of
the SPANK was associated with improved prognosis when LGG
A

B

C

D

FIGURE 7 | Validation of TCGA findings using the CGGA LGG dataset. KM curves displaying the survival of CGGA LGG patients split by median fraction into low (L)
and high (H) tumor expression of: (A) PDGFD, (B) PDGFD and either NK cell or memory CD8+ T cell phenotypes, respectively, and (C) NK cell receptor genes, KLRK1,
KLRC1, KLRC2, KLRC3, or KLRC4, respectively. KM curves display the survival of LGG patients plotted in all combinations for each stratum. (D) Heatmap displaying
correlations between the expression of each NK cell receptor transcript (y-axis) and NK cell and T cell phenotypes (x-axis) in CGGA LGG tumors, respectively.
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tumors were stratified for the expression of PDGFD in both
TCGA and CGGA patient cohorts. Our data show that the
relative abundance of the SPANK may counteract the pro-
tumorigenic properties of PDGFD expression and improve
LGG prognosis. Interestingly, Nidogen-1 (34), the heparan
sulfate proteoglycan, Syndecan-4 (35), a subset of HLA-DP
molecules (36), a splice variant of the MLL5 gene (37), and
PCNA (38), have all been reported to bind and regulate NKp44
signaling, and it will be interesting to determine whether
expression of these latter genes in the LGG tumor
microenvironment can influence the association between the
NK cell phenotypes that we describe and LGG prognosis.

It is very likely that NK cells are not the sole mediators of anti-
tumor immunity in vivo and our analyses revealed that
enrichment of the CD8+ memory T cell phenotype in LGG
tumors was also associated with improved prognosis when LGG
tumors were stratified for high or low tumor expression of
PDGFD in both TCGA and CGGA patient cohorts.
Interestingly, stratifying LGG tumors for T cell subsets and NK
cells phenotypes revealed new insights into potential cooperation
between these innate and adaptive immune cell subsets that was
not revealed from the analysis of these immune cell phenotypes
alone. For example, LGG patients with tumors enriched for the
SPANK and CD4+ T helper phenotypes had improved survival
suggesting that adoptive transfer of NK cells with CD4+ T helper
cells may represent a novel therapeutic approach for LGG.
Again, these computational results await confirmation in pre-
clinical mouse models of glioma to determine whether the
adoptive transfer of NK cells with CD4+ T helper cells can
restrict glioma tumor cell migration and invasion or possibly
even progression to higher glioma grades.

Finally, high tumor expression of the NK cell receptor genes;
KLRK1, KLRC1, KLRC2, KLRC3, and KLRC4 that encode the
NKG2D, NKG2A, NKG2C, NKG2E and NKG2F, respectively,
were all associated with improved prognosis and positively
correlated with the SPANK and memory CD8+ T cell
phenotypes, suggesting expression of these KLR NK cell
receptor family gene products are important for LGG anti-
tumor immunity in TCGA patient cohort.

Interestingly, the KLRC1 receptor, also known as NKG2A, is
expressed as a heterodimer with CD94 on the surface of NK cells
and T cells (99). CD94/NKG2A can bind to HLA-E as ligand to
negatively regulate signaling from other activating KLR family
members including KLRC2, known as NKG2C, which also
heterodimerizes with CD94 to bind HLA-E (100, 101).
Interestingly, KLRC1 has recently been shown to function as a
checkpoint inhibitor that when blocked can promote NK cell and
CD8+ T cell-mediated anti-tumor immunity (102, 103). Since NK
cell effector function is regulated by the balance of signaling from
an array of germline-encoded activating and inhibitory receptors
(29, 104), it is possible that signaling from the activating KLRK1
(NKG2D), NCR2 (NKp44) and KLRC2 (NKG2C) receptors,
which are all associated with improved survival (Figure 6A),
may cooperate to overcome any inhibitory threshold set by
KLRC1 (NKG2A) in TCGA LGG patient cohort (103).

High tumor expression of KLRC1 and KLRC2 were also
associated with improved survival in the CGGA LGG patient
Frontiers in Immunology | www.frontiersin.org 10
cohort, but not KLRK1, KLRC2 or KLRC4. However, the SPANK
and CD8+ T cell phenotypes were associated with expression of
KLRC2 and not KLRC1 in the CGGA LGG patients, suggesting
the balance of signaling may favor KLRC2 activation in the
CGGA LGG patient cohort compared to TCGA LGG cohort.
Given our results and those from other laboratories, it will be
interesting to determine the expression of HLA-E in LGG and
KLR family receptors on glioma-infiltrating NK cells and CD8+ T
cells in different ethnic groups and to test whether blocking the
inhibitory function of KLRC1 can enhance the anti-tumor activity
of NK cells and CD8+ T cells in LGG and other brain cancers
(102, 103). Finally, using CIBERSORT, we have uncovered an
intriguing association between tumor expression of PDGFD and
tumor enrichment of the SPANK and T helper and memory
CD8+ T cell signatures, that may be important for LGG patient
survival. However, it is premature to conclude that the SPANK or
the T cell signatures play a definitive role in LGG survival and
future studies will aim to determine the biological significance of
the SPANK and different T cell phenotypes and NK cell receptors,
such as the KLR family, in LGG patient survival.
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mast cells and neutrophils, fibroblasts, endothelial and epithelial cells. Secondly, we
selected marker genes by pairwise comparison and CIBERSORT to create our
transcriptional signature (TS). Thirdly, we input our TS and RNA-seq matrix of TCGA
cancer patients into CIBERSORT to estimate the proportion of each cell type in
each patient. Finally, we performed a series of statistical analysis using the immune
cell type profiles and clinical results of all TCGA cancer patients.

Supplementary Figure 2 | The Cell differentiation hierarchy used in marker gene
selection. The higher levels are differentiated from cells in the lower levels (L1
differentiates into L2, L2 differentiates into L3, and L3 differentiates into L4).

Supplementary Figure 3 | Profiles of NK and T cell subset phenotypes in LGG
patients. (A) Profiles showing original fractions of NK and T cell phenotypes in LGG
tumors (B) Proportions of total NK and T cell abundance in LGG tumors.
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Supplementary Figure 4 | Kaplan-Meier curves of NK cell receptor family genes
in LGG patients. Survival analysis of receptor genes CD226 (encoding DNAM-1),
CD244 (encoding 2B4/SLAMF4), CRTAM, KIR2DL4, NCR1 (encoding NKp46)
and NCR3 (encoding NKp30) in TCGA-LGG. High expression of CD226 gene is
significantly related to poor survival. Low (L) and high (H) expression groups
were split by median TMM normalized counts. Statistics was performed by
log-rank test.

Supplementary Table 1 | Log rank p values and Benjamini-Hochberg corrected
p values. Log rank p-values of Kaplan-Meier curves were all corrected by BH
procedure (/ = unchanged).

Supplementary Table 2 | NK phenotype TS transcripts. The abundance of each
marker gene in the TS of NK cell phenotypes.
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