microPublication
BIOLOGY

10/15/2022 - Open Access

Opal-mediated mitochondrial dynamics is important for osteoclast
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Abstract

Opatic atrophy 1 (Opal) is a mitochondrial GTPase that regulates mitochondrial fusion and maintenance of cristae
architecture. Osteoclasts are mitochondrial rich-cells. However, the role of Opal in osteoclasts remains unclear. Here, we
demonstrate that Opal-deficient osteoclast precursor cells do not undergo efficient osteoclast differentiation and exhibit
abnormal cristae morphology. Thus, Opal is a key factor in osteoclast differentiation through regulation of mitochondrial
dynamics.
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Figure 1. Expression of opatic atrophy 1 (Opal) and its knockout effect on osteoclastogenesis.
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(A) Definition of the clusters present in the osteoclast culture system (left) and feature plots depicting single-cell gene
expression of Opal and canonical markers of osteoclast differentiation stages (right). According to the previous study
(Tsukasaki et al., 2020), cluster 4 and clusters 5 and 6 comprised of osteoclast precursor cells and mature osteoclasts,
respectively (red dotted box). The pseudotime estimation showed that cluster 4 differentiated into clusters 5 and 6 by passing
through cluster 1. (B) Violin plots showing the expression of Opal in each cluster. (C) Effect of Opal deficiency on
osteoclastogenesis. TRAP-stained cells (left) and the number of TRAP-positive cells with more than three nuclei (right) are
shown. Data from four independent experiments are shown as data points. Scale bar denotes 100 mm. (D) Protein expression

of Opal, NFATc1, TRAP, Ctsk and Lamin B (Lmnb) in control- and Opalgg, " -derived BMM:s cultured in the presence of

RANKL for 3 days. Asterisk denotes a nonspecific band. (E) Effect of Opal deficiency on mitochondrial morphology.
Transmission electron microscopy images (left) and the length of cristae (right). Data from 148 crista from 29 control

mitochondria, and 332 crista from 82 Opal Rank_/ ~ mitochondria from four independent experiments are shown as data points.
Scale bar denotes 500 nm. Data are expressed as mean + standard error of mean. **P < 0.01 (t-test).

Description

Mitochondria are critical for integrating several important metabolic processes involved in cell growth, survival,
differentiation and cellular function (Kasahara & Scorrano, 2014; Mills et al, 2017; Vakifahmetoglu-Norberg et al, 2017).
Mitochondria dynamically change their morphology by frequent fission and fusion (Friedman & Nunnari, 2014; Roy et al,
2015). Mitochondrial fission separates one into two, whereas fusion joins two mitochondria together. These processes are
regulated by nuclear-encoded GTPases. Fusion is coordinated on the inner mitochondrial membrane by opatic atrophy 1
(Opal) and on the outer mitochondrial membrane (OMM) by mitofusin 1 and 2 (Mfnl and Mfn2). Fission is controlled by
dynamin-related protein 1 (Drpl), whose mitochondrial recruitment is mediated by multiple OMM-bound proteins, such as
Fis1, Mff, Mid49, and Mid51 (Bui & Shaw, 2013; MacVicar & Langer, 2016; Tamura et al, 2011). Osteoclasts are specialized
multinucleated giant cells involved in bone homeostasis through bone resorption (Takayanagi, 2007). Mitochondrial
biogenesis is promoted during osteoclast differentiation; therefore, mature osteoclasts contain abundant mitochondria, which
are rich in crista (Ishii et al, 2009; Lemma et al, 2016). Owing to the fact that Drp1 is required for osteoclast differentiation
(Jeong et al, 2021), mitochondrial division is considered an essential process for osteoclastogenesis. Considering that
mitochondria are increased in size in mature osteoclasts, mitochondrial fusion should be enhanced. However, the role of Opal
in osteoclastogenesis remains unclear.

Osteoclast differentiation was evaluated in vitro by counting multinucleated cells (MNCs) positive for the osteoclast marker,
tartrate-resistant acid phosphatase (TRAP), following stimulation of bone marrow-derived monocyte/macrophage precursor
cells (BMMs) with receptor activator of nuclear factor-kB ligand (RANKL), and in the presence of macrophage colony-
stimulating factor (M-CSF)(Nishikawaet al, 2010a; Nishikawaet al, 2021). To assess Opal expression during osteoclast
differentiation, we examined a previously published single-cell RNA sequencing (scRNA-seq) dataset of in vitro osteoclast
differentiation (Tsukasakiet al, 2020). After reprocessing, quality control, and normalization, the data showed that Opal is
constantly expressed during osteoclast differentiation (Figure 1, A and B). Next, to investigate the role of Opal in osteoclast
differentiation, we crossed Opa1f1o¥floX mice (Zhanget al, 2011) with Rank®™® “mice (Maedaet al, 2012) to disrupt the Opal
gene in the osteoclast lineage (OpalRank_/_). This was followed by an in vitro osteoclast differentiation assay using

Opalggnk”~ BMMs. RANKL-induced formation of TRAP-positive MNCs in Opalggnx”~ BMMs was lower than that in the
control BMMs (Figure 1C). To validate the impairment of osteoclast formation by Opal loss, we measured the expression
levels of Opal and several osteoclast-specific markers, such as nuclear factor of activated T cells 1 (NFATc1), cathepsin K
(Ctsk) and TRAP. We observed downregulation in the expression of these proteins in Opal Rank_/_ BMMs stimulated with
RANKL for 2 days (Figure 1D). These results suggest that Opal-mediated mitochondrial fusion is required for
osteoclastogenesis. Considering that Opal is a key regulator of cristae remodeling and is involved in shaping cristae (Bucket
al, 2016; Cogliatiet al, 2013; Paneket al, 2020), we investigated the effect of Opal knockout on cristae morphology.
Transmission electron microscopy revealed that the cristae of control mitochondria were flat structures while Opalggnk”~
mitochondria exhibited disorganized cristae morphology with vesicular cristae structure (Figure 1E). These finding suggests
that Opal-mediated cristae remodeling is required for osteoclastogenesis.

Methods

Mice and bone analysis

We generated and genotyped Opalﬂ‘”‘/ﬂox and RANK“™* mice as previously described (Maeda et al., 2012; Zhang et al.,
2011). Opal™*, Opa1f°¥* and Opa1floX/flox Jittermate mice that did not carry the Cre recombinase were used as controls.
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Following their birth, all mice were maintained under specific pathogen-free conditions. All animal experiments were
approved by the Institutional Animal Care and Use Committee of both Doshisha University and Osaka University. All the
strains featured a C57BL/6 background. Two-week-old sex-matched mice were used in the experiments. Animals were
randomly included in the experiments based on the genotyping results.

Cell culture

In vitro osteoclast differentiation was performed as previously described (Iwamoto et al, 2016; Nishikawa et al, 2013;
Nishikawaet al, 2015). Briefly, bone marrow-derived cells cultured with 10 ng/ml M-CSF (Miltenyi Biotec) for 2 days were
used as osteoclast precursor cells and BMMs, and were further cultured with 50 ng/ml RANKL (PeproTech) in the presence of
10 ng/ml M-CSF for 3 days. TRAP-positive MNCs (TRAP+ MNCs) having more than three nuclei were counted.

Transmission electron microscopy

BMMs cultured on Cell Desk polystyrene cover slip (Sumitomo Bakelite Co., Ltd., Japan) were fixed for 24 hrs at 4°C in 2%
formaldehyde and 2.5% glutaraldehyde in 0.1M cacodylate buffer (pH7.4) containing 0.01% calcium chloride. Each sample
was washed for 5 min in 0.1M cacodylate buffer (pH7.4) containing 7% sucrose for three times. Cells were post-fixed for 1h
with 1% osmium tetroxide and 0.5% potassium ferrocyanide in 0.1M cacodylate buffer (pH7.4), dehydrated in a graded
ethanol series, and embedded in Epon812 (TAAB Co. Ltd., UK). Ultrathin sections (80 nm) were stained with saturated uranyl
acetate and lead citrate solutions. Electron micrographs were obtained using a JEM-1400 plus electron microscope (JEOL, JP)
at 80 kV.

Immunoblet analysis

Immunoblot analysis was performed as described previously (Nishikawa et al, 2010b). Briefly, the cell lysates were subjected
to immunoblot analysis using antibodies specific for Opal (Abcam, ab157457), NFATc1 (Santa Cruz Biotechnology, sc-7294),
TRAP (Santa Cruz Biotechnology, sc-30833), Ctsk (Daiichi Finechemical, F-95) and Lmnb (Santa Cruz Biotechnology, sc-
6217). Whole-cell extracts were prepared by lysis in a radioimmunoprecipitation assay buffer.

Single-cell RNA-sequencing analysis

Gene expression data of scRNA-seq (GSE147174) obtained from NCBI’s Gene Expression Omnibus
(https://www.ncbi.nlm.nih.gov/geo/) were processed and analyzed using the Seurat R package (v.4.0.6) as described
previously(Tsukasakiet al., 2020). Briefly, cells expressing less than 200 genes and more than 5% ofmitochondrial geneswere
defined as poor-quality data and excluded. After normalization and scaling, the top 2,000 variable genes were selected by
directly modelling the mean-variance relationship inherent in single-cell data. We performed dimensionality reduction using
principal-component analysis (PCA) and visualized single cells on a uniform manifold approximation and projection (UMAP)
plot according to gene expression.
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technical assistance, and Dr. M. Tsukasaki for supporting the analysis of scRNA-seq data.
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