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Overemphasis on recovery inhibits community
transformation and creates resilience traps
Benjamin Rachunok 1,4✉ & Roshanak Nateghi 1,2,3

Building community resilience in the face of climate disasters is critical to achieving a sus-

tainable future. Operational approaches to resilience favor systems’ agile return to the status

quo following a disruption. Here, we show that an overemphasis on recovery without

accounting for transformation entrenches ‘resilience traps’–risk factors within a community

that are predictive of recovery, but inhibit transformation. By quantifying resilience including

both recovery and transformation, we identify risk factors which catalyze or inhibit trans-

formation in a case study of community resilience in Florida during Hurricane Michael in

2018. We find that risk factors such as housing tenure, income inequality, and internet access

have the capability to trigger transformation. Additionally, we find that 55% of key predictors

of recovery are potential resilience traps, including factors related to poverty, ethnicity and

mobility. Finally, we discuss maladaptation which could occur as a result of disaster policies

which emphasize resilience traps.
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There has been a significant increase in the frequency of
major disasters costing over $1 billion USD, with the direct
costs of disasters during 2018–2019 exceeding $136 billion

USD1. Accelerated urbanization, aging infrastructure, climate
change and reactive federal disaster policies that prioritize
recovery over mitigation and thus incentivize development in
high-risk areas have amplified the vulnerability of communities to
climate disasters2.

Resilience has long served as an organizing principle for
marshalling resources and managing government and private
sector investments to reduce vulnerability and stimulate recovery
in response to major natural hazards and disruptions3,4. Theo-
retical and analytical studies of resilience exist in the social sci-
ences, ecology, urban planning, and engineering3,5. Despite
disciplinary differences, resilience is broadly conceptualized as
capacities to bounce back after shocks and systematically adapt
and transform to preserve system functionality6–8.

More recently, there is a push to move beyond ontological
discussions of resilience towards an operational paradigm at the
community level9,10, with a community understood as geo-
graphically linked groups of interacting individuals with shared
norms and interests11. Despite recent advancements in opera-
tional models of community resilience11–14, fundamental
knowledge gaps remain. These gaps can be traced to the over-
whelming focus of operational models of resilience on bouncing
back15 after disruptions and thus preserving the status quo.
Specifically, in existing paradigms, a resilient system deviates
minimally from its current state and returns to the status quo
rapidly upon disruption3,4,16–23,23–25. The focus on recovery is
referred to as ‘engineering resilience’26,27, and this paradigm has
served as the foundation for decision and policymaking frame-
works aimed at building resilient and sustainable systems and
communities19,28–34.

At their core, the engineering resilience frameworks quantify
how communities are disrupted and recover—typically through
measuring reliable access to critical infrastructure such as the
electric power grid—and seek to identify risk factors within
communities and/or systems which promote a rapid return to
pre-disruption states. While these approaches are beneficial for
prioritizing relief and recovery efforts, they fall short in fully
operationalizing resilience in a way which also promotes miti-
gation, adaptation, and transformation. Moreover, these frame-
works may be promoting maladaptation—defined as actions that
are beneficial in the short term but ultimately increase vulner-
ability to future disruptions35,36. There is evidence that current
disaster policies based on engineering resilience paradigms—such
as insurance and disaster relief assistance programs—exacerbate
wealth inequality2 and broaden the racial wealth gap in areas
impacted by disasters37 by reinforcing the status quo which
exacerbates persistent vulnerability rather than enabling
adaptation36. Operationalizing resilience paradigms that incenti-
vize not only recovery but also transformation will enable
designing disaster policies and interventions which do not
exacerbate vulnerabilities and inequities.

In this work, we shrink the gap between the concept and
operationalization of resilience by quantifying both recovery and
communities’ transformation. Defining transformation as a ‘sys-
temic change of the urban system’8 which includes nonlinear
reorganizations of infrastructure, ecosystems, lifestyles, institu-
tions, and governance8,38,39, we measure and track the reorga-
nization and transformation of communities in addition to
quantifying their recovery from disruption. Specifically, we
leverage the state of the art in statistical machine learning to (i)
establish key predictors of recovery, and (ii) identify which of
these key risk factors are conducive to catalyzing or inhibiting
transformation. We quantify threshold effects and conduct

tipping point analyses by estimating the degree of change needed
in risk factors to cause transformation, using the 2018 Hurricane
Michael in Florida as a case study. The focus on hurricanes was
due to the severity of their impact on communities and their
wide-reaching devastation, positioning them as significant stress
tests of community resilience. According to the National Oceanic
and Atmospheric Administration, hurricanes have caused more
deaths and destruction than any other recorded climate disaster
in U.S. history. Hurricane Michael was specifically chosen as a
case study as it is the most powerful storm to make landfall in
Florida since the state began publicly reporting county-level
disaster impacts. As of 2018, 41% of hurricanes that have hit the
US have made landfall in Florida40, and accordingly, the state has
a significant number of programs designed to foster resilience and
aid in the immediate recovery from hurricanes. We use power
outages—available at a county level throughout the storm—as a
proxy for community recovery, as power outages were wide-
spread throughout the state affecting communities’ access to all
other critical resources such as food, water, transport, and
hygiene. Our findings demonstrate that an overemphasis on
recovery and not accounting for transformation can entrench
resilience traps, where risk factors that are predictive of recovery
inhibit positive transformation and perpetuate maladaptive states.

Results
Quantifying recovery. State-of-the-art approaches for measuring
the recovery of a community utilize predictive models to relate
risk factors to disaster outcomes as access to critical services is
interrupted and restored11,18,41–44. Given the localized and place-
based nature of community resilience, and in line with the pre-
vious studies12,14,45, we perform predictive modeling of recovery
at a county level. We first identify key risk factors that are pre-
dictive of recovery and then calculate their relative contribution
to recovery across all counties in the state of Florida. In other
words, we consider a large pool of county-level risk factors related
to the environmental opinions, sociodemographic, economic,
housing, and mobility characteristics for each of the 67 counties
in Florida46,47 which encompass many of the common indices
utilized in measuring social vulnerability (See Supplementary
Table 1 for a list of the risk factors, their sources, and descrip-
tions). The risk factors serve as independent variables in an
ensemble-of-trees predictive model (see “Methods”) of restored
access to electricity—used here as a proxy for recovery—after
2018 Hurricane Michael in Florida, while controlling for popu-
lation and hazard exposure (Fig. 1b). We select a subset of 20 risk
factors which are most predictive of restored access to electricity
(Fig. 1), using an ensemble-of-trees predictive model. Specifically,
using an exhaustive search approach, our three-stage variable
selection algorithm (see “Methods”) searches through all possible
combination of input variables and identifies the smallest subset
of risk factors that are most predictive of community recovery
(see “Methods”). These risk factors represent what a data-driven
approach to engineering resilience would identify as most
important for restoring access to critical services.

Quantifying transformation. To quantify how communities
transform, we develop a new approach termed Contrastive
Community Networks (CCN) (Box 1). CCN is grounded in Self-
Organized Maps (SOMs), a class of unsupervised learning tech-
niques for simultaneous dimension reduction and projection48.
The CCN utilizes a SOM to create a relational network of com-
munities—here counties in Florida (Fig. 2a)—in which proximity
in the network corresponds with similarity in the portfolio of risk
factors between counties (see “Methods”).
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In contrast to previous methods which track temporal trends of
composite risk/vulnerability or resilience indices as a proxy for
community change14,49,50, the CCN algorithm measures trans-
formation by detecting changes in risk factors substantial enough
to shift a county’s position in the relational network. Thus, rather
than relying on an individual (opaque) composite index, we
quantify transformation by measuring the degree of contrast
between a county and its peers while considering the entire
portfolio of risk factors. The 20 risk factors identified by the
predictive model (aka ‘the engineering resilience model’) as
contributing the most to recovery (Fig. 1) are used as inputs to

the CCN to create a ‘baseline’: i.e., to establish the network of
similarities between the communities against which transforma-
tion will be measured. In this step, 48 input nodes are selected to
form the baseline CCN (see “Methods”) and each county is
mapped to one of the CCN nodes based on the values of the risk
factors (Fig. 2b). Counties which occupy adjacent or nearby nodes
in the CCN have greater similarity in the 20 risk factors (Fig. 2a).
As communities transform and their risk factor values change,
their similarity with others will morph; resulting in a reconfigura-
tion of the CCN and subsequently a county being mapped to an
alternative node in the CCN.

Fig. 1 Risk factors contributing to recovery of engineered systems (i.e., restored access to electricity). a Shows which risk factors have the highest
relative contribution to recovery and whether they make a positive (yellow) or negative (blue) contribution to restored access to electricity; and (b) a map
colored by the ‘engineering resilience’ of the power grid to Hurricane Michael along with the storm’s track. Darker counties were more resilient to the
storm. Figures (a, b) created in R (v 3.2.1; https://www.r-project.org/)88 using the ggplot2 package (v 3.3.0; https://ggplot2.tidyverse.org/)102. Plot (b)
additionally used usmap (v 0.5.0; https://github.com/pdil/usmap)103. Map shapefiles in b are from usmap and the US Census Bureau104.

Fig. 2 Illustration of the baseline CCN for county clustering. a Values of four sample community risk factors across each CCN node. The wedges within
each node correspond to the relative ranking of the risk factor in each node, shown here to illustrate how the CCN nodes capture similarity across
dimension. b Mapping of each county within the CCN. Black dots represent a county being mapped to that node within the CCN (c) Location of CCN
clusters from (b) (colors) within Florida. Each county is colored with the color of the node it is assigned to in (b). Figures (a–c) created in R (v 3.2.1;
https://www.r-project.org/)88 using the ggplot2 (v 3.3.0; https://ggplot2.tidyverse.org/)102 and kohonen (v 3.0.10)98. Figure (c) additionally used
usmap (v 0.5.0; https://github.com/pdil/usmap)103. Map shapefiles in (b) are from usmap and the US Census Bureau104.
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Transformation trajectories and thresholds. After creating a
baseline CCN, we perturb each risk factor for each county,
monitoring the configuration of the CCN at every updated value.
We do this until the perturbation is great enough such that the
structure of the CCN re-organizes or ‘tips’ into an alternative
configuration and county is mapped to a non-baseline node
(Fig. 3b, c). We use a county being mapped to a non-baseline
node as an indicator of transformation. In other words, in the
CCNs architecture, transformation occurs when a change in the
risk factors of a county is large enough, such that the county’s
position in the relational network shifts and it becomes more
similar to an alternate set of peers from its baseline. By defining
transformation relative to the peers of a county, we avoid
imposing judgment about the magnitude of change in a risk
factor significant enough to be identified as transformation.

Tracing the location of a county within the CCN as it re-
organizes is called the county’s transformation trajectory51,52 (see
Supplementary Fig. S3), and the distance from the original to
updated node within the CCN corresponds with the degree of
transformation experienced (see Methods). To illustrate the
insights that can be drawn from this approach coupled with the
engineering resilience (aka recovery) model, we calculate the
temporal trajectories for each risk factor in Bay County Florida
(Fig. 3): a county which experienced extensive damage due to
Hurricane Michael53.

Results indicate that in Bay County, only 8 risk factors (40%
of those evaluated) have the possibility of triggering transfor-
mation (Fig. 3a). Stated alternatively, improving these risk
factors will enhance both the immediate disaster recovery of
the county—as determined by the recovery model—and will
potentially change the county’s similarity to its peers. Changes
in the remaining 60% of the risk factors, however, can only
improve the recovery of the community, and would not alter
the underlying similarity of the county to its peers (i.e., not
conducive to transformation).

For those which trigger transformation, we define a transfor-
mation threshold: the percentage increase or decrease in the risk
factor associated with CCN reconfiguration. We conceptualize a
transformation threshold as the magnitude of change in a risk

factor required to trigger transformation. The aim is to jointly
identify the risk factors within a community which are conducive
to triggering transformation, and determine the degree of change
needed in these risk factors for transformation to occur.
Transformation thresholds provide a relative comparison of the
importance of risk factors as they contribute to transformation,
such that county-level risk factors with lower thresholds are more
conducive to transformation. In Bay County, two risk factors—
the county-level fraction of individuals who moved within the
county and county-level fraction of renter-occupied housing—
have negative transformation thresholds while the other six
(Fig. 3a) are positive. The six positive risk factors are the county-
level fraction of the population commuting primarily by public
transportation, the county-level fraction of the population who
has moved to a given county from elsewhere in Florida in the past
year, the county-level measures of racial and income inequality,
the county-level fraction of the population who primarily works
from home, and the county-level fraction of the population that
has lived in the same residence for more than one year. These
thresholds range from 11% (county-level fraction of the
population living in the same residence for more than one year)
to 260% (county-level fraction of workers commuting by public
transportation). These transformation thresholds have two
interpretations based on the normativity of the risk factor and
the sign of the transformation.

Transformation vs. degradation. We define transformation as a
change in the risk factors of a county large enough that the
county is now most similar to an alternate set of peers from its
baseline. However, a substantial change in a risk factor could
occur such that transformation has negative outcomes. Risks
factors that are normatively good or neutral with a positive
threshold represent a target for policymakers and decision-
makers; we refer to these as ‘positive transformation’ or simply
transformation throughout this paper. For example, in Bay
County, a positive increase in the fraction of the population who
commutes by public transportation—a normatively positive risk
factor for improving the sustainability of a community54 —will
lead to positive transformation (Fig. 3a). This is in line with

Fig. 3 Community change required for transformation. a The amount of change required to elicit transformation in Bay County, FL for each risk factor.
Blue indicates a positive risk factor shift is required for transformation, while red indicates a negative shift, and green dots show community risk factors for
which no transformation is possible. b, c As each community risk factor is perturbed (x-axis of b, c), we compute where Bay County is mapped in the CCN.
The values of the risk factors occurring at each jump indicate the degree of risk factor perturbation leading to a reconfiguring of the CCN. (b) shows the
change for income inequality, (c) for within state relocation.
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previous work which has established the sustainability and resi-
lience benefits of access to public transportation due to improving
public health outcomes and providing equitable community
connectivity55,56. Conversely, risk factors which are normatively
negative, with negative transformation thresholds, serve as
reduction targets.

Alternatively, risk factors which are normatively negative but
with positive transformation thresholds indicate potential for
negative transformation or degradation. Degradation indicators
signal the risk of vulnerable communities’ transition to worse
outcomes outcomes. In Bay County, racial inequality and income
inequality are both normatively negative risk factors which have
positive transformation thresholds (Fig. 3a). A 29% increase in
income inequality as measured by the Gini Index, for example,
would lead to a negative transformation/degradation and would
place Bay County among the highest levels of income inequality
in Florida. As inequality in socioeconomic status is a key
contributor to vulnerability57, this threshold outlines the relative
degradation risk faced by Bay County as a result of changes in
income inequality.

Triggering transformation. Comparing the transformation
thresholds for all risk factors and counties in Florida (Fig. 4) with
the relative importance of risk factors identified as key con-
tributors to recovery (Fig. 1), we find discrepancies in insights
provided by the recovery model and CCN (Table 1). The risk
factors deemed as transformation catalysts, i.e., those with the
lowest transformation thresholds, are the county-level fraction of
households who have lived in their current residence for over one

year (10.3%), county-level income inequality (15.8%), and
county-level internet access (43.9%). However, the ranking of
these three risk factors, in terms of their contribution to recovery,
are 17th, 11th, and 18th, respectively (Fig. 1 a, Table 1).

Length of residence in a disaster-prone region is associated
with decreased likelihoods of evacuation from major hurricanes
and reduced perceptions of risk58,59. While the links between risk
perception and community resilience are still being understood60,
we believe the importance of this risk factor in positively
contributing to transformation comes from the place-based
nature of community resilience and the social capital built with
increased length of residence. Income inequality has also been
tightly linked to disaster outcomes; having been identified as both
a consequence of major disasters61, and a driver of more severe
disaster outcomes62, and individual evacuation behavior63. Access
to communication technology has also been linked to improved
community resilience in previous work64,65.

Resilience traps. The term trap is used in many instances to
describe feedback loops in which governance and interventions
designed to rectify a larger societal problem contribute or
exacerbate the problem, such as poverty traps in which indivi-
duals are held in impoverished conditions by external forces66,
and rigidity traps when institutions and systems become self-
reinforcing and inflexible67. Resilience traps can occur by an
incomplete translation of resilience concepts to operational
models68. Specifically, risk factors which are associated with
recovery but do not allow for any possibility of positive trans-
formation are defined as resilience traps in this paper.

Fig. 4 Risk factor change required to elicit transformation. Each boxplot shows the percentage change in each risk factor required for a county to be
mapped to an alternative node in the CCN, across all counties in the case study of Florida. Boxes represent 25th to 75th percentiles (the IQR), horizontal
black lines are means, whiskers show 1.5 times the IQR, and points are outlying. (a) through (d) have increasing degrees of change required for
transformation. Risk factors with no possibility of transformation are listed in Table 2. Note the shift in y-axis values moving from left to right.
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We find that of the risk factors included in the CCN, 11 of the
20 (55%) have no potential for transformation in any county
evaluated in Florida while 9 allow for transformation in at least
one (Fig. 4a–d). Of those which allow for transformation, county-
level income inequality has the smallest mean transformation
threshold (6.25% across all counties), while the county-level
fraction of the population commuting by public transportation is
the largest, with a mean transformation threshold of 12,042%. For
the risk factors which do not allow for transformation, their
contribution to recovery is listed in Table 2. The risk factors
which do not allow for transformation range from the 4th to 20th
most important variables as determined by the recovery model
(Table 2).

The discrepancy in the importance between factors contribut-
ing to rapid recovery and triggering transformation highlight the
possibility of resilience traps when aiming to operationalize the
resilience of communities; and the potential barriers imposed by
current resilience paradigms. Short-sighted policies, interven-
tions, and investments motivated by solely prioritizing the factors
which are associated with rapid recovery can entrench untenable
and non-sustainable aspects of the status quo5 and inhibit
transformation needed to promote a sustainable and resilient
society.

More specific to the case study presented here, the State of
Florida leverages many federal disaster relief and resilience
programs. Federal disaster programs such as FEMA Public
Assistance grants pay part of the cost of rebuilding a community’s
damaged infrastructure64, with the state providing matching
funds to local and governments for the remainder. These funds
are distributed based on criteria determined by the state including
the requesting community’s demographics (population size,
poverty rate, unemployment rate), storm impacts (number of
storms, severity of impact, non-FEMA reimbursable expendi-
tures, additional hurricane recovery/mitigation funding granted,
frequency of prior disasters, other assistance available), and the
current revenue capacity of the requesting local government and
the state. Updating these criteria to include risk factors which
contribute to recovery and transformation—for example 1-year
housing tenure and income inequality—could provide better
long-term resilience outcomes by promoting investment in
communities with the potential to both recover from disasters
and transform.

Discussion
Here, we highlight the importance of accounting for both
recovery and transformation aspects of resilience, by integrating
the results of the CCN and ‘engineering resilience’ (aka recovery
modeling) approaches, and find that 55% of key predictors of
recovery are potential resilience traps. For example, Income
Deficit—a measure of poverty—is one risk factor which does not
contribute to transformation but is positively associated with
recovery. Income deficit quantifies the cumulative amount below
the poverty line for all impoverished households the county46.
This shows not just the number of households below the poverty
line, but the degree of poverty experienced. We note that deficit is
a negative value so higher values of it correspond with less
cumulative poverty. Poverty contributes to increased disaster
vulnerability as well as reduced capacity to cope with and recover
from disasters69–71. In other words, poverty is a key driver of
vulnerability to disasters, promoting dwelling in at-risk areas;
disasters, in turn significantly increase poverty to the point of
significantly shrinking or eliminating coping capacity72. Here,
identifying poverty as a resilience trap likely points to the his-
torical status of state and federal disaster aid in the US which
addresses the disparate impacts of disasters across income classes
through post-disaster relief as opposed to through poverty
mitigation33,34.

Income Through Interest—measured as the fraction of
households receiving income through interest, dividends, or net
rental income46—is another risk factor which does not contribute
to transformation. Identifying this risk factor as a potential resi-
lience trap should not come as a surprise, given the fact that
disasters create permanent increases in rent in affected areas,
while wealthy households expand their post-disaster real estate
holdings73. Moreover, federal and state disaster relief policies
have historically been based on measures of wealth and assets64.
Many low-income households do not qualify for FEMA’s disaster
loans, and funding from HUD could take months or even years to
reach impacted families74.

Additionally, the Commuting Alone risk factor—the fraction of
a county who primarily commutes alone by car—is negatively
associated with engineering resilience, while the fraction of a
county who commutes by walking (Walking Commute) is posi-
tively associated with engineering resilience. This confirms pre-
vious results which show the prioritization of post-disaster
recovery favors more densely-populated downtown areas as
opposed to suburban or rural areas43. Finally, we note that two
education-based risk factors—the fraction of a county with
bachelor’s degrees and GEDs as their highest degrees earned
(Bachelor’s Degree, and GED)—are negatively associated with
engineering resilience. This is attributable to the proximity of the

Table 2 Recovery importance for non-transformation risk
factors.

Risk factor Recovery importance ranking (Fig. 1a)

Cellphone only 4
Income deficit 5
GED 7
Abroad relocation 9
Speaking API 10
Speaking Spanish 12
Bachelor’s degree 13
Commuting alone 16
Walking commute 17
Income through interest 20

The risk factors listed have no contribution to transformation and the importance values are the
relative contribution of each risk factor to predicting community recovery.

Table 1 CCN importance and engineering resilience
importance.

Risk factor CCN transformation
threshold ranking
(Fig. 3a)

Recovery
importance ranking
(Fig. 1a)

1-year housing tenure 1 17
Income inequality 2 11
Internet access 3 18
Within county
relocation

4 16

Within state
relocation

5 1

Working from home 6 4
Rents dwelling 7 12
Racial inequality 8 20
Public transportation
commuting

9 8

Values in the left column represent the importance of the risk factor in contributing to
transformation, with lower values having a smaller transformation threshold. Values in the right
column are the importance of each risk factor as determined by their contribution to predicting
community recovery.
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landfall location of Hurricane Michael to Leon County, FL. Leon
County is home to Tallahassee and Florida State University both
contributing to the county having the second highest proportion
of Bachelor’s earners in the state. This highlights the placed-based
nature of resilience, where analyzing local data are necessary for
gaining nuanced understanding of community’s resilience.

Minority groups are frequently identified as vulnerable to
disaster impacts75,76, however in our case study the fraction of
communities speaking primarily Spanish (Speaking Spanish) or
Asian and Pacific Island languages (Speaking API) are both
positively associated with community recovery, once socio-
eonomic factors are accounted for. This indicates the presence of
community organization and cohesion which are strongly asso-
ciated with positive recovery outcomes in groups with strong
bodies of shared cultural experiences77,78. Florida—particularly
counties in South Florida—have the highest Hispanic and Latino
population of any state in the southeastern US46, highlighting the
importance of conducting place-based analyses when developing
operational models of resilience to inform decisions and policies.

As is the case with all of the aforementioned risk factors, policy
decisions and interventions based recovery-oriented risk factors
can neglect the transformative aspects of resilience which are
required for long-term sustainability. These echos qualitative
analyses of resilience-oriented policies which have found that the
unilateral emphasis on restoring the status quo in engineering
resilience models engenders norms and policies which inhibit the
ability of communities to transform6,79–81. Transformation as a
process within communities is critical when a current system is
untenable82, and thus will be vital for improving the sustainability
of future communities8,83. We highlight the difference between
the risk factors identified as important contributors to recovery
versus transformation to emphasize the potential shortcomings of
having a solely recovery-focused conceptualization of resilience
and neglecting the importance of transformation in addition to
post-disaster recovery.

By developing quantitative methods to assess the ability of
communities to transform, we aim to shrink the gap between
conceptual and operational models of resilience. We find that
shifts in only a subset of risk factors allow for transformation
within a community and within those, certain risk factors will
lead to positive transformation if they are improved while others
will lead to negative transformation if they deteriorate. Further-
more, we identify resilience traps in which existing, recovery-
focused models place importance on risk factors which our model
does not identify as important for transformation. We note that
the choice of a county-level analysis was driven by power-outage
data availability, and that there may be a significant distribution
of individual risk factors within each county. This likely under-
estimates the impact on lower attainment households within each
county who may be more vulnerable to disasters. The CCN
methodology is scale agnostic and adaptable to higher-resolution
demographic data such as census tracts or even blocks when
appropriately scaled power-outage data becomes available. Simi-
larly, this allows for the systems analyzed and scale of analysis to
be tailored to the scale and importance needed for effective
decision-making. In this way, decision and policymakers can
evaluate the level of transformation achievable through imple-
mentation policies and interventions to promote sustainable and
resilient lifestyles, economies, and societies.

Methods
Community risk factors. We select 96 county-level variables to describe com-
munities in the case study of Florida. The initial pool of variables are drawn from
the American Community Survey46,84 and Yale Program on Climate Change
Communication47. The variables describe the sociodemographic, economic,
housing, mobility, and environmental opinions for every county for the period of

time surrounding Hurricane Michael. A full list of included variable names and
sources are listed in Supplementary Table 1.

Storm exposure. Storm exposure data is taken from the US National Centers for
Environmental Information’s Storm Events Database85. County-level exposure is
included as a binary variable, labeled as true if the county is included in the Storm
Events Database for Hurricane Michael, false otherwise. We also include a measure of
distance to the storm center as a continuous variable. Distance is measured as the
minimum distance between Hurricane Michael’s center and the mean population
center of each county, calculated with the R package STORMWINDMODEL86, with a
maximum distance of 1000 miles. We control for hazard exposure by including these
two variables as covariates in the recovery model for the purpose of identifying the
contribution of each risk factor to the recovery of the grid.

System resilience: restored access to electricity. To understand how risk factors
contribute to ‘engineering resilience’, we measure the performance of the Florida
electric power grid as impacted by 2018 Hurricane Michael. County-level power
outages are taken from outage reports for the Florida Division of Emergency
Management for October 10th through November 9th, 2018?. For each of the 67
counties in Florida, the Division of Emergency Management publishes the number
of customers without power approximately every 3 h. At a time t, Q(t) is the
fraction of the county with access to power and represents the service level of the
power system. We leverage a formal quantification of engineering resilience for a
given county23,87. Resilience for a county, Rcounty is the area under the service level
curve, Q(t) from the time of first disruption t0 to the time when all outages are
restored tf scaled by the difference between tf and t0. Rcounty is defined as

Rcounty ¼
R tf
t0
QðtÞ

jtf � t0j
ð1Þ

In this way, a county which lost all power immediately and remained so until it
was recovery would have a resilience value of 0 and one with no disruption would
have a resilience value of 1. Examples of the calculated resilience along with visual
descriptions of R, t0, tf, and Q(t) are shown in Supplementary Fig. 1a, b. Calculated
resilience values for Hurricane Michael are given in Supplementary Table 2 and the
repository linked in the Data Availability Statement.

Engineering resilience model. To identify the risk factors which contribute to
‘engineering resilience’, we utilize a predictive modeling paradigm. Predictive
modeling aims to find a function, y ¼ F̂ðXÞ which maps inputs (X) to outputs (y)
so as to minimize a measure of the distance between the predicted values and true
values. Here, y is the county-level resilience of the power grid and X are the
community risk factors, and R2 and RMSE (Root Mean Square Error, Eq. (2)) are
used as measures of distance. RMSE is defined as ins

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 ðyi � ŷiÞ2
n

s

ð2Þ

Here, n is the total number of observations in the test dataset, yi is the ith actual
value of the response variable, and ŷi is the response estimated by the model
trained on the test data and evaluated on the test data. We train five model classes:
linear models88, generalized linear models89, Random-Forest models90, and
Bayesian Additive Regression Trees91 —all implemented in R88. Selecting model
classes based on minimizing prediction error, however, can lead to overfit models
in which the prediction error is reduced at the expense of generalization to non-
training observations. To counteract this, we perform a 5-fold cross-validation
procedure in which data is partitioned into 5 roughly equivalently sized folds92.
Each fold—corresponding to approximately 20% of the data—is removed from the
dataset, while remaining 4 fold are utilized to train the statistical models. The
withheld fold (the test data) is then utilized to evaluate the out-of-sample predictive
quality of the model. Out of sample RMSE and R2 are shown in Supplementary
Fig. 2.

Based on out of sample performance measures, we select a random-forest model
to relate community risk factors to system resilience. Random forest is a tree-based,
non-parametric statistical model93. To predict response values, the random-forest
algorithm builds B decision trees94 on random subsets of the data. The data used in
the tree creation are called the in the bag data, and the data not used is the out of
the bag or OOB data. The random-forest algorithm averages the output over B
trees to create a final estimate of the predicted variable, f̂ ðxÞ such that

f̂ ðxÞ ¼ 1
B
∑
B

b¼1
TbðxÞ ð3Þ

Our final model is trained with 500 trees, an mtry value of 13 based on
hyperparameter recommendations from90.

Variable selection algorithm. To extract the importance using this trained model,
we investigate the relative importance of community risk factors using the random-
forest-based, three-step variable selection process VSURF95,96 to determine which
community risk factors most greatly contribute to single-equilibrium system
resilience. VSURF, or Variable Selection Using Random Forest is an algorithmic
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process for selecting the importance of variables from random-forest models which
aims to simultaneously find variables most related to the response for the purposes
of interpretation, and to do this with the smallest set of variables possible96. The
importance of a variable, j, in a random-forest model—denoted VI(Xj)—is com-
puted by permuting variables to determine their sensitivity to the calculated error.
Formally, errorOOB is the RMSE of a single tree on the data which was not used to
construct it. For the variable j, Xj is perturbed and the error calculated on the
perturbed dataset, called ~errorOOB . The importance of the variable, then, is
denoted as

VIðXjÞ ¼ 1
B
∑
B

b¼1
ð ~errorOOB

j
t � errorOOBtÞ ð4Þ

VI for each variable is shown in Fig. 1. The VSURF procedure begins by calculating
VI for every variable included in the model, and sorting them in decreasing order
of importance. Those below a threshold, chosen to be 2.95e−5 in our procedure,
are removed. A series of random-forest models are then created with the step-wise
addition of variables in descending order of importance until the mean errorOOB
decreases by less than a pre-defined threshold. We defined these thresholds apriori
and select the risk variables which meet the importance criteria, resulting in 20 risk
factors.

Contrastive community networks. To develop contrastive community networks,
we utilize Self-Organized Maps (SOM)48,97,98. SOMs are an unsupervised learning
algorithm, based on artificial neural networks, for producing a low-dimensional,
nonlinear representations of complex high-dimensional data48. SOM models are a
graph of adjacent vertices in which each element in high dimensions is mapped to a
node in the network. The process of assigning input data to nodes is done itera-
tively through a competitive learning process. The result is a graph (Fig. 2 a) which
preserves the vectorial topology of the input data where closer nodes (called map
units) within the map have higher similarity in the original input variables.

SOM models have been previously utilized for understanding the similarity
between items in high-dimensional space without imposing assumptions on the
structure of the data99, and when looking for trends in spatiotemporal data relating
to community and urban change51,52,100.

What follows is a description of the SOM training process developed by
Kohonen48, and implemented in R88,97. For a fixed number of nodes (or map
dimension), the training process assigns weights to each risk factor of the input
data at each node in the map. In our experiments, 40 nodes were selected with 6
connections between neighbors based on SOM size heuristics101, and confirmed by
empirically observing the distance between nodes (Supplementary Fig. S4).

This creates the initial mapping between input space (original data) and output
space (the SOM). The weights between nodes are initially assigned at random, then

a random input data point is selected. The winning map node—defined as the node
with mean input data which is closest to the selected point—is selected. The
weights between winning node and all others are updated by a value Δwj,i, based on
the number of iterations and the mean risk factor values of nodes within the
selected node’s topological neighborhood T. Eq. (5) shows the updating procedure
of Δwj,i

Δwj;i ¼ ηðtÞ � Tj;IðxÞðtÞ � ðxi � wj;iÞ for all i; j ð5Þ
where i and j refers to different neurons, xi is the value of the input data for node i,
t refers to iteration number, I(x) refers to the winning neuron, and wi,j is the weight
between node i and j. The learning rate as a function of iteration is η(t), where

ηðtÞ ¼ η0 expð�t=τnÞ ð6Þ
and η decreases with t and based on a pre-assigned hyperparameter τn, chosen in
our experiments to be 0.05 based on previous empirical studies97. The topological
neighborhood, T, defines how many neighboring nodes contribute to updating the
learning rate of the selected node and is defined where

Tj;IðxÞðtÞ ¼ expð�S2j;IðxÞ=2σðtÞ2Þ ð7Þ
and Sj,i is the distance between weights such that Sj,i= ∣∣wj− wi∣∣ and
σðtÞ ¼ σ0 expð�t=τ0Þ, which shrinks the neighborhood size over successive
iterations as well. This process of updating node weights is repeated for every input
data point over a fixed number of iterations, chosen to be 10000 in our experiments
based on empirically observing convergence of the distances between nodes.

We utilize the SOM algorithm as the basis for developing a Contrastive
Community Network (CCN). The details of the CCN procedure are shown in Box
1, and described in summary here. Input variables for the CCN are the community
risk factors, r, selected as important in the VSURF procedure for each county in
Florida with storm exposure variables removed so as to compare communities on
the basis of their structure rather than their hazard exposure. Risk factors are scaled
to a standard deviation of 1 with mean 0 to facilitate the integration of input data of
different magnitudes into the training of the SOM in line with previous empirical
studies97.

For each county, c, and each risk factor r, the initial node the county is mapped
to in the SOM, n0 is recorded. The value of the risk factor for the given county, xr,c
is perturbed in increments of 0.01 (δ in Box 1) which is in units of standard
deviation of each risk factor. Each risk factor is perturbed starting from its lower
limit, Rmin

i to its upper limit, Rmax
i .

For risk factors which implicitly have lower and/or upper limits based on the way
they are calculated—like county-level fractions of the population or income inequality
which are defined on the range [0, 1]—we scale the limits in the same way as the input
data and utilize the scaled values as limits to the perturbation of each risk factor. For risk

Box 1 | Contrastive Community Network

1: ri is a risk factor, where ri 2 ½Rmin
i ; Rmax

i � and X= {ri} ∀ i
2: c is a county where c= {1,…, C}
3: N(S, c) is the node of the self-organized map, S which county c maps to
4: ni is an arbitrary node i in the SOM
5: tr,c is the temporal trajectory length for factor r and county c, and T= [tr,c] ∀ r, c
6: ∣ni, nj∣S as the euclidean distance in the SOM S between nodes i and j
7: Select predictive model F using cross-validation
8: Select important features, x using variable selection on F
9: Train SOM, S ¼ SOM ðX0Þ
10: Tune SOM hyperparameters to minimize mean distance from county to node
11: for all r∈ X do
12: for all c∈ C do
13: n0= N(S, c)
14: xr;c ¼ Rmin

15:while xr;c 2 ½Rmin
i ; Rmax

i � do
16: x0r;c ¼ xr;c þ δ

17: S0 ¼ SOM ðX0Þ
18: n1 ¼ NðS0; cÞ
19: If n0!= n1 then
20: tr;c ¼ jn0; n1jS0
21: end if
22: end while
23: end for
24: end for

CCN algorithm to return the set of temporal trajectories for each county and risk factor. In summary, the algorithm trains a self-organized map based on
pre-selected community features, then systematically perturbs the values of the risk factors and remaps the counties to the SOM using the perturbed
risk factors to determine if reconfiguration occurs. The final SOM topology used in the CCN in this case study is a 5 by 8 node hexagonal, toroidal grid.
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factors without explicit limits—such as income deficit—we perturb values within a
range of 1.5 times the minimum and maximum risk factor observed across the counties.

At each perturbation iteration, the perturbed risk factor x0r;c is included in the set of
all risk factors across all counties, and an updated SOM, S0 is calculated. The node the
county is mapped to with the updated risk factor values, n1, is then compared against
n0. If the new node, n1 is different than the original node n0, the euclidean distance
between them is denoted tr,c which represents the length of the transformation
trajectory, and x0r;c at the value of the change is the transformation threshold.

Computing multiple SOMs with alternative input data and has previously been
utilized to understand how high-dimensional data about the makeup of communities
transform over time51,52,100. As neighboring nodes in the CCN are of higher similarity
than those farther apart, a county being re-mapped to a node farther away indicates a
greater degree of transformation; thus the length of the transformation trajectory
represents the magnitude of reorganization as a result of the change in the community
risk factor. This process is outlined in detail in the algorithm in Box 1.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data not provided in supplementary materials or repositories are available upon
reasonable request to B.R. Any data not provided in the repositories or supplementary
materials are available through public repositories through the cited sources.

Code availability
The transformation and resilience threshold data generated in this study have been
deposited in the repository linked here https://doi.org/10.5281/zenodo.5591110. Census
data and data from the Yale Program on Climate Change Communication are publicly
available but not shared here due to their size. Processed data used for our models are
shared in the linked repository.
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