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Abstract

Stilbene urea derivatives as a novel and competitive class of non-glycosidic a-glucosidase inhibitors are effective for the
treatment of type II diabetes and obesity. The main purposes of our molecular modeling study are to explore the most
suitable binding poses of stilbene derivatives with analyzing the binding affinity differences and finally to develop a
pharmacophore model which would represents critical features responsible for a-glucosidase inhibitory activity. Three-
dimensional structure of S. cerevisiae a-glucosidase was built by homology modeling method and the structure was used for
the molecular docking study to find out the initial binding mode of compound 12, which is the most highly active one. The
initial structure was subjected to molecular dynamics (MD) simulations for protein structure adjustment at compound 12-
bound state. Based on the adjusted conformation, the more reasonable binding modes of the stilbene urea derivatives were
obtained from molecular docking and MD simulations. The binding mode of the derivatives was validated by correlation
analysis between experimental Ki value and interaction energy. Our results revealed that the binding modes of the potent
inhibitors were engaged with important hydrogen bond, hydrophobic, and p-interactions. With the validated compound
12-bound structure obtained from combining approach of docking and MD simulation, a proper four featured
pharmacophore model was generated. It was also validated by comparison of fit values with the Ki values. Thus, these
results will be helpful for understanding the relationship between binding mode and bioactivity and for designing better
inhibitors from stilbene derivatives.
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Introduction

Several glucosidases catalyze the cleavage of glycosidic bonds in

oligosaccharides or glycoconjugates and release glucose from the

non-reducing end of the oligosaccharide chain. a-glucosidase (EC.

3.2.1.20; a-glucosidase glucohydrolase) is an enzyme that catalyzes

the cleavage of glycosidic bond in maltose [1]. Inhibition of the

enzyme helps to absorb less glucose and suppresses digestion of

carbohydrates since the carbohydrates are not hydrolyzed to

glucose molecules [2]. Moreover, glycosidase inhibitors have

proven useful to reduce postprandial hyperglycemia by preventing

the digestion of carbohydrates, being effective for the treatment of

type II diabetes and obesity [3-5].

Glycosidic derivatives are potential therapeutic agents for the

treatment of disorders such as human immunodeficiency virus

(HIV) infection, as well as diabetes, Gaucher’s disease, metastatic

cancer, and lysosomal storage diseases, and can disrupt glycopro-

tein processing through direct-site irreversible glucosidase inhibi-

tion [6–8]. These derivatives have a profound role to play on this

process because they mimic the disaccharide unit which is cleaved

by glucosidases [9]. Most of the glucosidase inhibitors are

glycosidic derivatives and there are only few non-glycosidic

derivatives which effectively inhibit glucosidases [10]. Recently

our report on non-glycosidic derivatives demonstrated that readily

accessible achiral (E)-1-phenyl-3-(4-strylphenyl)urea derivatives are

potent competitive a-glucosidase inhibitors with very micromolar

IC50s [11].

The main purposes of the present study are to find out the

reasonable binding mode between the stilbene derivative and the

protein and to generate pharmacophore model using the protein-

ligand complex structure. To identify the reasonable binding

mode, homology modeled structure of S. cerevisiae a-glucosidase is

used for molecular modeling study. However, in general, finding

the binding mode for an induced-fit model such as a-glucosidase is
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very difficult because it has many loops in active site. Thus, here,

new approach was introduced to solve this problem. Combined

molecular modeling studies including molecular docking and

molecular dynamics (MD) simulations were carried out to

investigate structural rationales for the inhibitory activities of the

stilbene derivatives, especially for compounds 6 and 12 (Figure 1).

The compound 12 has two fluorine atoms on the C ring, while

compound 6 has hydrogen atoms instead of fluorine. This subtle

structural difference of the 12 with 6 makes much difference in

binding affinities. Hence, to find out the proper reason for this, the

MD simulations were performed two times for two different

purposes: i) for adjustment of protein structure with the most

active molecule, compound 12, and ii) for refinement of final

docking poses. Based on these results, finally we have developed a

reasonable pharmacophore model using receptor-ligand pharma-

cophore generation method.

Results/Discussion

Structure generation and validation of S. cerevisiae a-
glucosidase

The a-glucosidase from S. cerevisiae was used in biological testing

of the inhibitors for present study. The 3D structure of the protein

is required to investigate the binding mode of stilbene derivatives

within the a-glucosidase structure. The homology modeling of the

protein has already been reported in several publications [12–14].

To construct the 3D structure of the a-glucosidase, homology

modeling method was used like that of the previous studies. The

structure of oligo-1,6-glucosidase from B. cereus (PDB ID: 1UOK)

[15] was selected as template and the sequence alignment between

a-glucosidase and the template was carried out using ClustalW2

package [16] (Figure 2A). According to this alignment, the a-

glucosidase shares around 38.0% sequence identity and 62.0%

sequence similarity with the template.

The 3D structure of a-glucosidase was generated by Build

homology models protocol which implements MODELER program

available in Discovery Studio (DS) 3.0 software [17]. The

homology model was built by omitting the first 8 residues at the

N-terminal region, since no sequence similarity was found for N-

terminal residues from the sequence alignment. Figure 2B and 2C

show the modeled structure of a-glucosidase compared with X-ray

crystal structure of the template representing the three domains:

the N-terminal, the subdomain, and the C-terminal domain. The

catalytic triad residues (Asp199, Glu255, and Asp329) are found in

the N-terminal domain of the template protein [15] while the

catalytic triad in the a-glucosidase is formed by Asp214, Glu276

and Asp349 residues, respectively. The substrate binding site is

located in the cleft between the N-terminal domain and the

subdomain. Two His residues near to center of catalytic triad,

His103 and His328 of oligo-1,6-glucosidase which may be

required for substrate binding are also conserved in a-glucosidase

(His111 and His348, respectively) [18].

The final structure of a-glucosidase generated from homology

modeling was evaluated by two programs namely PROCHECK

[19] and ProSA [20] to check the stereochemical quality. The

ramachandran plot obtained by PROCHECK program showed

that 87.5% of residues of the final 3D structure lied in most

favored regions better than that of the X-ray crystal structure of

the template which has 86.3% residues (Figure 2D). The ProSA

z-score value of the final model structure is 28.66 and the plot

indicates that the overall model quality is within the range of

scores typically found for proteins of similar size (Figure 2E).

Initial molecular docking results and validation
In order to gain insight into the most probable binding modes of

the stilbene derivatives within the active site of a-glucosidase, the

molecular docking simulations of the reported derivatives ([11],

Figure 3) were performed with the modeled structure of a-

glucosidase using CDOCKER program [21].

For validating the CDOCKER docking protocol, the crystal

structure of isomaltase from S. cerevisiae (PDB ID: 3A4A) co-

crystallized with the a-D-glucose, which is part of inhibitor

maltose, was used for additional homology modeling and docking

simulation. Although the 2D structure of maltose is not similar

with the further docked compounds, the sequence identity (39.6%)

of this isomaltase enzyme with the template from B. cereus is similar

to that (38%) of the modeled enzyme with the template (Figure

S1A). Hence, we selected this different enzyme for validation

process. To reproduce same protocol, homology modeling of the

isomaltase was carried out using the template from B. cereus and

then the modeled isomaltase was compared with its own crystal

structure (Figure S1B). The root mean square deviation (RMSD)

value between the homology model and crystal structure of

isomaltase is 0.22 nm indicating that the homology model of a-

glucosidase built by the template was validated. Subsequently, the

docking simulation was performed based on the modeled

isomaltase with the a-D-glucose. We compared the crystallo-

graphic conformation & position of a-D-glucose in the X-ray

structure of the complex to its poses obtained by docking

(Figure 4A). The hydrogen bond interactions of a-D-glucose with

active site residues His112, Glu277, His351, Asp352, and Arg442

in the crystal structure also appeared in the docked poses of a-D-

glucose. The root mean square deviation (RMSD) between the

crystal and docked structure is 0.11 nm. This validation has

proven that our docking protocol was reasonable in investigating

the binding conformation accurately.

All the derivatives were well docked into the active site of the

modeled structure. Due to the same scaffold of the derivatives,

Figure 1. Workflow of combining molecular docking and
molecular dynamics simulation approaches for indentifying
the reasonable binding site and generating the proper
pharmacophore model.
doi:10.1371/journal.pone.0085827.g001

Binding Mode Analyses of a-Glucosidase Inhibitors
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binding modes of the derivatives were almost same each other.

From the binding mode comparison between compounds 6 and

12, same hydrogen bond, p, and hydrophobic interactions were

observed with only few different interactions (Figures 4B to 4D).

Moreover, the negative CDOCKER energy score (34.31) of

compound 6 is similar to the score (36.1) of compound 12. These

results indicate that the docking simulation is not enough to

explain the activity difference between compounds 6 and 12.

Thus, molecular dynamics (MD) simulation was implemented to

better understand this difference. To do this, an improved binding

mode of the derivatives was required. Hence the initial docking

pose of compound 12 which is the most active one was subjected

into MD simulation during 20 ns.

Figure 2. Sequence alignment and homology modeling for S. cerevisiae a-glucosidase using a template B. cereus oligo-1,6-
glucosidase. (A) Sequence alignment of S. cerevisiae a-glucosidase (represented as YEAST) with B. cereus oligo-1,6-glucosidase (1UOK). Sequence
identities are denoted by asterisks (*), conservative substitutions by colons (:), and semi-conservative substitutions by dots (.). The catalytic residues
are indicated in a red box. Comparative view of the homology modeled structure S. cerevisiae a-glucosidase (B), the template structure of B. cereus
oligo-1,6-glucosidase (PDB ID: 1UOK) (C) with the conserved catalytic residues represented as sticks. The N-terminal, subdomain, and C-terminal
domains are shown in blue, orange, and yellow, respectively. (D) Ramachandran plot of the w/y distribution of the homology model as obtained by
PROCHECK. (E) Z-score plot for our modeled structure shows that the score is within the range of scores typically found for native proteins of similar
size.
doi:10.1371/journal.pone.0085827.g002

Figure 3. 2D chemical structures of stilbene derivatives with experimental binding affinity value such as Ki and IC50.
doi:10.1371/journal.pone.0085827.g003

Binding Mode Analyses of a-Glucosidase Inhibitors
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Selection of the best adjusted structure using interaction
energy and negative CDOCKER energy

Four 20 ns MD simulations (Apo, first, second, and third trials)

were carried out to obtain a reasonable structure adjusted in

compound 12-bound state. These three trial simulations are

started from the same system with same conditions to approach

global minimum conformation of the complex. The Ca RMSD

analysis showed that all systems were well stabilized at around

0.3 nm (Figure 5A). Although the third trial system has relatively

higher Ca RMSD than the other systems, the RMSD of

compound 12 is well maintained after 15 ns. The value of RMSD

for compound 12 is measured, after superimposition of ligand

conformations in initial and each time step. In first and second

trial systems, compound 12 is also well stabilized (Figure 5B).

Based on the RMSD results, the closest frame to average structure

during the last 5 ns was selected as the representative structure of

each trial. From the comparison of initial docked structure and the

three representative structures, similar binding mode was observed

but average poses mostly different from each other (Figure 5C to

5F). Among these different three local minima, global minimum

conformation, the best adjusted conformation for compound 12,

was selected by computing and comparing averaged interaction

energies (sum of columbic and van der Waals energies) in the last

5 ns of simulation (Table 1). Some publications reported that

correlation of the interaction energy with binding affinity can be

observed positively [22,23]. The lowest averaged interaction

energy (2253.253 kJ/mol) was shown in the second trial system

compared to the other systems. Hence, we concluded that the

adjusted protein structure in the second trial system is the closest to

the global minimum conformation.

In order to check whether the lowest energy structure is more

reasonable for binding of stilbene derivatives than the homology

modeled one, negative CDOCKER energies were also compared

after conducting a several molecular docking simulations of

compound 12 with the representative protein conformations

(Figure 6). As expected, the lowest interaction energy value of 2

73.0613 was observed in the docked pose of compound 12 in

second trial system (Table 2). The negative CDOCKER energy

score of the second trial system was also lower than the initial

docking structure as well as the other Apo and trial systems.

Although the second lowest energy score (266.9361) was detected

in the docked pose of compound 12 in Apo system, binding pose

of compound 12 was not proper because many flexible loops in

active site were gathered and then the possible ligand binding

cavity was removed (Figure 6A).

Three trial MD simulations of initial docked compound 6-

bound system were also conducted to check whether the homology

modeled structure which is in Apo state is reasonable to bind the

Figure 4. Results of initial molecular docking simulation. (A) Validation of molecular docking simulation by comparison between crystal
structure (gray) of S. cerevisiae isomaltase (PDB ID: 3A4A) co-crystallized with the a-D-glucose and homology modeled structure (blue) of the
isomaltase with its docking pose. Hydrogen bonds are represented as dotted lines in crystal (cyan) and homology modeled (yellow) structures. 2D
structure of a-D-glucose is shown in the right box. (B) Initial molecular docking results of compound 6 (orange) and compound 12 (green) with
representing interacting residues which shown as sticks. 2D interaction diagram of compound 6 (C) and compound 12 (D) with representing charged
(pink plate), p (orange line), and hydrophobic (light green plate) interacting residues.
doi:10.1371/journal.pone.0085827.g004

Binding Mode Analyses of a-Glucosidase Inhibitors
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derivatives. As clearly shown in compound 6-bound trial systems

as well as compound 12-bound trial systems, the results of MD

simulation with compound 6 were deviated from the proper

binding region indicating that inappropriate starting conformation

of the protein was used. But, after using the best adjusted

conformation in the compound 12-bound state, the structure of

Figure 5. MD simulation results of four systems (Apo, first, second, and third trials) for structure adjustment of compound 12-
bound state. Ca RMSD plot of three trials and Apo systems (A), RMSD of ligand in three trial systems (B). First trial (C), second (D), third (E), and all
three representative structures (F) with initial docking pose colored by cyan.
doi:10.1371/journal.pone.0085827.g005

Table 1. Averaged interaction energy of compound 12 obtained from MD simulation.

System Interaction Energy Van der Waals Energy Electrostatic Energy

(kJ/mol) (kJ/mol) (kJ/mol)

Comp12_1st 2235.876 2168.048 267.8278

Comp12_2nd 2253.253 2202.956 250.2964

Comp12_3rd 2203.842 2159.364 244.4776

doi:10.1371/journal.pone.0085827.t001

Binding Mode Analyses of a-Glucosidase Inhibitors
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compound 6 was maintained stably during the simulation time

(Figure 7A). From these results, we can suppose that the best

adjusted conformation by the most active compound was required

to find a more reasonable binding mode of the derivatives at least

in this system.

These comparative analyses suggested that the adjusted protein

conformation in second trial system is the suitable structure rather

than the other ones. Thus, the lowest energy protein structure was

used for molecular docking simulation of the derivatives.

Molecular docking and molecular dynamics simulations
with the adjusted protein conformation

In order to find out the most reasonable binding mode,

molecular docking and MD simulations of the derivatives were

performed with the adjusted protein structure having lowest

energy conformation. Initial docking poses of derivatives in

adjusted protein structure were well overlaid in same binding

mode showing only subtle difference in the C rings (Figure S3).

Figure 6. Molecular docking results of compound 12. The best docking poses (light green) of compound 12 in adjusted protein structure of
Apo (A), first (B), second (C), third (D) trial systems with comparing the MD results which are represented by dark green.
doi:10.1371/journal.pone.0085827.g006

Table 2. Interaction energy and negative CDOCKER energy of compound 12 obtained from molecular docking simulation.

System Interaction Energy
Van der Waals
Energy Electrostatic Energy 2CDOCKER Energy

2CDOCKER Interaction
Energy

(kJ/mol) (kJ/mol) (kJ/mol)

Initial (CDOCKER) 259.2922 241.7959 217.4963 36.098 47.5829

Apo 266.9361 243.52 223.4162 39.1709 51.3061

Comp12_1st 259.0961 243.039 216.0571 35.7489 49.0586

Comp12_2nd 273.0613 248.1349 224.9264 44.1057 57.4398

Comp12_3rd 257.3609 238.5771 218.7839 31.1857 44.715

doi:10.1371/journal.pone.0085827.t002

Binding Mode Analyses of a-Glucosidase Inhibitors
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These poses have lower scores than the first docking results. But, to

obtain more refined poses, MD simulations were conducted.

Hence eight 1.5 ns MD simulations were carried out and analyzed

(Figure 7). Unlike the simulation results of the homology modeled

structure in Apo state, all the structures are well converged in

similar binding mode (Figure 7B). The Ca RMSDs of the systems

also showed that the deviation (around 0.15 nm) of the structure

from initial one was much lower than previous MD simulations

(around 0.30 nm) at the same time (Figure 7A). In addition,

calculated interaction energies were maintained stably for almost

compounds (Figure 7C). But, the electrostatic energy of compound

10 was highly unstable compared to the other system (Figure S2).

These results indicate that the structures except for compound 10-

bound state are maintained stably during the simulation time due

to the adjusted protein conformation.

In order to evaluate whether the binding mode is reasonable,

correlation was calculated between experimental Ki value and the

interaction energy obtained from the eight 1.5 ns MD simulations.

As a result, the correlation coefficient value was 0.89 (Figure 7D).

This means that there’s a positive linear correlation between

calculated interaction energy and experimental Ki value (Table 3).

Thus, the binding mode of the derivatives with the protein is

suitable to use receptor-ligand pharmacophore model generation.

Comparison of final docking poses refined by MD
simulation

When the final binding modes of the derivatives were

compared, those of the two compounds 6 and 12 on behalf of

eight derivatives were focused on to analyze the differences of their

binding affinities because the compound 12 is the most active

molecule and the structural difference of the 12 with 6 makes

much difference in binding affinities. The structural difference is

that compound 12 has two fluorine atoms on the C ring, while

compound 6 has hydrogen atoms instead of fluorine. Due to this

subtle difference, the binding affinity of 12 is 3 folds higher than of

6. To analyze the reasons for this, the binding modes of the

compounds were compared using the 1.5 ns snapshot. Several

differences were observed in hydrogen bonding interaction but the

Figure 7. Results of MD simulations of stilbene derivatives starting with docked structure in the second trial system. (A) Ca RMSD plot
of different stilbene derivative-bound systems. (B) Overlapped structure of compound 6 (orange), compound 7 (red), compound 10 (bluish green),
compound 11 (violet), compound 12 (green), compound 13 (sky blue), compound 14 (light blue), and compound 16 (light violet). (C) Interaction
energy plot of all systems during the 1.5 ns simulation time. (D) Correlation graph between experimental Ki value and interaction energy.
doi:10.1371/journal.pone.0085827.g007

Table 3. Correlation between exp. Ki and calculated energy.

System Experimental Ki Interaction Energy

(mM) (kJ/mol)

Comp6 10.6 2245.265

Comp7 10.5 2252.126

Comp11 7.2 2281.353

Comp12 3.2 2287.378

Comp13 4.6 2292.982

Comp14 17 2226.249

Comp16 9.4 2233.907

doi:10.1371/journal.pone.0085827.t003
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other interactions are similar with each other. Hence, to find out

the clear reason of the activity difference and to obtain more

refined binding mode of the compounds, two MD simulations of

compounds 6 and 12 bound systems were extended to 10 ns. To

quantitatively compare binding mode difference between 1.5 ns

and 10 ns simulations, final snapshot of 1.5 ns and representative

structure (9,046 ps) of 10 ns simulations were superimposed by

protein and then RMSD of protein (0.15 nm) and compound 12
(0.09 nm) was calculated and compared between two simulations.

From the result, we found that the binding modes obtained from

the two simulations are similar with each other. But, we wanted to

obtain more refined structure for further analysis and pharmaco-

phore model generation. Hence, the closest frame to average

structure during the last 2 ns was selected as representative

structure.

Many different interacting points are observed upon compar-

ison of the refined docking conformations for 6 and 12 by

analyzing through monitor command in DS 3.0. Whereas the

compound 12 was found to have four hydrogen bonding

interactions with Glu276, Val303, Thr307, and His348, the

compound 6 having no fluorine atom has formed three hydrogen

bonds with Glu276, Ser308, and Arg312 (Table 4). The time

occupancies of hydrogen bonds for compound 6 are relatively

higher than those for compound 12. But, one of the hydroxyl

groups of the A ring in both compounds formed strong hydrogen

bond interaction with Glu276 which is one of catalytic triad

residues (Figure 8). The number of interacting residues involved in

charge or polar interaction in 12 was higher than in 6. In p
interactions comparison, same p-sigma and p-p interactions in

both compounds were formed with Glu304 and Phe311,

respectively.

In order to provide another clear reason of the activity

difference in terms of dynamic behavior, distances of p-sigma

interaction between Glu304 and each compound were measured

and compared during the simulation time (Figure 9). The distance

should be less than 0.5 nm to form a p-sigma interaction [24].

Some cases showed that involvement of p-sigma interaction play

an important role in protein-ligand interaction [25–27]. Whereas

the distance between c-carbon of Glu304 and compound 12 was

maintained stable, the distance in case of compound 6 was

deviated out of the range. This indicated that the p-sigma

interaction could also be one of the key interactions to explain the

activity difference in terms of dynamic behavior.

To find out the effect of p -sigma interaction, interaction energy

difference of the several snapshots with and without p-sigma

interaction was calculated. To compare mostly similar frames

excepting the p-sigma interaction only, several 1 ps different

snapshots were selected and then differences of interaction energy

between each two snapshots were calculated. For example, the

difference between 9,784 ps (2307.62) and 9,785 ps (2280.93)

snapshots was 26.69 kJ/mol and each distance of p-sigma

interaction between Glu304 b or c-carbons and compound 6 is

0.47 or 0.36 nm for 9,784 ps and 0.56 or 0.54 nm for 9,785 ps

snapshot, respectively. The difference of van der Waals energies

between 9,784 ps (2189.51) and 9,785 ps (2165.43) snapshots

was more significantly involved than that of the electrostatic

energies. In this way, we have selected 19 snapshot pairs and listed

all the distance and energy difference values for these snapshots

(Table S1) and then average value was calculated for these energy

differences. Through these comparison analyses, we can estimate

that the range of energy for a p-sigma interaction might be around

213.74611.26 kJ/mol in our system. In conclusion of all these

interaction results, we suggest that the activity difference can be

explained by considering not only hydrogen and charge interac-

tions but also p-sigma interaction.

Receptor-ligand pharmacophore model generation
Finally the receptor-ligand pharmacophore model was gener-

ated based on the representative structure of compound 12-bound

system which is the closest frame to average structure during the

last 2 ns (Figure 10A). All the four features namely two hydrogen

bond donors (HBD) and two hydrophobic (HPhob) were mapped

onto eight derivative compounds. Mapping of generated pharma-

cophore model on compound 12 and compound 14, the most

active and least ones, is shown in Figure 10B and 10C,

respectively. The compound 12 taken as reference mapped well

with all features with a scale fit value 0.97. The values of the other

compounds are also in a good agreement with the experimental Ki

values (Table 5). But the compound 6 shows relatively higher fit

value than estimated one, because it has same conformation with

compound 12. In our pharmacophore model, p-sigma interaction

between the compound and Glu304 was represented as hydro-

phobic feature (HPhob2). Thus, the MD simulation is required to

compare these two compounds and to explain this interaction. As

validation of pharmacophore model, the correlation between the

scale fit value and the Ki value was calculated except for this

specific case. The correlation coefficient was 0.88 meaning that the

two different kinds of values are in positive linear correlation

(Figure 10D).

In order to check the conservation of the residues implicated in

pharmacophore between the modeled yeast enzyme and the

corresponding human enzyme, sequence alignment of S. cerevisiae

a-glucosidase with human a-amylase was performed. Although the

overall sequence identity (17.4%) and similarity (34.1%) of

modeled yeast and human enzymes are in low level, sequence

identity (33.3%) and similarity (52.4%) of interaction residues for

compound 12 is much higher than those of the rest sequences

(Figure S4). The catalytic triad residues Asp214, Glu276, and

Asp349 and substrate binding residues His111 and His348 are

identical between human and yeast. These results suggested that

our pharmacophore model is also useful for human a-amylase

which is the main pharmaceutical target for stibene derivatives.

Conclusions

The main purposes of this study were to find out the most

suitable binding conformations of stilbene derivatives and to

explain the differences of binding affinity and then finally to

develop a receptor-ligand pharmacophore model. We constructed

the homology modeled structure of S. cerevisiae a-glucosidase

referenced by published information and used it for the molecular

docking study to find out the initial binding mode of compound 12
which is the most active one. For proper protein structure

adjustment at compound 12-bound state, three 20 ns molecular

dynamics (MD) simulations of the initial complex structure were

performed. The representative structure of second trial system was

selected as the best adjusted structure by comparing the

interaction energies and negative CDOCKER energies. Based

on the adjusted conformation, the most reasonable binding modes

of the stilbene urea derivatives were obtained from molecular

docking and MD simulations. To validate the binding mode of the

derivatives, correlation analysis was conducted between experi-

mental Ki value and the obtained interaction energy. From this

analysis, positive linear correlation was observed with correlation

coefficient value of 0.89. Our interaction analyses revealed that the

binding modes of the potent inhibitors were engaged with

important hydrogen bond, hydrophobic, and p-interactions.

Binding Mode Analyses of a-Glucosidase Inhibitors
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Especially, p-sigma interaction of Glu304 with each compound

could also be one of the key reasons to explain the activity

difference in terms of dynamic behavior. Finally, a proper four

featured pharmacophore model was generated using the validated

compound 12-bound structure obtained from combining ap-

proach of docking and MD simulation. Interestingly, we also

obtained a good agreement between the experimental Ki and the

calculated fit values. These results will be helpful for understanding

the relationship between binding mode and bioactivity of the

stilbene derivatives and then for designing better inhibitor.

Methods

Homology modeling
The 3D structure of S.cerevisiae a-glucosidase was built by

homology modeling method. The crystal structure of B. cereus

oligo-1,6-glucosidase (PDB ID: 1UOK, 2.00 Å resolution) was

used as template. Sequence alignment between S.cerevisiae a-

glucosidase and the template was carried out using ClustalW2

package in EMBL-EBI (www.ebi.ac.uk). The Build homology

models protocol available in Discovery Studio (DS) 3.0 software

[17] was used to create 3D structure of S.cerevisiae a-glucosidase

sequence based on an alignment with template. The final structure

Figure 8. Binding modes of compound 6 (orange) and compound 12 (green) obtained from 10 ns MD simulation. (A) Hydrogen
bonding interactions (light blue line) of compound 6 with Glu276, Ser308, and Arg312 are displayed with p-interacting residues (orange line). (B)
Interactions of compound 12 with four hydrogen bonding residues including Glu276, Val303, Thr307, and His348 are represented with p-interacting
residues: Glu304 for p-sigma and Phe311 for p-p interactions. 2D interaction diagram of compound 6 (C) and compound 12 (D) with representing
charged (pink plate), p (orange line), and hydrophobic (light blue plate) interacting residues.
doi:10.1371/journal.pone.0085827.g008

Table 4. Hydrogen bonding and hydrophobic contacting residues between protein and compound.

Ligand Protein-ligand interactions

Hydrogen bonding residues (Time
occupancy during the last 2 ns)

Residues involved in charge or polar
interaction Hydrophobic contacting residues

Compound 6 Glu276 (99.95%), Ser308 (80.95%),
Arg312 (97.65%)

Arg212, Asp214, Pro309, Phe311 Phe157, Phe158, Phe177, His239, Pro240, Phe300,
Val303, Glu304, Thr307, Asp349, Gln350

Compound 12 Glu276 (99.75%), Val303 (26.6%),
Thr307 (67.2%), His348 (57.35%)

Tyr71, Arg212, Asp214, Glu304, Phe300,
Phe311, Gln350

Phe157, Phe158, His239, Pro240, His279, Ser308,
Pro309, Arg312, Asn347, Asp349

doi:10.1371/journal.pone.0085827.t004
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was validated by PROCHECK [19] for the evaluation of

ramachandran plot and Protein Structure Analysis (ProSA) [20]

from ProSA-web.

Molecular docking simulation
For molecular modeling study, we mainly used two different

programs such as CDOCKER and GROMACS for the respective

purpose, i) to generate a docking pose and ii) to refine the pose

within a solvated system. CHARMm force field in CDOCKER

program is only used in active site region, but the Amber force

field in GROMACS is used for whole system including protein,

ligand, water, and ions. The CDOCKER [21] which has a

significant advantage in full ligand flexibility including bonds,

angles, and dihedrals is a CHARMm based docking tool to predict

putative geometry of a protein-ligand complex. The CDOCKER

docking simulations were performed to evaluate the binding mode

of stilbene derivatives within active site of homology modeled a-

glucosidase. The centroid point was generated at the center of the

catalytic triad which consists of Asp214, Glu276, and Asp349 in

the protein and the active site defined as 15 Å around it. Hundred

ligand conformations were generated from each initial ligand

structure through high temperature (1,000 K) MD simulation

(1,000 steps), followed by random rotations. The conformations

were then translated into the defined active site. Then candidate

poses were created by dynamics based simulated annealing

refinement. In the refinement, the temperature is heated up to

700 K for 2,000 steps and then cooled to 300K for 5,000 steps.

Out of top 20 docked poses, a docking pose with the highest

negative CDOCKER energy was only used for comparison. The

interaction energy (including van der Waals and electrostatics) was

calculated after docking process. The docking methodology was

validated with co-crystallized a-D-glucose, part of maltose, which

is competitive inhibitor of the Saccharomyces cerevisiae isomaltase

(PDB ID: 3A4A) by comparing the initial binding conformation in

crystal structure and docked pose obtained from docking

simulation of the a-D-glucose into the homology model of

isomaltase structure. Docking modes and binding interactions

were analyzed by 2D diagram visualization and monitor

command in DS 3.0 software [17].

Molecular dynamics simulation
Totally, 12 MD simulations were performed using the GRO-

MACS program (version 4.5.3) [28,29] with AMBER03 [30] force

field. The initial structure was immersed in an orthorhombic water

box (1 nm thickness) and the net charge was neutralized by the

addition of NA+ counterions. The long range electrostatic

interactions were calculated by the particle mesh Ewald (PME)

method [31]. In entire system, protein alone consists of 9,293

atoms and is made up of approximately 80,000 atoms which

include about 23,000 water molecules. The general Amber force

field (GAFF) [32] parameter was used for the compounds and the

atomic partial charges were calculated by the semi-empirical

quantum chemistry program SQM [33] via ANTECHAMBER

1.5 [34] and ACPYPE web portal (http://www.ccpn.ac.uk/ccpn/

software/acpype/). The systems were subjected to a steepest

descent energy minimization process to remove possible bad

contacts from initial structures until a tolerance of 1,000 kJ/mol.

During the system equilibration process the heavy atoms were

restrained and the solvent molecules with the counterions were

allowed to move during the 100 ps under NPT conditions at

300 K. Bonds between heavy atoms and corresponding hydrogen

atoms were constrained to their equilibrium bond lengths using

Figure 9. Distance of p-sigma interaction between Glu304 and each compound. Distance of compound 12 with b-carbon and c-carbon of
Glu304 is represented by blue and red lines, respectively (upper left). Distance between c-carbon of Glu304 and compound 12 is shown as green line
(upper right). These three distance values are compared during the simulation time (bottom). The threshold of p-sigma interaction is highlighted by
green dotted box.
doi:10.1371/journal.pone.0085827.g009
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the LINCS algorithm [35]. The equilibrated structures were used

to perform the production runs. A constant temperature and

pressure for the whole system (300 K and 1 bar) are achieved with

the V-rescale thermostat [36] and Parrinello-Rahman [37]

barostat. The time step for the simulations was set to 2 fs and

the coordinate data were written to the file every pico second (ps).

All the analyses of the MD simulations were carried out by

GROMACS, DS 3.0, and VMD software. To analyze the protein-

compound interactions for the final MD simulation result, monitor

command in DS3.0 was used. Each threshold for hydrogen bond

distance and D-H-A angle range is set to about 3.0 Å and from

about 90 to 180 degrees, respectively. VMD analysis tool [38] was

also used to calculate the hydrogen bond occupancy (%) with same

distance and angle range thresholds used in DS3.0.

Pharmacophore generation and validation
The representative structure taken from final 10 ns MD

simulation of compound 12-bound system was used to generate

the receptor-ligand pharmacophore model finding the pharmaco-

phoric features in the active site and important for ligand binding.

Four to six features (default) in the receptor-ligand pharmacophore

generation algorithm were chosen to extract useful pharmaco-

phores of reasonable size from all the receptor-ligand interactions.

Receptor-ligand pharmacophore generation was carried out by

pharmacophore generation tools in DS 3.0 software with default

parameters for further use in the screening for new lead

derivatives. This protocol generates selective pharmacophore

models from the features corresponding to the receptor-ligand

interactions. Based on the generated pharmacophore model, scale

fit values of the stilbene urea derivatives were calculated by ligand

pharmacophore mapping tools implemented in DS. For calculat-

ing the fit value, conformation of each compound in the final

snapshot of 1.5 ns MD simulation was used. Fitting method was

set to flexible which is slightly modified to better fit into the

pharmacophore model. As validation of the generated pharma-

cophore model, the correlation analysis was conducted between

the scale fit value and the Ki value.

Figure 10. Receptor-ligand pharmacophore model generation and validation. (A) Four featured pharmacophore model consists of two
hydrogen bond donors (HBD), two hydrophobic (HPhob), and excluded volumes. Mapping of generated pharmacophore model on compound 12 (B)
and compound 14 (C). (D) Correlation graph between experimental Ki and scale fit values.
doi:10.1371/journal.pone.0085827.g010

Table 5. Correlation between exp. Ki and scale fit value.

System Time, ns Exp. Ki (mM) Scale fit value

Comp6 10 (1.5) 10.6 0.93 (0.95)a

Comp7 1.5 10.5 0.89

Comp10 1.5 12.1 0.76

Comp11 1.5 7.2 0.91

Comp12 10 (1.5) 3.2 0.97 (0.95)a

Comp13 1.5 4.6 0.88

Comp14 1.5 17 0.49

Comp16 1.5 9.4 0.73

aScale fit value of each conformation for compounds 6 and 12 after 1.5 ns.
doi:10.1371/journal.pone.0085827.t005
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Supporting Information

Figure S1 Sequence alignment and homology modeling
structure of S. cerevisiae isomaltase using a template B.
cereus oligo-1,6-glucosidase. (A) Sequence alignment of S.

cerevisiae isomaltase (represented as 3A4A) with oligo-1,6-glucosi-

dase (1UOK). The catalytic residues are indicated in a red box. (B)

Comparative view of the homology modeled structure of S.

cerevisiae isomaltase constructed by the template with its own crystal

structure (PDB ID: 3A4A). The conserved catalytic residues

represented as sticks. The N-terminal, subdomain, and C-terminal

domains for the homology model are shown in blue, orange, and

yellow, respectively. The crystal structure of isomaltase is colored

by black.

(TIF)

Figure S2 Electrostatic energy plot of all systems during
the 1.5 ns simulation time. Energy values for all the other

compounds are represented as transparent colors to highlight the

energy values for compound 10.

(TIF)

Figure S3 Docking poses of stilbene derivatives in
adjusted protein structure of the second trial system,
which is the lowest energy conformation, with interact-
ing residues which are highlighted by violet sticks.
(TIF)

Figure S4 Sequence alignment of S. cerevisiae a-gluco-
sidase (represented as YEAST) with human a-amylase
(Human). Each identical, conserved, and non-conserved inter-

acting residue is indicated in a red, yellow, and black box,

respectively. Sequence identities are denoted by asterisks (*),

conservative substitutions by colons (:), and semi-conservative

substitutions by dots (.).

(TIF)

Table S1 Interaction energy difference obtained by
comparing mostly similar frames excepting p-sigma
interaction.

(DOCX)
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