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Abstract

The cyclic AMP-dependent protein kinase A signaling pathway plays a major role in regulating plant infection by the rice
blast fungus Magnaporthe oryzae. Here, we report the identification of two novel genes, MoSOM1 and MoCDTF1, which were
discovered in an insertional mutagenesis screen for non-pathogenic mutants of M. oryzae. MoSOM1 or MoCDTF1 are both
necessary for development of spores and appressoria by M. oryzae and play roles in cell wall differentiation, regulating
melanin pigmentation and cell surface hydrophobicity during spore formation. MoSom1 strongly interacts with MoStu1
(Mstu1), an APSES transcription factor protein, and with MoCdtf1, while also interacting more weakly with the catalytic
subunit of protein kinase A (CpkA) in yeast two hybrid assays. Furthermore, the expression levels of MoSOM1 and MoCDTF1
were significantly reduced in both Dmac1 and DcpkA mutants, consistent with regulation by the cAMP/PKA signaling
pathway. MoSom1-GFP and MoCdtf1-GFP fusion proteins localized to the nucleus of fungal cells. Site-directed mutagenesis
confirmed that nuclear localization signal sequences in MoSom1 and MoCdtf1 are essential for their sub-cellular localization
and biological functions. Transcriptional profiling revealed major changes in gene expression associated with loss of
MoSOM1 during infection-related development. We conclude that MoSom1 and MoCdtf1 functions downstream of the
cAMP/PKA signaling pathway and are novel transcriptional regulators associated with cellular differentiation during plant
infection by the rice blast fungus.
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Introduction

Eukaryotic organisms, including fungi, can sense and respond to

extracellular cues via various signaling pathways for regulating a

variety of developmental and differential cellular processes.

Among these pathways, the conserved cyclic AMP-dependent

protein kinase A (cAMP/PKA) signaling pathway has been well

studied. The secondary messenger cAMP is universally produced

through cyclization of ATP catalyzed by adenylate cyclases (ACs),

and the level of cellular cAMP is regulated by cAMP phospho-

diesterases [1,2]. PKA consists of two catalytic subunits and two

regulatory subunits. Binding of four cAMP molecules at two sites

on each regulatory subunit causes conformational changes in PKA

regulatory subunits, releasing activated PKA catalytic subunits

which subsequently phosphorylate target proteins, including

transcription factors, to control various physiological processes

[3–6].

The cAMP/PKA response pathway plays an important role in

fungal morphogenesis and virulence in plant pathogenic fungi [7].

During the last two decades, the function of several components of

the cAMP/PKA pathway, in particular, AC and PKA, has been

determined in a number of plant pathogenic fungi, including

Colletotrichum trifolii [8], C. lagenarium [9,10], Fusarium verticillioides

[11], Magnaporthe oryzae [12–14], Sclerotinia sclerotiorum [15] and U.

maydis [16,17]. In yeasts, several downstream target proteins of

PKA have also been identified and functionally characterized. In

Saccharomyces cerevisiae for instance, the Flo8 transcription factor is

critical for pseudohyphal growth in diploids, haploid invasive

growth and flocculation and functions downstream of the cAMP/

PKA pathway [18,19]. A family of FLO genes, including FLO11

(also referred as MUC1) which encodes a cell surface flocculin

critical for both pseudohyphal growth and invasive growth, are

regulated or activated by Flo8 [19–22]. It has been shown that the

binding of Flo8 to the promoter of FLO11 is regulated by Tpk2 (a

catalytic subunit of PKA) in S. cerevisiae [23]. In both S. cerevisiae

and Candida albicans, APSES (Asm1, Phd1, Sok2, Efg1, and StuA)

transcription factors are targets for the cAMP/PKA pathway [24–

27]. C. albicans Flo8 interacts with Efg1, a homolog of the Phd1/

Sok2 and StuA proteins that regulate morphogenesis of S. cerevisiae

and Aspergillus nidulans, respectively, and is essential for hyphal

development and virulence [28]. In phytopathogenic fungi, several

APSES transcription factors, including F. oxysporum FoStuA,
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Glomerella cingulata GcStuA and M. oryzae MoStu1 (Mstu1), have

recently been identified [29–31]. Both GcStuA and MoStu1 are

required for appressorium mediated plant infection [30,31], while

FoStuA is dispensable for pathogenicity by F. oxysporum [29]. In U.

maydis, three transcription factors, Prf1, Hgl1 and Sql1, regulated

by cAMP pathway have also been identified [32–34]. However,

the downstream targets of the cAMP/PKA pathway still remain

largely unknown in phytopathogenic fungi.

Magnaporthe oryzae is the causal agent of rice blast, the most

destructive disease of rice worldwide [35,36]. In the last two

decades, M. oryzae has arisen as a model fungal pathogen for

understanding the molecular basis of plant-fungus interactions

[36–39]. It is now clear that infection-related morphogenesis is

controlled by the cAMP response pathway and activation of the

mitogen-activated protein kinase (MAPK) cascade in M. oryzae

[12,40–42]. Appressorium formation of M. oryzae requires the

cAMP-response pathway, which responds to inductive signals from

the rice leaf, including surface hydrophobicity and wax monomers

from the plant [12–14,43–45]. Deletion of the M. oryzae MAC1

gene encoding adenylate cyclase resulted in mutants that cannot

form appressoria and were defective in the growth of aerial hyphae

and conidiation [12]. However, these defects in Dmac1 mutants

could be complemented by adding exogenous cAMP or by

spontaneous mutations in the regulatory subunit of PKA gene

SUM1 [44]. Consistent with this, M. oryzae CPKA, which encodes

the catalytic subunits of PKA, is dispensable for appressorium

formation, but is required for appressorial penetration [13,14].

Additionally, the role of the M. oryzae Pmk1 MAPK pathway in

regulating appressorium development has been clearly established

[40,42,46–49]. Therefore, the cAMP/PKA pathway and Pmk1

MAPK cascade are essential for regulation of appressorium

development and pathogenicity in the rice blast fungus.

In M. oryzae, the upstream activation of adenylate cyclase

appears to be mediated by G-proteins in response to physical and

chemical properties of the rice leaf surface. The M. oryzae genome

contains three Ga (MagA, MagB, and MagC), one Gb (Mgb1),

and one Gc (Mgg1) subunits. For the three Ga subunits, only

disruption of MAGB can significantly reduce vegetative growth,

conidiation, appressorium formation, and pathogenicity, although

the DmagC mutants are also reduced in conidiation [50]. MagB

may respond to surface cues to stimulate Mac1 activity and cAMP

synthesis, because expression of a dominant active allele of MAGB

causes appressoria to form on hydophilic hard surfaces [51]. Rgs1,

a regulator of G-protein signaling, interacts with all the three Ga
subunits and functions as a negative regulator of G-proteins in M.

oryzae [52]. Additionally, both MGB1 and MGG1 are essential for

appressorium formation and plant infection [53,54]. M. oryzae

PTH11 which encodes a putative G-protein-coupled receptor may

be involved in regulating Mac1 activities, because PTH11 is

required for surface recognition and virulence and exogenous

cAMP restores appressorium formation and pathogenicity in

PTH11 deletion mutants [55]. Recently, we reported that MoRic8

interacts with MagB and acts upstream of the cAMP/PKA

pathway to regulate multiple stages of infection-related morpho-

genesis in M. oryzae [56]. However, downstream targets of the

cAMP/PKA pathway are not well studied in M. oryzae.

Here, we present the identification and functional character-

ization of two novel pathogenicity-related genes identified by

insertional mutagenesis, MoSOM1 and MoCDTF1, which are

required for morphogenesis and virulence. Our results have

provided evidence that MoSOM1 and MoCDTF1 are regulated by

the cAMP/PKA pathway. Deletion of either MoSOM1 or

MoCDTF1 resulted in defects in hyphal growth, sporulation,

appressorium formation and virulence. MoSom1 strongly inter-

acted with the transcription factors, MoCdtf1 and MoStu1, and

also weakly interacted with CpkA in yeast two hybrid assays

performed in the presence of cAMP. Moreover, MoSOM1 can

complement the defects of S. cerevisiae flo8 in haploid invasive

growth and diploid pseudohyphal development. When considered

together, these data suggest that MoSom1 is an important

regulator of infection-related development in M. oryzae which

interacts with the transcription factors, MoCdtf1 and MoStu1, and

acts downstream of the cAMP/PKA signaling pathway.

Results

Identification of the T-DNA-tagged genes MoSOM1 and
MoCDTF1 of M. oryzae

To investigate the molecular basis of plant infection by M.

oryzae, a large T-DNA insertional mutagenesis library (,20,000

transformants) was constructed. All of the transformants were first

screened for impairment in pathogenesis by inoculating barley

leaves (cv. Golden Promise) with conidia or hyphae (if conidia

were not available) using a barley cut-leaf assay. The mutants

obtained from the first round screening were subsequently verified

by inoculating rice leaves. Among them, YX-145, YX-1303 and

YX-864 (Figure 1A; Table S1) were identified as mutants, which

were incapable of causing disease on barley or rice leaves (CO-39)

following inoculation with hyphae (Figure 1B). To identify the T-

DNA integration sites in the mutants, genomic DNA flanking the

integrated T-DNAs was obtained from the third round PCR

products (Figure S1) and sequenced, respectively. By amplifying

the genomic DNAs flanking the left border of the integrated T-

DNA, the patterns of T-DNA integrated into these mutants were

determined (Figure 1C).

The T-DNA insertion in YX-145 was found at position

593835+, which is 2457 bp downstream of the translational start

site, in the seventh exon of a hypothetical gene MGG_04708

(GenBank XP_362263) located on supercontig 16 of chromosome

IV. We named the T-DNA tagged gene MoSOM1, because it

Author Summary

Magnaporthe oryzae, the causal agent of rice blast disease,
is an important model fungal pathogen for understanding
the molecular basis of plant-fungus interactions. In M.
oryzae, the conserved cAMP/PKA signaling pathway has
been demonstrated to be crucial for regulating infection-
related morphogenesis and pathogenicity, including the
control of sporulation and appressorium formation. In this
study, we report the identification of two novel pathoge-
nicity-related genes, MoSOM1 and MoCDTF1, by T-DNA
insertional mutagenesis. Our results show that MoSOM1 or
MoCDTF1 are essential for sporulation, appressorium
formatiom and pathogenicity, and also play a key role in
hyphal growth, melanin pigmentation and cell surface
hydrophobicity. Nuclear localization sequences and con-
served domains of the MoSom1 and MoCdtf1 proteins are
crucial for their biological function. MoSom1 interacts
physically with the transcription factors MoCdtf1 and
MoStu1. We also show evidence that MoSom1 has the
capacity to interact with CpkA, suggesting that MoSom1
may act downstream of the cAMP/PKA signaling pathway
to regulate infection-related morphogenesis and patho-
genicity in M. oryzae. Our studies extend the current
understanding of downstream components of the con-
served cAMP/PKA pathway and its precise role in
regulating infection-related development and cellular
differentiation by M. oryzae.
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putatively encodes a predicted protein which is homologous with

Som1 proteins, which may be involved in the cAMP-dependent

protein kinase pathway controlling growth polarity in related

fungal species. MoSom1 showed 47.54, 36.66, 36.84, 37.29, 51.47

and 47.96% amino acid identity with Neurospora crassa Som1

(AAF75278), Aspergillus nidulans OefA (AAW55626), A. niger Som1

(XP_001395127), A. fumigatus Som1 (XP_746706), Metarhizium

acridum Som1 (EFY91592) and Verticillium albo-atrum Som1

(XP_003006356), respectively. However, MoSom1 showed only

14.76% and 14.93% amino acid identity with Saccharomyces

Figure 1. Identification of the T-DNA-tagged genes MoSOM1 and MoCDTF1. (A) Colonies of the wild type strain Guy11 and three T-DNA
insertional mutants. (B) Barley and rice leaf segments were inoculated with the mycelia from Guy11, YX-145, YX-1303 and YX-864, H2O was used as
the control. (C) Position of the T-DNA insertion in YX-145, YX-1303 and YX-864 mutants. The nucleotide in the brackets was deleted by T-DNA
integration. The arrows (.) indicate the T-DNA (2.2 kb) insertion positions in MoSOM1, MoCDTF1 and MoMSB2 genes, respectively. The thick boxes
represent the coding regions and the thin line joining these coding regions indicates the position of the introns.
doi:10.1371/journal.ppat.1002385.g001
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cerevisiae Flo8 (DAA07769) and Candida albicans Flo8 (AAQ03244 ),

respectively. Phylogenetic analysis of the putative homologs of

MoSom1 was shown in Figure S2A.

The T-DNA integration site in YX-1303 was at position

1126131-, which is 544 bp downstream of the translational start

site, in the first exon of a hypothetical gene MGG_11346

(GenBank XP_001413674) located on supercontig 27 of chromo-

some I. The T-DNA tagged gene putatively encodes a protein with

no known function. We named the gene MoCDTF1 (for

Magnaporthe oryzae cAMP-dependent transcription factor gene).

MoCdtf1 showed 21.44, 24.23, 18.73 and 27.37% amino acid

identity with N. crassa NCU00124 (XP_957248), Sclerotinia

sclerotiorum SS1G_07310 (XP_001591864), A. nidulans AN4210

(XP_661814) and Gibberella zeae FG06653 (XP_386829). However,

no homolog of MoCdtf1 exists in the genomes of the yeasts

Saccharomyces cerevisiae and C. albicans. Phylogenetic analysis of the

putative homologs of MoCdtf1 was shown in Figure S2B.

In the YX-864 mutant, MoMSB2 (MGG_06033) was disrupted

by T-DNA integration (Figure 1C). To verify the non-pathogenic

phenotype of YX-864, we performed a targeted gene deletion of

MoMSB2 (Figure S3A). The resulting Dmomsb2 null mutants, MK9

and MK12 (Table S1), were selected by Southern blot analysis

(Figure S3B); and were also confirmed by the lack of MoMSB2

transcript using RT-PCR amplification with 864Q-F and 864Q-R

(Table S2). Deletion of MoMSB2 had no obvious effect on

vegetative growth, conidial germination and sexual development,

but caused defects in conidiation, appressorium formation and

virulence (Figure S4). The defect in appressorium formation could

not be restored by adding exogenous 1,16-hexadecanediol (Diol),

cyclic adenosine 39,59-cyclophosphate (cAMP), and 3-iso-butyl-1-

methylxanthine (IBMX). In S. cerevisae, it has been shown that

Msb2 interacts with Sho1 and Cdc42 to promote their function in

the filamentous growth pathway [57]. However, no direct

interactions between MoMsb2 and MoSho1 (MGG_09125) and

MoCdc42 (MGG_00466) were detected in yeast two hybrid assays

(data not shown). Taken together, our data provide evidence that

MoMSB2 is required for plant infection-related morphogenesis and

virulence in M. oryzae, which is consistent with a very recent study

in which the gene was independently identified [49].

Both Dmosom1 and Dmocdtf1 mutants are
non-pathogenic

To determine the role of MoSOM1 in plant infection and

confirm the predicted role based on phenotypic analysis of YX-

145, we performed targeted gene deletion of MoSOM1 using the

gene replacement vectors pMoSOM1-KO (Figure S3C). The gene

replacement was analyzed by PCR amplification with primers

145-F and 145-R (Table S2) from transformants. The resulting

Dmosom1 null mutants, SK5, SK21 and SK27 (Table S1), were

selected based on Southern blot analysis (Figure S3D) and also

confirmed by RT-PCR amplification using primers 145Q-F and

145Q-R. One of the transformants resulting from ectopically

integrated pMoSOM1-KO, ES16, was used as a control strain. To

complement the mutant, the 2.8 kb MoSOM1 gene-coding

sequence and a 1.5 kb promoter region was re-introduced into

SK27 (Dmosom1) to obtain two complemented strains, SC1 and

SC3 (Table S1). Similarly, the Dmocdtf1 null mutants, CTK2 and

CTK15, were generated by a targeted gene deletion of MoCDTF1

(Figure S3E and F). The complemented strains, CTC1 and CTC5,

were obtained by transforming the genomic DNA including 4.1 kb

MoCDTF1 gene-coding sequence and a 1.6 kb promoter region

back to Dmocdtf1 (CTK15).

We then harvested the mycelium of Dmosom1 and Dmocdtf1

mutants from liquid CM cultures to inoculate susceptible barley

and rice using the cut leaf assay. Our results showed that the wild-

type strain Guy11, ectopic (ES16) or complementation (SC1 and

CTC1) transformants caused typical rice blast lesions on both

intact and abraded barley or rice leaves (Figure 2A). However,

consistent with the original analysis of YX-145, the Dmosom1

(SK27) mutant was non-pathogenic on both susceptible barley and

rice leaves, even when they were abraded to remove the surface

cuticle (Figure 2A). The Dmocdtf1 (CTK15) mutant was non-

pathogenic on both barley and rice leaves, but was still able to

cause some disease symptoms when leaf surfaces were abraded

(Figure 2A). We were unable to carry out a pathogenicity assay

using spray inoculation, because these mutants were completely

defective in sporulation in culture (see below). Furthermore, the

Dmosom1 (SK27) mutant was non-pathogenic when inoculated

onto rice roots, but the Dmocdtf1 (CTK15) mutant was still able to

cause some disease symptom (Figure 2B). These results therefore

demonstrated that the non-pathogenic phenotype of YX-145 and

YX-1303 mutants was caused by T-DNA integration and that

both MoSOM1 and MoCDTF1 are crucial for plant infection in M.

oryzae.

MoSOM1 and MoCDTF1 are important in vegetative
growth and colony pigmentation

Deletion of MoSOM1 caused significant defects in hyphal

growth and colony pigmentation (Figure 3A). The Dmosom1

mutant formed colonies that were less pigmented and which

formed less aerial hyphae (Figure 3A). All Dmosom1 mutants (SK5,

SK21 and SK27) showed the same phenotypes and only data for

mutant SK27 are therefore presented here. When the Dmosom1

mutant (SK27) was grown in CM liquid culture, it formed very

small compact mycelium masses, in contrast to the bigger but less

compact mycelium formed by the wild-type strain (Figure 3A).

The growth rate of mycelium from each strain was determined

(Figure 3B). The Dmosom1 mutant and YX-145 were significantly

reduced in vegetative growth, forming colonies with diameters of

3.660.09 cm and 3.760.08 cm after 10-day incubation on CM at

25uC, respectively, compared with 6.860.1 cm colony diameter of

wild-type strain Guy11 (P,0.01) (Figure 3B). We also carried out

mycelial dry weight assays. The results showed that the Dmosom1

mutant was significantly reduced in mycelial dry weight with

0.15160.007 g compared with 0.33060.015 g of the wild-type

strain Guy11 (P,0.01) after 2-day incubation in liquid CM at

25uC.

Deletion of MoCDTF1 also caused defects in vegetative growth

and colony pigmentation on CM plate cultures compared with the

wild-type strain, although the affected degree was not as severe as

in Dmosom1 mutants (Figure 3A). The Dmocdtf1 mutant (CTK15)

formed mycelium that was not well pigmented compared with the

wild-type strain and formed smaller mycelium masses in liquid

culture (Figure 3A). The Dmocdtf1 mutant and YX-1303 were

reduced in vegetative growth, forming colonies with diameters of

5.060.08 cm and 5.160.1 cm after 10-day incubation on CM at

25uC, respectively, compared with 6.860.1 cm colony diameter of

wild-type strain Guy11 (P,0.01) (Figure 3B). The other Dmocdtf1

mutant (CTK2) had the same phenotypes as CTK15 (data not

shown). To further investigate the roles of MoSOM1 and

MoCDTF1, two Dmosom1Dmocdtf1 mutants D-3 and D-9 were

created by transformation of pMoSOM1-DK (Figure S3G) into

the strain CTK15 (Dmocdtf1) and selected by PCR and confirmed

by RT-PCR with the primers 145-F and 145-R (Figure S3H and

I), respectively. The Dmosom1Dmocdtf1 mutant D-3 grew more

slowly than both the Dmosom1 (SK27) and Dmocdtf1 mutants

(CTK15) in culture (Figure 3A and B). Additionally, when the

Dmosom1 mutant (SK27) and Dmocdtf1 mutant (CTK15) were

Novel Regulators for Pathogenicity of M. oryzae
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inoculated on various media, including MM, PDA and OMA,

their vegetative growth and colony pigmented were also impaired

(Figure S5). We conclude that MoSOM1 and MoCDTF1 are

required for vegetative growth and mycelium pigmentation.

Deletion of either MoSOM1 or MoCDTF1 completely
blocks production of asexual and sexual spores

The ability to form spores was evaluated by carefully washing

the surface of 10-day-old cultures on CM plates. YX-145, SK27,

YX-1303 and CTK15 were unable to form conidia, while the

wild-type strain Guy11 produced numerous conidia with

21.062.06106 spores per plate (Figure 4A). When these mutants

were grown on different growth media, including MM, PDA,

OMA, sporulation was also not observed. These results showed

that asexual sporulation was completely blocked by the deletion/

disruption of either MoSOM1 or MoCDTF1, indicating that each of

the two genes is essential for conidiation in M. oryzae. Furthermore,

no conidiophores were observed from the cultures of the mutants,

while Guy11 formed normal conidiophores and conidia

(Figure 4B). The phenotypes were also observed from other

Figure 2. The Dmosom1, Dmocdtf1 and Dmosom1Dmocdtf1 mutants are nonpathogenic. (A) Barley and rice segments inoculated with the
mycelia from the wild-type strain Guy11, YX-145, SK27 (Dmosom1), ES16 (ectopic transformant), SC1 (Dmosom1+MoSOM1), CTK15 (Dmocdtf1), CTC1
(Dmocdtf1+MoCDTF1) and D-3 (Dmosom1Dmocdtf1). a = unwounded leaf and b = abraded leaf. (B) Root infection assays. The mutants SK27 and D-3
were non-pathogenic when inoculated onto rice roots, but the mutant CTK15 was still able to cause some disease symptom. Arrows indicate necrotic
lesions. H2O was used as the control. Photographs were taken at 5 days after inoculation.
doi:10.1371/journal.ppat.1002385.g002
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Figure 3. MoSOM1 and MoCDTF1 are required for vegetative growth and pigmentation. (A) Mycelium growth and pigmentation were
significantly impaired in SK27 (Dmosom1), CTK15 (Dmocdtf1) and D-3 (Dmosom1Dmocdtf1) mutants. The mutants and the wild type strain (Guy11)
were inoculated on CM medium and cultured at 25uC for 10 days (top). Reduced pigmentation was observed from the colony back side of the
mutants (middle). Mycelium growth patterns of the strains in liquid CM medium at 25uC for 48 h (bottom). Scale bars = 5 mm. (B) Bar chart showing

Novel Regulators for Pathogenicity of M. oryzae
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targeted gene replacement mutants, such as SK5, SK21 and

CTK2. These results suggest that the defect in conidiation of the

Dmosom1 and Dmocdtf1 mutants may be caused by the lack of aerial

conidiophore development.

To determine the role of MoSOM1 and MoCDTF1 in sexual

reproduction, the wild type Guy11 (MAT1-2), SK27 and CTK15

were crossed with a standard tester strain TH3 (MAT1-1) of M.

oryzae to allow perithecium production. After three weeks, the

junctions between mated individuals were examined for the

presence of perithecia. We observed numerous perithecia at the

junctions of the wild type strains Guy11 and TH3, but no

perithecia were formed after crossing SK27 with TH3 or CTK15

with TH3 (Figure 4C), even when the incubation time was

extended to six weeks. Similarly, crossing of TH3 with the T-DNA

insertional mutants (YX-145 and YX-1303), SK5, SK21 and

CTK2 did not produce any perithecia, indicating that MoSOM1 or

MoCDTF1 are essential for fertility and development of fruiting

bodies by M. oryzae. The Dmosom1Dmocdtf1 mutant D-3 was also

unable to produce conidiophores, conidia and was completely

impaired in sexually development (Figure 4A–C). We conclude

that MoSOM1 and MoCDTF1 are both essential for production of

asexual and sexual spores by M. oryzae.

Both MoSOM1 and MoCDTF1 are required for
appressorium formation from mycelium

Since the Dmosom1 and Dmocdtf1 mutants were unable to

produce spores, we harvested mycelium of the mutants from liquid

CM culture and appressorium formation was investigated by

placing hyphae on hydrophobic surfaces. Numerous appressoria

were formed from mycelium of the isogenic wild type strain

Guy11, but no appressoria were observed at 24 h or even 48 h

post inoculation with the Dmosom1 (SK27) and Dmocdtf1 (CTK15)

mutants (Figure 4D). When mycelium of these mutants was placed

on barley or rice leaf surfaces, no appressorium formation was

induced and no penetration events were observed at 24 h post

inoculation (data not shown), indicating the non-pathogenic

phenotypes of Dmosom1 and Dmocdtf1 mutants on host leaves

may be caused by the defect in appressorium formation. The

Dmosom1Dmocdtf1 was also unable to form appressoria from

mycelium (Figure 4D). These results suggest that MoSOM1 and

MoCDTF1 are both required for appressorium formation and

plant infection by M. oryzae.

Both Dmosom1 and Dmocdtf1 mutants show an easily
wettable phenotype

An easily wettable phenotype can be observed when a fungal

culture becomes easily water-logged, due to a loss of surface

hydrophobicity, brought about by the absence of the rodlet layer

associated with aerial hyphae and conidiospores [58]. We

observed that colonies of YX-145 and Dmosom1 mutants were

distinct from the wild-type strain Guy11 and formed less aerial

hyphae. YX-1303 and Dmocdtf1 mutants were also reduced in

aerial hypha formation. We therefore tested the surface hydro-

phobicity of these strains (Figure 5A). Drops of water and 0.2%

gelatin remained on the surface of mycelium of Guy11 and older

mycelium of the Dmocdtf1 mutant (CTK15) after 24–48 h

incubation, and drops of detergent solution remained suspended

on the surface of colonies of Guy11 for about 10–30 min before

soaking into the mycelium. By contrast, drops of water and

detergent solution immediately soaked into the cultures of the

Dmosom1 mutant (SK27) and young mycelium of CTK15

(Figure 5A). Similar results were observed for the other Dmosom1

and Dmocdtf1 mutants. The surface hydrophobicity of the double

knockout mutants D-3 and D-9 was similar to the Dmosom1

mutants. The results indicate that deletion of either MoSOM1 or

MoCDTF1 affects cell surface hydrophobicity in M. oryzae.

As a consequence of the wettable phenotype of the mutants, we

reasoned that M. oryzae hydrophobin genes might be down-

regulated in the mutants. To test this idea, we investigated the

expression of M. oryzae hydrophobin-encoding genes, including

MPG1 and MHP1 and two MHP1 homologs (MGG_09134 and

MGG_10105), by quantitative RT-PCR (qRT-PCR). We found

that expression of hydrophobin encoding genes was significantly

(P,0.01) down-regulated in both Dmosom1 and Dmocdtf1 mutants,

particularly in the Dmosom1 mutant (Figure 5B).

Both MoSom1 and MoCdtf1 are localized to the nucleus
To investigate the expression pattern of MoSOM1 during

infection-related development, a 1.52 kb promoter fragment

upstream of the gene and the entire MoSom1 protein-coding

sequence were fused in-frame to the green fluorescent protein

(GFP)-encoding gene, GFP (sGFP), and introduced into the

Dmosom1 mutant SK27. Transformants carrying a single integra-

tion of the pMoSOM1-GFP were selected by DNA gel blot

analysis. An independent single plasmid insertion event occurred

in the transformants, SC1 and SC3 (Table S1). Punctate green

fluorescence was observed in the two transformants. SC3 was used

to investigate the spatial localization of the MoSom1 protein in

detail. In this analysis, GFP fluorescence was observed both in

mycelium and in conidia of SC3, and each cell contained one

fluorescence punctum (Figure 6A), suggesting that MoSom1 may

localize to the nucleus of each cell. To test this idea, mycelium and

conidia of SC3 were stained with 49-6-Diamidino-2-phenylinodle

(DAPI) to stain nuclei specifically. The merged image of GFP and

DAPI staining showed that MoSom1-GFP localizes to the nucleus

and that each cell contains a single nucleus (Figure 6A). To

observe MoSOM1 expression and nuclear division patterns during

appressorium development in M. oryzae, conidia of the strain SC3

were allowed to germinate on hydrophobic GelBond film surfaces.

During conidium germination, the nucleus in the germinating cell

entered mitosis and then one of the daughter nuclei migrated to

the incipient appressorium (Figure 6B). Three nuclei that

remained in the conidium degenerated and could no longer be

seen after approximately 18 hours post inoculation, consistent

with previous observations of nuclear division in M. oryzae [59].

Bright green fluorescence of the strain SC3 during penetration on

onion epidermis was also observed, as shown in Figure 6C.

However, qRT-PCR analysis showed that the expression levels of

MoSOM1 were similar at different developmental stages (data not

shown), indicating expression throughout the life cycle of the

fungus. The expression and localization of MoSom1-GFP was

identical in the other transformant SC1. A similar strategy was

used to investigate the expression pattern of MoCDTF1 and

localization of the encoded protein during infection-related

development. Green fluorescence was also observed in nuclei,

both in mycelium and in conidia of the transformants CTC1

(Figure S6) and CTC5. However, weak GFP fluorescence was

observed in mycelium and in conidia of CTC1 and CTC5

compared strong GFP fluorescence observed in SC1 and SC3.

the colony diameters of Guy11, YX-145, SK27, ES16 (ectopic transformant), SC3 (Dmosom1+MoSOM1), YX-1303, CTK15, CTC1 (Dmocdtf1+MoCDTF1)
and D-3. Error bars represent standard deviation. Asterisks indicate significant difference at P = 0.01.
doi:10.1371/journal.ppat.1002385.g003
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These results provide evidence that both MoSom1 and MoCdtf1

proteins are localized to the nucleus in M. oryzae.

Complementation analysis of Dmosom1 and Dmocdtf1
mutants

To ensure that all phenotypes observed in the Dmosom1 and

Dmocdtf1 mutants were associated with the gene replacement event,

we carried out phenotypic analysis of complemented transformants

SC1, SC3, CTC1 and CTC5. The GFP-expressing transformants

SC1 and CTC1 exhibited full virulence to barley and rice by cut-leaf

assay using mycelium inoculations (Figure 2A) or by seedling assays

with conidial spray-inoculation. The other phenotypes of Dmosom1

and Dmocdtf1 mutants, including vegetative growth, conidiation and

appressorium formation, were all fully complemented by re-

introduction of the genes of MoSOM1 or MoCDTF1 (Figure 3B;

Figure 4A, B and D; Figure S7). However, the mutants were not

responsive to 10 mM exogenous cAMP (data not shown), indicating

MoSom1 and MoCdtf1 may act downstream of the cAMP/PKA

pathway. We conclude that MoSOM1 or MoCDTF1 are both essential

for multiple steps of plant infection-related morphogenesis develop-

ment and pathogenicity in M. oryzae.

The MoSom1 protein has different spliced isoforms in M.
oryzae

To confirm the position and size of the introns of MoSOM1 and

MoCDTF1, cDNA clones of the coding sequence were obtained by

reverse transcription-PCR with primer pairs of SOM-E-F/SOM-

Xh-R and P1303-F/1303H-Kpn-R (Table S2) and the resulting

PCR products cloned into pGEM-T easy vectors and sequenced,

respectively. Comparison of the cDNA and sequenced genomic

DNA confirmed that MoCDTF1 has an open reading frame of

4,121 bp interrupted by one intron (62 bp) and putatively encodes

a 1352 aa protein, which is identical to the protein sequence

predicted by automated annotation of the M. oryzae genome

sequence (ID: MGG_11346.6; Broad Institute). MoSOM1 has an

open reading frame of 2,789 bp interrupted by seven introns

(56 bp, 85 bp, 62 bp, 24 bp, 66 bp, 81 bp and 68 bp, respectively)

and putatively encodes a 781 aa protein (ID: MGG_04708.6;

Broad Institute). However, five splice variants of MoSom1 were

also found, as shown in Figure S8. Furthermore, all of the

alternatively spliced isoforms of MoSom1 could be detected in

RNA extracted from mycelium cultured in liquid CM (1 d, 3 d

and 5 d) or conidia from 10-day-old CM plates (data not shown).

Three missed amino-acid fragments occurred in exons 4, 6 and 7,

respectively, while the extra amino-acid fragment was in exon 4.

These data suggested that there may be various forms of post-

transcriptional modification of MoSOM1 in M. oryzae.

Functional characterization of different domains of
MoSom1 and MoCdtf1

Both S. cerevisiae Flo8 and C. albicans Flo8 contain a LUFS

(LUG/LUH, Flo8, Single-stranded DNA binding protein) domain

and there is a LisH (Lissencephaly type 1-like homology) motif

within the domain. Similarly, a LUFS domain harbored a LisH

motif was also found at the N-terminal portion of the M. oryzae

MoSom1 protein (Figure S9A). The amino acid alignment of LisH

domains of MoSom1 homologs from related fungal species were

shown in Figure 7A, indicating that the fungal LisH domain in

fungi is conserved. In addition, MoCdtf1 has a C-terminal

ZnF_C2H2 domain. The amino acid alignment of the putative

zinc finger, ZnF_C2H2 domain in MoCdtf1 was shown in Figure

S9B.

The position of the LisH domain of MoSom1 was shown in

Figure 7B. To explore the role of the LisH domain of the MoSom1

protein, we generated a mutant allele of MoSOM1-GFP by deletion

of the LisH domain. The resulting transformants (SL1 and SL7)

expressing MoSOM1DLISH-GFP produced more aerial hyphae and

formed more melanized colonies than the original Dmosom1

mutant, but they were still defective in conidiation, asexual/sexual

development and pathogenicity (Figure 7C). In these strains, the

GFP fluorescence was observed both in nucleus and cytoplasm of

hypha (Figure 7C), indicating that protein localization was

somewhat affected by the deletion of LisH domain of MoSOM1.

Additionally, mutants carrying deletions in the ZnF_C2H2

domain of MoCdtf1 had the same phenotypes as the original

strain CTK15 (data not shown), indicating that the domain is

essential for the function of MoCdtf1 in M. oryzae. These results

indicated that both the LisH domain of MoSom1 and the

ZnF_C2H2 domain of MoCdtf1 are essential for infection related

morphorgenesis and virulence in M. oryzae.

Consistent with their observed localization patterns (Figure 6;

Figure S6), both M. oryzae MoSom1 and MoCdtf1 were

predicted to be nuclear localized proteins. The positions of two

predicted nuclear localization signals (NLSs) were shown in

Figure 7B. To determine the role of the predicted NLSs of

MoSom1, we generated mutant alleles of MoSOM1-GFP deleted

of each individual putative NLS (PKKK or PSKRVRL) and

transformed them into the Dmosom1 mutant (SK27). We found

that transformants (SN1-2 and SN1-5) expressing the Mo-

SOM1DPKKK -GFP grew normally on CM medium, produced

numerous conidia and were fully pathogenic. Moreover, green

fluorescence was still observed in the nucleus of these

transformants (Figure 7C). However, like the original Dmosom1

mutant, strains (SN2-3 and SN2-4) expressing the Mo-

SOM1DPSKRVRL-GFP were unable to produce asexual/sexual

spores and were non-pathogenic. Interestingly, we observed

green fluorescence of these strains in the cytoplasm of hypha

(Figure 7C). These results suggest that PSKRVRL but not

PKKK sequence is essential for the function and transportation

of MoSom1 protein from cytoplasm to the nucleus. Using a

similar strategy, we also demonstrated that the predicted NLS

(PPKRKKP) of MoCdtf1 was crucial for the protein localized to

the nucleus and its functions during differentiation and plant

infection (Figure 7C).

Figure 4. MoSOM1 and MoCDTF1 are essential for producing asexual/sexual spores and appressoria. (A) Bar chart showing the conidial
production. The YX-145, SK27 (Dmosom1), YX-1303, CTK15 (Dmocdtf1) and D-3 (Dmosom1Dmocdtf1) mutants were unable to produce any conidia, while
the wild type strain Guy11, SC3 (Dmosom1+MoSOM1) and CTC1 (Dmocdtf1+MoCDTF1) formed numerous conidia on CM medium at 25uC for 10 days. Error
bars represent standard deviation. (B) Microscopic observation of conidial development. Aerial hyphae were significantly reduced and conidiophores were
not observed in the SK27, CTK15 and D-3 mutants. The wild-type strain Guy11 and the complementation strains (SC3 and CTC1) formed normal
conidiophores and numerous conidia. All the tested strains grown on CM medium for 4 days were examined by light microscopy and photographed. Scale
bar = 20 mm. (C) Fertility assay. Guy116TH3 formed numerous perithecia on oatmeal medium after 3-week incubation in an inductive condition, while no
perithecia was observed for the crosses of SK276TH3, CTK156TH3 and D-36TH3. (D) Appressorium formation assay. Mycelium fragments of Guy11, SK27,
CTK15, D-3, SC3 and CTC1 were placed on hydrophobic GelBond film surfaces to allow appressorium development, respectively. Appressorium formation
was observed after 24 h incubation at 25uC in darkness. Numerous appressoria were produced by Guy11 and the complementation strains (SC3 and CTC1),
however, no appressoria were observed for the inoculation of SK27, CTK15 and D-3. A = appressorium; H = hypha. Scale bar = 10 mm.
doi:10.1371/journal.ppat.1002385.g004
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MoSOM1 can complement flo8 defects in haploid
invasive growth of S. cerevisiae and diploid
pseudohyphal development

In Saccharomyces cerevisae, Flo8 is critical for invasive growth and
flocculation in haploids and pseudohyphal growth in diploids [18].

To determine if MoSOM1 can functionally complement the S.

cerevisae flo8 defects, we carried out yeast complementation assays.

Our results showed that a yeast strain expressing MoSOM1 in the

haploid flo8 mutant HLY850 was restored in its ability to carry out

invasive growth on YPD medium (Figure 8A). Consistently, the

strain expressing MoSOM1 in the dipoliod flo8 mutant HLY852

recovered the ability to carry out pseudohyphal development on

Figure 5. Both Dmosom1 and Dmocdtf1 mutants show an easily wettable phenotype. (A) Surface hydrophobicity of the wild type strain
Guy11 and the mutants SK27 (Dmosom1) and CTK15 (Dmocdtf1) was assessed by placing a 10 ml drop water, 250 mg/ml tween20, 0.2% SDS+50 mM
EDTA, and 0.2% gelatin on the 7-day-old cultures, respectively. Drops of water and 0.2% gelatin remained on the cultures of Guy11 and the old
mycelium of the mutant CTK15, while the others were soaked into colonies. The photographs were taken after 12 h incubation. (B) Expression of the
genes coding hydrophobins in the Dmosom1 (SK27) and Dmocdtf1 (CTK15) mutants measured by quantitative reverse-transcription polymerase chain
reaction (qRT-PCR). Error bars represent the standard deviation. Asterisks indicate significant difference at P = 0.01.
doi:10.1371/journal.ppat.1002385.g005
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SLAD (synthetic low ammonium dextrose medium) (Figure 8B).

These data suggest that MoSOM1 can functionally complement

yeast flo8 defects in both haploid invasive growth and diploid

pseudohyphal development.

MoSOM1 and MoCDTF1 are putatively regulated by the
cAMP response pathway

To understand the regulation of MoSOM1 and MoCDTF1 by the

cAMP/PKA pathway, the expression of both MoSOM1 and

MoCDTF1 was determined by qRT-PCR in Dmac1, DcpkA, DmagA,

DmagB and Drgs1 mutants (Table S1). For comparison, other

signaling mutants impaired in infection-related morphogenesis,

such as Dpmk1 and Dmps1, were also used. Interestingly, we found

that expression levels of MoSOM1 and MoCDTF1 were signifi-

cantly reduced in Dmac1, DcpkA and DmagA mutants (P,0.01), but

not in other mutants (Figure S10). However, qRT-PCR analysis

showed that expression of MoCDTF1 was not significantly

regulated by the deletion of MoSOM1 or vice versa (data not

shown). These results indicate that expression of MoSOM1 and

MoCDTF1 are down-regulated by impairment of the cAMP/PKA

signaling pathway.

To understand whether over-expression of the MoSOM1 can

restore the phenotypes of the Dmac1 or DcpkA mutants, we

developed two strains (OM1 and OM4) expressing MoSOM1-GFP

driven by the TrpC promoter from A. nidulans in the Dmac1

mutant, and similarly constructed two strains (OC2 and OC7) in

the DcpkA mutant. Strong fluorescence was observed at the nucleus

of these strains (Figure S11A). However, the phenotypes of the

Dmac1 or DcpkA mutants, including appressorium formation and

pathogenicity (Figure S11B and C), were not restored by over-

expression of MoSOM1. Interestingly, treatment of SC3 with the

adenylate cyclase inhibitor MDL-12,330A hydrochloride at high

concentrations, led to some accumulation of MoSom1-GFP in the

cytoplasm (Figure S12). These results provide evidence that

phosphorylation of MoSom1 by activated CpkA may be important

for its nuclear localization.

MoSom1 can physically interact with MoCdtf1, MoStu1
and CpkA

Our results showed that the phenotypes of Dmosom1 and

Dmocdtf1 mutants are somewhat similar and that expression of both

MoSOM1 and MoCDTF1 are regulated by the cAMP/PKA

signaling pathway. In a previous report, MoStu1 (MGG_00692),

an APSES protein of M. oryzae, was shown to be required for

pathogenicity and sporulation [31]. To determine whether

MoSom1 interacts with the two transcription factors, MoCdtf1

and MoStu1, we carried out yeast two hybrid (Y2H) experiments.

The results provided evidence that MoSom1 physically interacts

with MoCdtf1 and MoStu1 (Figure 9A), suggesting both MoCdtf1

and MoStu1 were regulated by a direct interaction with MoSom1.

However, we did not observe interactions between MoSom1 and

other tested proteins, including CpkA and MoLdb1, under these

experimental conditions. Additionally, interactions between

MoCdtf1 and MoStu1 or MoLdb1 were also not observed in Y2H.

Previously, an interaction between C. albicans Flo8 and Tpk2

was observed in a modified Y2H system [23]. To examine the

interaction between MoSom1 and CpkA, we added 5 mM

exogenous cAMP into yeast growing medium. Interestingly, a

weak interaction between MoSom1 and CpkA was detected by

addition of 5 mM exogenous cAMP which may potentially reduce

the binding of PKA catalytic subunits with regulatory subunits,

while no interaction was detected between the two proteins

without adding exogenous cAMP (Figure 9B), presumably because

the CpkA is inactive and tightly bound to the endogenous PKA

regulatory subunit. These results further demonstrate that

MoSom1 may act downstream of the cAMP/PKA pathway in

M. oryzae.

Analysis of global patterns of gene expression in
Dmosom1 mutants of M. oryzae

To identify genes that are putatively regulated by MoSOM1, we

generated serial analysis of gene expression (SAGE) libraries for

the wild-type strain (Guy11, 3728956 tags) and the Dmosom1

mutant SK27 (3449284 tags) using mycelium grown in liquid CM

medium. To confirm gene expression patterns derived from the

SAGE libraries, 10 down-regulated genes in the Dmosom1 mutant

were randomly selected and validated by qRT-PCR. The results

showed that each gene expression pattern was consistent with that

in the SAGE data (Figure 10A). To identify genes that were

subjected to regulation by MoSom1, we compared the gene

expression profiles between the wild-type strain and the MoSom1

mutant. In total, 719 genes were up-regulated with log2 ratio

(Dmosom1/Guy11) .2 and 439 genes were down-regulated with

log2 ratio (Dmosom1/Guy11),22 (Figure 10B). Genes regulated

by deletion of MoSOM1 with log2 Ratio (Dmosom1/Guy11).1.5 or

,21.5 were shown in Table S3. By analysis of the SAGE data, we

found that several pathogenicity-related genes (MPG1, MoVPR1,

MoAAT1, MSP1, MoSSADH, MoACT, and COS1) were significantly

down-regulated, whereas some (MoRIC8, MAC1, CPKA, MgRAC1,

BUF1 and TPS1) were up-regulated (Table 1). The expression

patterns of these genes by SAGE were consistent with those by

qRT-PCR analysis (Table 1). Interestingly, most genes involved in

the cAMP/PKA pathway, including MAC1 and CPKA, were

significantly up-regulated by deleting MoSOM1 (Table 1), suggest-

ing that MoSom1 is a negative regulator of their transcription.

Recently, we have described two pathogenicity-related genes,

MoRIC8 and MoLDB1 [56,60]. MoRic8 interacts with Ga subunit

MagB and acts upstream of the cAMP/PKA pathway to regulate

infection-related morphogenesis. MoLdb1 is a morphogenetic

regulator and the Dmoldb1 mutants are similar phenotypes to the

Dmosom1 mutants. Therefore, we also generated SAGE libraries

from the Dmoric8 mutant Q-10 (3636867 tags) and the Dmoldb1

mutant AK58 (3615472 tags). Sixty most up- or down-regulated

genes in the SAGE library of Dmosom1, which were also detected in

the SAGE libraries of the Dmoric8 and Dmoldb1 mutants, were

presented in Table S4. As expected, the profile of gene expression

in the Dmoric8 mutant was very consistent with that in the Dmosom1

mutant SK27, because both MoRic8 and MoSom1 proteins

Figure 6. Intracellular localization of MoSom1-green fluorescent protein. (A) MoSom1 was localized to the nucleus. MoSom1 C-terminal
green fluorescent protein (GFP) fusion strategy was conducted to generate GFP expression transformants. One of the transformants, SC3, was used
for MoSom1 localization assay. Conidia and mycelia of SC3 were stained by DAPI (49-6-Diamidino-2-phenylinodle). The merged image of GFP and
DAPI staining showed that MoSom1-GFP localized in the nucleus. (B) The patterns of MoSOM1 expression and nuclear division during appressorium
development. Conidia of the strain SC3 was allowed to germinate on hydrophobic GelBond film surfaces. Photographs were taken at various time
intervals. (C) Expression of MoSOM1 during invasive growth. The assay was performed by placing 30 ml conidial suspension of SC3 on onion
epidermis. Photographs were taken at 48 h after incubation. Arrows indicate conidium, appressorium or invasive hypha inside cells. C = conidium;
A = appressorium; IH = invasive hypha. BF = bright field. All of bars = 10 mm.
doi:10.1371/journal.ppat.1002385.g006
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Figure 7. Functional analysis of putative LisH domain and nuclear localization sequences of MoSom1. (A) Sequence alignment of the
LisH domain between Magnaporthe oryzae MoSom1 and other regulatory proteins. Identical residues are shaded in black and conserved residues are
shaded in gray. Abbreviations correspond to species names. The fungal species, proteins and GenBank accession numbers are: Mo, M. oryzae
MoSom1_XP_362263; Af, Aspergillus fumigatus putative Som1_XP_746706; An, A. nidulans putative OefA_AAW55626; Gz, Gibberella zeae putative
Som1_XP_382826; Nc, Neurospora crassa putative Som1_AAF75278; Ss, Sclerotinia sclerotiorum putative Som1_XP_001598877; Ca, Candida albicans

Novel Regulators for Pathogenicity of M. oryzae

PLoS Pathogens | www.plospathogens.org 13 December 2011 | Volume 7 | Issue 12 | e1002385



appear to be involved in the cAMP/PKA signaling pathway.

Interestingly, the gene expression profiling of the Dmoldb1 mutant

was also consistent with that in Dmoric8 or Dmosom1 mutants,

although there were interesting differences such as the expression

of CPKA, TPS1 and MoACT, as shown in Table 1. These data

suggest that there may be a potential link between MoSom1 and

MoLdb1 in regulating infection-associated gene expression in M.

oryzae.

Discussion

In this study we identified three T-DNA insertional mutants,

YX-145, YX-1303 and YX-864, which were defective in multiple

steps of plant infection and morphogenesis by the rice blast fungus

Magnaporthe oryzae. HiTAIL-PCR analysis revealed the integrated

T-DNA in the mutants disrupted genomic regions corresponding

to genes of MoSOM1, MoCDTF1 and MoMSB2, respectively.

Targeted deletion of MoSOM1 or MoCDTF1 caused severe defects

in both fungal morphogenesis and virulence, which were

consistent with the corresponding T-DNA insertional mutants

(Figure 2–4). To our knowledge, both MoSOM1 and MoCDTF1

genes have not been functionally characterized previously in

phytopathogenic fungi. In addition, our results also showed that

MoMSB2 was required for plant infection-related morphogenesis

and virulence in M. oryzae, which is consistent with a very recent

study in which the gene was independently identified [49].

However, we also observed that deletion of MoMSB2 resulted in a

significant reduction in conidiation (Figure S4A), which was

distinct from the previous report.

MoSom1 and MoCdtf1 are key morphogenetic regulators. Like

most fungal pathogens, asexual reproduction and infection-related

development play key roles in the disease cycle in M. oryzae [39].

Flo8_AAQ03244; Sc, Saccharomyces cerevisiae Flo8_DAA07769. (B) Position of LisH domain and two predicted nuclear localization sequences (NLSs) in
MoSom1 protein. (C) Functional analysis of domains. Like Dmosom1 mutants, deletion of LisH domain of MoSOM1 resulted in pleiotropic defects. The
predicted NLS of PSKRVRL but not PKKK was required for MoSom1 localization to the nucleus and its function. The predicted NLS (PPKRKKP) was also
crucial for the function and localization of MoCdtf1 protein. +, normal asexual or sexual sporulation; -, not any conidia or perithecia. The LisH domains
were predicted at: http://smart.embl-heidelberg.de/; The NLSs were predicted at: http://psort.hgc.jp/form2.html.
doi:10.1371/journal.ppat.1002385.g007

Figure 8. MoSOM1 can complement S. cerevisae flo8 defects in haploid invasive growth and diploid pseudohyphal development. (A)
MoSOM1 could complement S. cerevisiae Dflo8 in invasive growth. The strains were grown on YPD at 30uC for 3 days. WT, Haploid wild-type (MY1384);
Dflo8, HLY850; Dflo8+pYES2, HLY850 carrying a pYES2 vector; Dflo8+MoSOM1, HLY850 expressing MoSOM1. (B) MoSOM1 could complement S.
cerevisiae Dflo8 in diploid pseudohyphal development. All strains were grown on SLAD at 30uC for 4 days except HLY852 was grown on SLAD with
200 mg/L URA (SIGMA). WT, diploid wild-type (CGx68); Dflo8, HLY852; Dflo8+pYES2, HLY852 carrying a pYES2 vector; Dflo8+MoSOM1, HLY852
expressing MoSOM1.
doi:10.1371/journal.ppat.1002385.g008
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Figure 9. MoSom1 interacts with MoStu1, MoCdtf1 and CpkA in M. oryzae. (A) Strong interaction between MoSom1 and MoStu1 (an APSES
protein) and MoCdtf1 in yeast two-hybrid assays. The Leu+ and Trp+ yeast transformants were assayed for growth on SD-Trp-Leu-His-Ade medium at
specified concentrations 16105, 16104, 16103, 16102 and 10 cells each 10 ml droplet. (B) Weak interaction between MoSom1 and CpkA in a yeast
two-hybrid assay with the presence of 5 mM cAMP. Transformants were tested for growth on SD-Trp-Leu-His-Ade medium with or without 5 mM
cAMP.
doi:10.1371/journal.ppat.1002385.g009

Figure 10. Differential gene expression analysis on transcriptomes of the Dmosom1 mutant and Guy11 strains. (A) qRT-PCR validated
the SAGE results. qRT-PCR was carried out to confirm the SAGE results through random selection of ten genes that were down-regulated in the
Dmosom1 mutant (SK27). The value of log2 ratio (Dmosom1/Guy11) is in bracket after gene ID number. The level of gene expression in Guy11 was
taken as 1 and the relative expression in SK27 mutant was normalized based on 1. Error bars represent the standard deviation. (B) Numbers of altered
genes expressing in Dmosom1 mutant. .2.0 or .1.5, genes whose expression were up-regulated as indicated by expression profiling and the log2
ratio (Dmosom1/Guy11) values were more than 2 or 1.5; ,22 or ,21.5, genes whose expression were down-regulated as indicated by expression
profiling and the log2 ratio (Dmosom1/Guy11) values were less than 22 or 21.5.
doi:10.1371/journal.ppat.1002385.g010
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Molecular genetic analysis of conidiation reveals several conidia-

tion-associated genes that have distinct effects on control of

conidiation and conidial morphology. The con7 mutant, for

instance, produces a mixture of normal and aberrantly shaped

conidia unable to form appressorium, and is non-pathogenic [61].

However, very few mutants have been identified that have

completely lost the ability to form conidia in M. oryzae. The

MoHOX2 gene encodes a putative homeobox transcription factor.

Deletion mutants of MoHOX2 completely abolished asexual

sporulation, but the mutants were still pathogenic through

hypha-driven appressoria [62,63]. Recently, we have reported

that MoLDB1 gene encoding a protein with a putative LIM

binding domain is necessary for fungal morphogenesis [60].

Deletion mutants of MoLDB1 completely lost the ability to

differentiate spores, including meiotically generated ascospores,

and were non-pathogenic. The mutants were also unable to

differentiate conidiophores or appressoria from mycelium [60].

One of the most interesting findings we report here is that deletion

either MoSOM1 or MoCDTF1 completely blocked asexual/sexual

sporulation and appressorium development from mycelium and

the mutants were non-pathogenic. Interestingly, similar to

MoLDB1, both MoSOM1 and MoCDTF1 are also required for

efficient hyphal growth, melanization and hydrophobicity. Fur-

thermore, we did not observe conidiophores in the mutants,

indicating that the defect in conidiation of the mutants is

associated with lack of conidiophore formation rather than

subsequent conidiogenesis.

M. oryzae MoSom1 is homologous with Aspergillus nidulans OefA

and the hypothetical proteins from other related fungal species.

Among these proteins in filamentous fungi, only A. nidulans OefA

has been investigated [64]. OEFA has been identified by gene

silencing and over-expression approaches and targeted deletion of

OEFA causes a ‘‘fluffy’’ growth phenotype due to its development

of undifferentiated aerial hyphae [64]. However, the detailed role

of OefA in signaling pathways has not been characterized. In

yeasts, previous studies have shown that Saccharomyces cerevisiae Flo8

is critical for filamentous growth and functions downstream of the

cAMP-PKA pathway [18,19,23]. Similarly, Candida albicans Flo8 is

also essential for hyphal development and virulence and functions

downstream of the cAMP-PKA pathway [28]. Since MoSom1

showed only 14.76% and 14.93% amino acid identity with S.

cerevisiae Flo8 and C. albicans Flo8, respectively, this makes it

difficult to find orthologs of Flo8 from the genomes of filamentous

fungi by BLAST search. As a consequence of this, a recent report

mentioned that the M. oryzae genome, including many other

filamentous ascomycetes, may lack distinct orthologs of Flo8 [65].

However, we have shown in this report that MoSom1 functions

downstream of the cAMP/PKA pathway, in a similar manner to

yeast Flo8. Several lines of evidence support such a view. First,

MoSOM1 can complement a S. cerevisiae flo8 mutant in its ability to

carry out haploid invasive and diploid pseudohyphal growth.

Second, a strong interaction between MoSom1 and MoStu1 and a

weak interaction between MoSom1 and CpkA was detected by

yeast two-hybrid analysis. Thirdly, MoSOM1 expression was

significantly down-regulated by deletion of MAC1 or CPKA, the

two key components of the cAMP/PKA pathway, and finally, the

defects of Dmosom1 mutants could not be restored by supplemen-

tation with exogenous cAMP.

MoSom1 directly interacted with MoStu1 in a yeast two-hybrid

assay, and might therefore act as a regulator of MoStu1 to regulate

fungal morphogenesis in M. oryzae. In C. albicans, Efg1, an APSES

transcription factor, is essential for regulating morphogenesis [66].

A previous report has demonstrated that C. albicans Flo8 interacts

with Efg1 to regulate expression of hypha-specific genes and genes

important for virulence [28]. In M. oryzae, MoStu1 is also an

APSES transcription factor [31]. Deletion of MoSTU1 results in a

reduction of mycelial growth and conidiation and a delay in

appressorium formation, and deletion mutants are non-pathogenic

[31]. Consistently, we also found that a strong interaction between

M. oryzae MoSom1 and MoStu1 in a yeast two-hybrid assay,

indicating that MoSom1 may act as a regulator of MoStu1 to

regulate fungal morphogenesis. However, because of the different

Table 1. SAGE analysis for several known pathogenicity-related genes.

Log2 Ratio

Gene_ID Description Dmosom1/WT Dmoric8/WT Dmoldb1/WT Reference

MGG_10315 Class I hydrophobin (Mpg1) 211.06(0)(a) 29.80(b) 21.47(0) 211.23(1.13E-07) [58]

MGG_14008 Regulator of G-protein signaling (MoRic8) 2.04(3.00E-11) 2.06 ND(c) ND [56]

MGG_09898 Adenylate cyclase (Mac1) 5.03(0.0001237) 5.25 2.83(0.0001989) ND [12]

MGG_06368 Catalytic subunit of the cAMP-dependent
protein kinase (CpkA)

2.04(3.87E-09) 2.33 ND 22.76(0.0002804) [13,14]

MGG_02731 Rho-family GTPases (MgRac1) 1.85(0) 1.80 0.77(1.41E-11) ND [82]

MGG_02252 Tetrahydroxynaphthalene reductase (Buf1) 1.55(0) 1.61 3.59(4.01–197) 3.17(5.31E-132) [83]

MGG_02531 Minor extracellular protease (MoVpr1) 29.95(3.11E-11) 29.21 23.60(7.09E-05) 24.17(0.0001121) [71]

MGG_03860 Trehalose-6-phosphate synthase (Tps1) 1.55(1.29E-13) 1.58 ND 20.97(3.07E-06) [84]

MGG_01662 4-aminobutyrate aminotransferase (MoAat1) 24.84(6.21E-23) 25.16 21.37(4.27E-07) 22.04(6.58E-10) [71]

MGG_05344 Snodprot1 homolog (Msp1) 25.13(0) 25.02 24.81(0) 23.36(2.31E-13) [85]

MGG_01230 Succinate-semialdehyde dehydrogenase (MoSsadh) 22.68(3.44E-110) 22.35 0.48(2.16E-12) ND [71]

MGG_15157 Acetyltransferase (MoAct) 21.77(1.99E-13) 21.70 20.77(0.0001066) 0.69(6.19E-06) [71]

MGG_03977 Hypothetical protein-conidiophore stalk-less1
(Cos1)

23.62(4.05E-19) 23.81 ND 22.79(2.13E-07) [86]

(a)p-Value is indicated in brackets.
(b)Gene expression determined by quantitative RT-PCR.
(c)ND, no data available.
doi:10.1371/journal.ppat.1002385.t001
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phenotypes of Dmosom1 and Dmostu1 mutants, it seems reasonable

to predict that MoSom1 also interacts with other transcription

factors in addition to MoStu1.

In a previous study, a direct interaction between S. cerevisae Flo8

and Tpk2 proteins was observed using a modified yeast two-hybrid

system carried out in the presence of exogenous cAMP [23]. We

found a weak interaction between M. oryzae MoSom1 and CpkA

but only when the selection medium was supplemented with

5 mM exogenous cAMP (Figure 9B). This analysis makes a

prediction possible that directly places MoSom1 downstream of

the cAMP/PKA signaling. In S. cerevisiae, phosphorylation of Flo8

by Tpk2 is required for Flo8 interaction with the FLO11 promoter

both in vivo and in vitro [23]. Since multiple PKA phosphorylation

sites were also predicted in the MoSom1 protein (see Figure S8B),

therefore, in addition to transcriptional regulation, it is possible

that MoSom1 is activated by serine/threonine phosphorylation by

CpkA to regulate genes required for fungal morphogenesis and

pathogenicity. Additionally, we noted that there were obvious

different phenotypes between Dmosom1 and DcpkA. It is therefore

also possible that MoSom1 may be activated by additional

regulators from different signaling pathways.

LisH domains exist in various eukaryotic proteins and are

required for regulating microtubule dynamics, either by mediating

dimerization, or by binding cytoplasmic dynein heavy chain or

microtubules directly [67]. Like yeast Flo8, M. oryzae MoSom1 has

a LUFS domain with a conserved LisH motif at its N-terminus

(Figure S9A). Multiple alignment analyses indicated that the LisH

domain is highly conserved in fungi (Figure 7A). We found that the

LisH domain is required for the function of MoSom1 in M. oryzae,

because deletion of the LisH domain in MoSOM1 partially

impaired protein localization to the nucleus and resulted in

similar phenotypes to the Dmosom1 mutant (Figure 7C). It is

possible that the LisH domain may therefore mediate cytoskeletal

interactions necessary for transport of MoSom1 to the nucleus. In

S. cerevisiae Flo8 has been localized to the nucleus [18]. Consistent

with this, our results also showed that MoSom1 localized to the

nucleus and that the predicted NLS of PSKRVRL is important for

the function and transportation of MoSom1 protein from the

cytoplasm to the nucleus.

In this study, we also found the expression of M. oryzae MoSOM1

was significantly down-regulated by deletion of either MAC1 or

CPKA (Figure S10) , which encode the key components of the

cAMP/PKA pathway and, interestingly, several genes involved in

the cAMP/PKA pathway were significantly up-regulated after

deletion of MoSOM1 (Table 1). These data are also consistent with

MoSom1 acting downstream of the cAMP/PKA pathway.

When considering these results together, we conclude that

MoSom1 is likely to act as a transcriptional regulator that

functions downstream of the cAMP/PKA pathway to regulate

fungal morphogenesis and pathogenicity.

M. oryzae appears to possess over 400 transcription factor genes,

but only a minority of them have so far been characterized,

including MST12 [68], CON7 [61], MIG1 [69], MoHOX8 [62],

COM1 [70], MoAP1 [71] and MoMCM1 [72], which are required

for fungal morphogenesis or plant infection by M. oryzae. In this

study, we identified a novel transcription factor, MoCdtf1, which is

essential for sporulation, apressorium formation and virulence.

However, DmoCdtf1 mutants were able to cause some disease on

wounded leaves or roots, although the disease severity was

significantly reduced compared with the isogenic wild-type strain

or complemented strains (Figure 2). These results were consistent

with a recent report, in which an insertional mutant M558 was

presented in which the T-DNA was integrated into the promoter

of MoCDTF1 and also showed impairment in conidiation and

pathogenicty, but still infected rice roots [73]. MoCdtf1 has a

putative NLS sequence and a conserved zinc finger structure,

which are important for MoCdtf1 protein localized to nucleus and

for regulating plant infection-related mophorgenesis. Like Mo-

SOM1, expression of M. oryzae MoCDTF1 was significantly down-

regulated by deletion of either MAC1 or CPKA (Figure S10). More

interestingly, we found that MoCdtf1 physically interacts with

MoSom1 in a yeast two hybrid assay (Figure 9A). These data

suggest that M. oryzae MoCdtf1 may function as a transcription

factor that acts downstream of the cAMP/PKA pathway.

The importance of MoSom1 to infection-related development was

underlined by transcriptional profile analysis using SAGE, which

demonstrated that a large set of genes are differentially regulated in a

Dmosom1 mutant compared to a wild type M. oryzae strain. Significantly,

morphogenetic genes, such as the MPG1 hydrophobin gene and the

BUF1 melanin biosynthesis gene, as well as physiological regulators

such as the TPS1 trehalose-6-phosphate synthase gene were among

those differentially regulated. This is consistent with MoSom1 affecting

processes pivotal to the formation and function of appressoria and

acting downstream of the cyclic AMP signaling pathway, which is

necessary for infection-related development in rice blast. The

pleiotropic effects of the Dmosom1 mutation on mycelial growth rate

do, however, suggest that some of the observed major changes in gene

expression may be a consequence of the slower growth rate and

aberrant mycelial morphology of Dmosom1 mutants. Dissecting specific

families of genes regulated by the moSom1 pathway during

appressorium development will therefore be important in elucidating

the underlying biological processes regulated by this signaling

mechanism.

In summary, based on results from this report, we have developed a

model of the cAMP/PKA signaling pathway in M. oryzae that is shown

in Figure 11. Surface recognition and initiation of appressorium

formation is regulated by the pathway. Moreover, the cAMP/PKA

pathway is also involved in regulation of hyphal growth, asexual/sexual

sporulation and invasive growth in host tissues. Free CpkA may

activate MoSom1 protein to regulate appressium turgor generation

through MoStu1 and to control sporulation and appressorium

formation through MoCdtf1. However, it is also possible that

additional transcription factors are regulated by MoSom1 to control

these developmental processes. The model will allow us to test the

wider roles of the cAMP/PKA pathway in regulating fungal

morphogenesis and plant infection in M. oryzae in future.

Materials and Methods

Strains, culture conditions and molecular manipulations
of DNA and RNA

All mutants described in the present study were generated from

the Magnaporthe oryzae wild-type strain Guy11 [74], and are listed in

Table S1. Standard growth and storage procedures for fungal

strains were performed, as described previously [58]. A. tumefaciens

AGL1 was used for T-DNA insertional transformation. Escherichia

coli strain DH-5a was used for routine bacterial transformations

and maintenance of various plasmids in this study. Southern blot

analysis was performed by the digoxigenin (DIG) high prime DNA

labeling and detection starter Kit I (Roche, Mannheim, Germany).

General procedures for nucleic acid analysis followed standard

protocols [75].Total RNA was extracted from mycelium of M.

oryzae using the SV Total RNA Isolation System (Z3100; Promega

Corp.) according to the manufacturer’s instructions.

Construction of vectors and fungal transformation
For construction of the gene replacement vector pMoSOM1-

KO (Figure S3C), 1.4 kb (left border) and 1.2 kb (right border)
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flanking sequences of the MoSOM1 gene locus were amplified

using primer pairs of 3F/4R and 5F/6R (Table S2; Figure S3C)

and cloned sequentially into pGEM-T easy vectors to generate

pGEM-145L and pGEM-145R, respectively. The 1.4 kb HPH

gene cassette, which encodes hygromycin phosphotransferase

under control of the A. nidulans TrpC promoter [76], was

amplified with primers HPH-Kpn-F and HPH-Xba-R (Table

S2) using pCB1003 as a template and clone into pGEM-T easy

vectors to give pGEM-HPH. The pGEM-HPH was digested with

KpnI and ApaI and inserted the fragment from pGEM-145R with

the same digestions to generate pGEM-HPH-R. The pMoSOM1-

KO was constructed by insertion SpeI and XbaI fragment from

pGEM-145L into corresponding site of pGEM-HPH-R. To

construct complementation vector pMoSOM1-GFP, a 4.3 kb

fragment including 2.8 kb MoSOM1 gene-coding sequence and a

1.5 kb promoter region were amplified using primers 145H-Nde-F

and 145H-Hind-R (Table S2) and then cloned into pGEM-T easy

vectors to produce pGEM-SOM. The pMoSOM1-GFP was

generated by ligation of pGEM-SOM with the 1.5 kb GFP allele,

which was amplified using primers GFP-Hind-F and GFP-Xho-R

(Table S2). The pMoSOM1-DKO vector was constructed by

replacing the HPH of pMoSOM1-KO with a 0.94 kb bar gene

cassette encoding phosphinothricin acetyl transferase under

control of the A. nidulans TrpC promoter, which was amplified

with primers Bar-Xba-F and Bar-Kpn-R (Table S2) using

pMLH21-bar [77] as a template. The MoSOM1 over-expression

vector, pOE-MoSOM1, was constructed by insertion the 4.3 kb

fragment (2.8 kb MoSOM1 gene-coding sequence and 1.5 kb GFP

cassette) , which was amplified with the primers 145OE-Xho-F

and GFP-Xho-R (Table S2) using the pMoSOM1-GFP as a

template, into the corresponding site of pCB1532 with the A.

nidulans trpC promoter.

A similar strategy was used to construct the gene replacement

vector pMoCDTF1-KO. About 1.2 kb (left border) and 1.5 kb

(right border) flanking sequences MoCDTF1 gene locus were

amplified using primer pairs of 7F/8R and 9F/10R (Table S2;

Figure S3E) and cloned sequentially into pGEM-T easy vectors to

generate pGEM-1303L and pGEM-1303R, respectively. The

pGEM-1303R was digested with SacI and XbaI and the released

fragment was inserted into the corresponding site of pGEM-HPH

to produce pGEM-1303HR. The pGEM-1303HR was digested

with KpnI and ApaI and then inserted with the fragment liberated

from pGEM-1303L to generate pMoCDTF1-KO. To construct

complementation vector pMoCDTF1-GFP, a 5.7 kb fragment

Figure 11. Model of the cAMP/PKA signaling pathway in M. oryzae. In this model, the rice blast fungus responds to external physical cues
from the rice leaf surface that are detected by receptors such as Pth11 and are transmitted via the heterotrimeric G-protein leading to Mac1 adenylate
cyclase activation. This activates the cyclic AMP dependent protein kinase A, CpkA, which in turn acts upstream of MoSom1, a transcriptional
regulator that acts through a set of transcription factors including MoStu1, MoCdtf1 and others to bring about infection-assocaited development.
doi:10.1371/journal.ppat.1002385.g011
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including 4.1 kb MoCDTF1 gene-coding sequence and a 1.6 kb

promoter region were amplified using primers 1303H-Aat-F and

1303H-Kpn-R (Table S2) and then cloned into pGEM-T easy

vectors to produce pGEM-CDTF. The pMoCDTF1-GFP was

generated by ligation of pGEM-CDTF with the 1.5 kb GFP allele,

which was amplified using primers GFP-Kpn-F and GFP-Xho-R

(Table S2).

To construct the MoMSB2 gene replacement vector pMoMSB2-

KO (Figure S3A), a 4.2 kb fragment spanning the MoMSB2 locus

was amplified with primers 1F and 2R (Table S2) and cloned into

pGEM-T easy vector (Promega, Madison, WI, U.S.A.), and a

1.7 kb Xho I and Spl I fragment containing the majority of the

MoMSB2 ORF was removed and replaced sequentially with the

1.4 kb HPH gene cassette amplified with primers HPH-Spl-F and

HPH-Xho-R (Table S2) using pCB1003 as a template. For

construction of complementation vector pMoMSB2-HB, a 4.2 kb

fragment including 2.4 kb MoMSB2 gene-coding sequence and a

1.8 kb promoter region were amplified using primers 864H-Sal-F

and 864H-Spe-R (Table S2) and then cloned into pGEM-T easy

vectors to produce pMoMSB2-HB.

For deletion of the MAC1 gene, the gene deletion vector

pMoMAC1-KO was generated using a similar strategy to

pMoMSB2-KO. A 4.8 kb fragment spanning the MoMAC1 locus

was amplified with primers MAC-KO-FP/MAC-KO-RP (Table

S2) and cloned into pGEM-T easy vector to give pGEM-MAC1.

The HPH gene cassette was amplified with the primers HPH-

Hind-F and HPH-Hind-R (Table S2) using PCB1003 as a

template. The pMoMAC1-KO was constructed by insertion

HPH gene cassette with HindIII ends into the corresponding

restriction site of pGEM-MAC1. The vector for deletion of MAGA

gene was kindly provided by professor Hao Liu, Tianjin University

of Science and Technology.

The resulting vectors were linearized and transformed into M.

oryzae Guy11 protoplasts to generate gene null mutants, respec-

tively, as previously described [58]. Together with pCB1532 [78]

vectors, the complementation vectors, pMoSOM1-GFP,

pMoCDTF1-GFP and pMoMSB2-HB, were used to co-transform

into their corresponding mutants, respectively. The vector pOE-

MoSOM1 was used to transform Dmac1 and DcpkA mutants to

generate strains that MoSOM1 was over-expressed, respectively.

GFP fluorescence was observed using a Leica TCS SP5 inverted

confocal laser scanning microscope (Leica, Wetzlar, Germany).

Construction of MoSOM1DLisH, MoSOM1DPKKK,
MoSOM1DPSKRVRL and MoCDTF1DPPKRKKP mutants

Three rounds of PCR amplification were carried out for the

construction of pMoSOM1DLisH-GFP described as follows. First,

1.6 kb and 4.0 kb fragments were amplified with the primer pairs

of 145H-Nde-F/LisH-R and LisH-F/GFP-Xho-R (Table S2)

using pMoSOM1-GFP as a template, respectively. Second, the

two PCR products were mixed and performed PCR reaction (10

reaction cycles) without adding primers. Third, a 5.6 kb fragment

containing 1.5 kb native MoSOM1 promoter, 2.6 kb MoSOM1

gene-coding sequence (without Lish domain) and 1.5 kb GFP

cassette was amplified by the primers 145H-Nde-F and GFP-Xho-

R (Table S2) using the mixture as a template. Finally, the

pMoSOM1DLisH-GFP was generated by insertion of the 5.6 kb

fragment into pGEM-T easy vector.

A similar strategy was used to construct pMoSOM1DPKKK-GFP

and pMoCDTF1DPPKRKKP-GFP vectors. The pMoSOM1DPKKK-

GFP was generated from pMoSOM1-GFP using primer pairs

of 145H-Nde-F/PKKK-R and PKKK-F/GFP-Xho-R (3.7 kb

and 2.1 kb PCR products, respectively), whereas the

pMoCDTF1DPPKRKKP-GFP was generated from pMoCDTF1-

GFP using primer pairs of 1303H-Aat-F/1303CD-R and 1303CD-

F/GFP-Xho-R (4.8 kb and 2.4 kb PCR products, respectively). The

pMoSOM1DPSKRVRL-GFP was constructed by self-ligation of the

PCR products amplified with primers PSK-F and PSK-R (Table S2)

using pMoSOM1-GFP as a template. The primers used for the

constructions were listed in Table S2.

The pMoSOM1DLisH-GFP, pMoSOM1DPKKK-GFP, pMo-

SOM1DPSKRVRL-GFP were used to transform the Dmosom1

mutants to generate MoSOM1DLisH, MoSOM1DPKKK, Mo-

SOM1DPSKRVRL, respectively. The pMoCDTF1DPPKRKKP-GFP

was used to transform Dmocdtf1 to produce MoCDTF1DPPKRKKP.

Pathogenicity assays
For cut-leaf assays, fragments were cut from the leaves of 10-

day-old barley cv Golden Promise and 14-day-old rice cv CO-39

seedlings, both highly susceptible toward M. oryzae, and placed in

plastic plates containing wetted filters. Mycelium from 2-day-old

liquid CM cultures at 25uC was placed onto leaf sections and the

plates were incubated in a cycle of 12 h of light and 12 h of dark at

25uC. Wounded leaves were prepared by removing the surface

cuticle by abrasion with an emery board as described previously

[79]. For spray-inoculation assays, conidial suspensions were

diluted in 0.2% gelatin to 16105 conidia ml21 for rice infections

using rice cv. CO-39. Conidia were spray-inoculated using an

artist’s airbrush onto 14-day-old plants. Rice seedlings were

incubated in plastic bags for 24 h to maintain high humidity and

then transferred to controlled environment chambers at 25uC and

90% relative humidity with illumination and 14 h light periods.

For root infection assays, rice seeds were germinated for 3 days at

28uC and then transferred to plates contained 2% water agar.

Mycelial plugs were carefully placed rice roots. Each test was

repeated three times. Disease lesions were examined and

photographed after 5 days of incubation.

Analysis of fungal growth, sporulation, appressorium
formation and genetic crosses

Vegetative growth was assessed by measurement of colony

diameter on plate cultures of M. oryzae grown on CM. For

mycelium dry weight assays, the same size blocks (161.5 cm2) cut

from 7-day-old CM cultures were blended and inoculated in flasks

containing 150 ml liquid CM medium. The flasks were incubated

at 25uC for 2 days (150 rpm). After incubation, the mycelia

produced in liquid cultures were filtered and washed. The dry

weight of each mycelium was determined after drying at 60uC for

24 h. Three replicates of each treatment were performed, and the

experiment was repeated three times.

Conidial development was assessed by harvesting conidia from

the surface of 10-day-old plate cultures and by determining the

concentration of the resulting conidial suspension using a

haemocytometer. Appressorium development was assessed by

allowing conidia at a concentration of 16104 conidia ml21 to

germinate on hydrophobic GelBond films or onion epidermis and

incubating them in a humid environment at 25uC. For

appressorium formation from the tips of mycelia, mycelia of the

wild-type strain Guy11 and mutant strains were harvested from

48 h liquid CM cultures, and the mycelium fragment suspensions

were placed on hydrophobic GelBond film surfaces to allow

appressorium development. Appressorium formation was observed

after 24 h incubation at 25uC in darkness. Fertility assays were

carried out by pairing Guy11 (MAT1-2) and tested strains with

standard tester strain TH3 (MAT1-1) on oatmeal agar (OMA)

plates, as described previously [60]. Each test was repeated three

times.
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Quantitative RT-PCR analysis
Total RNA was utilized for synthesis of the first strand cDNA

using the PrimeScriptTM 1st Strand cDNA Synthesis Kit

(D6110A, TaKaRa, Tokyo). The resultant cDNA was used as a

template for quantitative RT-PCR (qRT-PCR). qRT-PCR was

performed with a SYBR Green Realtime PCR Master Mix Kit

(QPK-201, TOYOBO, Osaka, Japan) using an iCycler iQTM

Multicolor Real-Time PCR Detection System (Bio-Rad, Munich,

Germany). All qRT-PCR reactions were conducted in triplicates

for each sample and the experiment was repeated three times. M.

oryzae beta-tubulin gene (MGG_00604) amplified with the primer

pairs of BT-F/BT-R was used as an endogenous reference. The

abundance of the gene transcripts was calculated relative to this

control using the 22DDCT method [80]. All the primers used for

qRT-PCR were listed in Table S2.

Yeast complementation analysis
Yeast complementation was carried out as described previously

[28]. The full length cDNA of MoSOM1 was amplified with

primers SOM-E-F and SOM-Xh-R and cloned into pYES2 vector

to generate pYES2-SOM1. The yeast expression vector pYES2-

SOM1 was transformed into the haploid mutant HLY850 and the

diploid mutant HLY852 of S. cerevisiae, respectively. The

transformants grown on SD-Ura plates were selected to test the

ability of invasive growth on YPD plate and the pseudohyphal

growth on SLAD plate supplemented with galactose. The yeast

strains, MY1384 (MATa wild type), HLY850 (MATa flo8::hisG

ura3-52), CGx68 (MATa/a wild type) and HLY852 (MATa/a
flo8::hisG/flo8::hisG ura3-52/ura3-52), were kindly provided by

Professor Jiangye Chen of Shanghai Institute for Biological

Sciences, Chinese Academy of Sciences.

Yeast two-hybrid (Y2H) assay
The Y2H assay was conducted according to the BD

Matchmaker Library Construction & Screening Kits instructions

(Clontech, PaloAlto, CA, U.S.A.). The full-length cDNA of

MoSOM1, MoCDTF1, MoSTU1, MoLDB1 and CPKA was amplified

with the primer pairs SOM-E-F/SOM-Xh-R, 1303YTH-E-F/

1303YTH-E-R, STU-E-F/STU-E-R, LDB-E-F/LDB-S-R and

CPK-F/CPK-R (Table S2), respectively. The cDNA of MoSOM1

was cloned into pGADT7 as the prey vector pGADT7-MoSOM1

and the other cDNAs were cloned into pGBKT7 as the bait

vector, respectively. The resulting pGADT7-MoSOM1 and each

bait vector were co-transformed into yeast strain AH109. The

Leu+ and Trp+ yeast transformants were isolated and assayed for

growth on SD-Trp-Leu-His-Ade medium. Yeast strains for

positive and negative controls were from the Kit.

Serial analysis of gene expression (SAGE)
The M. grisea wild-type strain Guy11 and the mutants, SK27

(Dmosom1), AK58 (Dmoldb1) [60] and Q-10 (Dmoric8) [56], were

cultured in liquid CM medium at 28uC for 48 h in the dark (at

200 rpm). The mycelium of these strains was harvested, and total

RNA was extracted using the SV Total RNA Isolation System

(Z3100; Promega) according to the manufacturer’s instructions.

The RNA samples were then sent to Beijing Genomics Institute

(BGI; Huada) for serial analysis of gene expression (SAGE).

Supporting Information

Figure S1 Genomic DNA flanking the integrated T-
DNAs in YX-145, YX-864 and YX-1303 was amplified by
hiTAIL-PCR. High-efficiency thermal asymmetric interlaced

polymerase chain reaction (hiTAIL-PCR) was performed as

previously described [81]. The primers used for hiTAIL-PCR

were shown in Table S2. The genomic DNAs flanking right sites of

the integration T-DNAs of the YX-145, YX-864 and YX-1303

mutants were obtained from the third round products, respective-

ly. The arrows indicated the PCR products were harvested for

cloning and sequencing. M, 250 bp marker (Takara).

(TIF)

Figure S2 Phylogenetic analysis of Magnaporthe Mo-
Som1 and MoCdtf1 with the homologs from other fungal
species. (A) Phylogenetic tree of Magnaporthe MoSom1 and 14

homologs from other fungal species was constructed by observed

divergency distance method in the program DNAMAN. Numbers

at the nodes in the rooted tree represent bootstrapping value on

1000 replications. Abbreviations and numbers correspond to

species names and GenBank accession numbers, respectively. Af,

Aspergillus fumigatus; An, A. nidulans; Ang, A. niger; Ca, Candida

albicans (Flo8); Cg, Chaetomium globosum; Gc, Grosmannia clavigera; Gg,

Glomerella graminicola; Gz, Gibberella zeae; Ma, Metarhizium acridum;

Mo, Magnaporthe oryzae (MoSom1); Nc, Neurospora crassa; Nh, Nectria

haematococca; Pa, Podospora anserine; Pm, Penicillium marneffei; Va,

Verticillium albo-atrum. (B) Phylogenetic tree of Magnaporthe MoCdtf1

and 15 homologs from other species was constructed as described

above. Af, Aspergillus fumigatus; An, A. nidulans; Ang, A. niger; Ao, A.

oryzae; At, A. terreus; Bf, Botryotinia fuckeliana; Cg, Chaetomium globosum;

Gg, Glomerella graminicola; Gz, Gibberella zeae; Mo, Magnaporthe oryzae

(MoCdtf1); Nc, Neurospora crassa; Nh, Nectria haematococca; Pa,

Podospora anserine; Pm, Penicillium marneffei; Ss, Sclerotinia sclerotiorum;

Va, Verticillium albo-atrum. The bar indicates 0.05 distance units.

DNAMAN version 5.2.2 program was used for alignment and

phylogenetic tree constrution.

(TIF)

Figure S3 Targeted gene replacement of MoMSB2,
MoSOM1 and MoCDTF1. (A) Construction of the vector

pMoMSB2-KO and targeted gene replacement of MoMSB2. (B)

Southern blot analysis. Genomic DNA was digested with HindIII/

SacI and probed with a 0.9 kb fragment amplified with the primers

P864-F and P864-R. Lane 1, EM3 (ectopic); lane 2 and 3, MK9

and MK12 (Dmomsb2); lane 4, Guy11. (C) Construction of the

vector pMoSOM1-KO and targeted gene replacement of

MoSOM1. (D) Southern blot analysis. Genomic DNA was digested

with SalI and probed with a 1.2 kb fragment amplified with the

primers 5F and 6R. Lane 1, Guy11; lane 2 to 4, SK5, SK21 and

SK27 (Dmosom1); lane 4, ES16 (ectopic). (E) Construction of the

vector pMoCDTF1-KO and targeted gene replacement of

MoCDTF1. (F) Southern blot analysis. Genomic DNA was digested

with BamHI and probed with a 1.0 kb fragment (top) amplified

with the primers P1303-F and P1303-R and a 1.4 kb HPH cassette

(bottom), respectively. Lane 1, Guy11; lane 2, EC14 (ectopic);

lanes 3 and 4, CTK2 and CTK15 (Dmocdtf1). (G) Construction of

the double KO vector pMoSOM1-DKO and targeted gene

replacement of MoSOM1 in the Dmocdtf1 mutant (CTK15). (H)

Dmosom1Dmocdtf1 mutants confirmed by PCR analysis. The

MoSOM1 coding sequence were amplified with primers 145-F

and 145H-Hind-R in CTK15 (Dmocdtf1) and ESC4, but absent in

D-3 and D-9 (top). A bar gene cassette could be amplified with

primers Bar-Xba-F and Bar-Kpn-R from all other strains, except

CTK15 (bottom). Lane 1, CTK15 (Dmocdtf1); lane 2 and 4, D-3

and D-9 (Dmosom1Dmocdtf1); lanes 3, ESC4 (transformant with

ectopic integration of pMoSOM1-DKO). (I) Dmosom1Dmocdtf1

mutants confirmed by RT-PCR analysis. 0.2 kb PCR products

were amplified with primers 145Q-F and 145Q-R for CTK15

(Dmocdtf1) and ESC4, but absent for D-3 and D-9 (top). A 0.2 kb

beta-tubulin gene (MGG_00604.6) fragment could be amplified
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from all the strains with primers BT-F and BT-R (bottom).

A = ApaI; K = KpnI; S = SalI; Sc = SacI; Sp = SpeI; Spl = SplI;

X = XbaI; Xh = XhoI. Asterisk represents restriction sites intro-

duced or derived from vectors.

(TIF)

Figure S4 MoMSB2 is required for conidiation, appres-
sorium formation and pathogenicity in Magnaporthe
oryzae. (A) Bar chart showing the conidial production of various

strains. Error bars represent the standard deviation. The YX-864

and MK12 (Dmomsb2) mutants were reduced in conidiation on

CM medium. Asterisks indicate a significant difference of

conidiation between Guy11 and the mutants (P,0.01). Guy11,

the wild type strain; YX-864, the T-DNA insertional mutant;

MK12, Dmomsb2; EM3 (ectopic); MC5 (Dmomsb2+MoMSB2). (B)

Bar chart showing appressorium formation. Conidial suspension

was dropped on GelBond films to allow appressorium formation

and incubated at 25uC for 24, 48, and 72 h. Percentage of conidia

to form appressoria was calculated under a microscope. The

Dmomsb2 mutant (MK12) was delayed and reduced to form

appressoria. Asterisks indicate a significant difference of appres-

sorium formation between Guy11 and the mutants (P,0.01). (C)

Guy11 formed numerous melanized appressoria at 24 h, while the

MK12 mutant could hardly produce appressoria at this stage.

However, the MK12 mutant could form some appressoria for

48 h and 72 h incubation. Scale bar = 10 mm. (D) Pathogenicity

assays. Barley segments were inoculated with the conidial drops

(10 ml per drop; 16105 conidia/ml). a = unwounded leaf and

b = abraded leaf. Rice leaves were spray-inoculated with the

conidia at a concentration 16105 conidia/ml. H2O containing

0.2% gelatin was used as the control. Photographs were taken at 5

days after inoculation.

(TIF)

Figure S5 Growth patterns of the Dmosom1 and
Dmocdtf1 mutants on various media. The Dmosom1

(SK27) and Dmocdtf1 (CTK15) mutants reduced in vegetative

growth and mycelium pigmentation on different media, CM, MM,

PDA and OAM.

(TIF)

Figure S6 Intracellular localization of MoCdtf1-green
fluorescent protein. (A) Expression of Magnaporthe oryzae

MoCDTF1 in hyphae of the strain CTC1, which carries a single

GFP-carboxy translational fusion of MoCDTF1. The GFP

fluorescence was observed in the nucleus. (B) The patterns of

MoCDTF1 expression and nuclear division during appressorium

development in M. oryzae. Conidia of the strain CTC1 was allowed

to germinate on hydrophobic GelBond film surfaces. Photographs

were taken at various time intervals. BF = bright field. Scale

bars = 10 mm.

(TIF)

Figure S7 The phenotypes of Dmosom1 mutants are
restored by re-introduction of MoSOM1 gene. (A) The

colony morphology of the complementation transformant SC3

(Dmosom1+MoSOM1) was similar with the wild type strain Guy11.

All defects of the Dmosom1 mutant (SK27), including vegetative

growth, mycelium pigmented melanization, conidiation and

appressorium formation, were overcome by re-introduction of

MoSOM1 gene. +, normal; +/2, significantly reduced; 2, not any.

(B) Conidia from SC3 geminated and formed numerous

appressoria on onion epidermis. Scale bar = 10 mm.

(TIF)

Figure S8 Putative spliced isoforms of Magnaporthe
oryzae MoSom1. (A) The full coding sequence of MoSOM1 was

amplified with primers SOM-E-F and SOM-Xh-R and se-

quenced. Six spliced isoforms of MoSom1 were found. I,

MGG_04708; I2-6, amino acid sequence of MoSom1 with minor

variations as indicated. (B) The protein sequence of MoSom1. The

missed or extra amino acid residues in the MoSom1 isoforms were

marked. Several predicted PKA phosphorylation sites (Website:

http://mendel.imp.ac.at/sat/pkaPS/) were underlined.

(PPT)

Figure S9 Sequence alignments of LUFS and ZnF_C2H2
domains from several fungal species. (A) Sequence

alignment of the LUFS (containing LisH) domain. Identical residues

are shaded in black and conserved residues are shaded in gray.

ScFlo8, Saccharomyces cerevisiae Flo8 (DAA07769); CaFlo8, Candida

albicans Flo8 (AAQ03244); MoSom1, Magnaporthe oryzae MoSom1

(XP_362263). (B) Sequence alignment of the ZnF_C2H2 domain.

Mo, M. oryzae XP_001413674; Va, Verticillium albo-atrum

XP_003006450; Gz, Gibberella zeae XP_386829; Pm, Penicillium

marneffei XP_002144056; An, Aspergillus nidulans XP_661814.

(PPT)

Figure S10 qRT-PCR analysis of MoSOM1 and
MoCDTF1 expression in several mutants. Beta-tubulin

gene (MGG_00604), MoSOM1 and MoCDTF1 were amplified with

primer pairs of BT-F/BT-R, 145Q-F/145Q-R and 1303Q-F/

1303Q-R, respectively. The Error bars represent standard

deviation. Asterisks indicate a significant difference of gene

expression between Guy11 and the mutants (P,0.01).

(TIF)

Figure S11 Over-expression of MoSOM1 in either
Dmac1 or DcpkA mutant is unable to overcome the
defects. (A) GFP fluorescence was observed in the nucleus for

both OM1 and OC2 strains that MoSOM1 was over-expressed in

Dmac1 and DcpkA mutants, respectively. (B) Over-expression of

MoSOM1 in Dmac1 was unable to overcome the defect in

appressorium development of the mutant. The patterns of

appressorium formation between the DcpkA mutant and OC2

were also similar. Scale bar = 10 mm. (C) Like Dmac1 and DcpkA

mutants, both OM1 and OC2 strains were nonpathogenic to

susceptible barley and rice.

(TIF)

Figure S12 Localization of MoSom1 can be changed to
cytoplasm and nucleus by the treatment of an adenylate
cyclase inhibitor. MDL-12,330A hydrochloride (SIGMA), an

adenylate cyclase inhibitor, was dissolved in dimethyl sulfoxide

(DMSO). The strain SC3 (Dmosom1+MoSOM1) was incubated in

liquid CM at 25uC for 24 h, and then added MDL-12,330A to 25

and 200 mg/ml, respectively. The same concentration of DMSO

(0.8%, V/V) was used as the control. The cultures were incubated

for additional 48 h before photographs were taken. The GFP was

still observed in nucleus for the control (top), while the fluorescence

was changed to cytoplasm and nucleus for the treatments of MDL-

12,330A (middle and bottom), especially for that of 200 mg/ml .

BF = bright field; Scale bar = 10 mm.

(TIF)

Table S1 Wild-type and recombinant strains of Magna-
porthe oryzae used in this study.
(DOC)

Table S2 PCR primers used in this study.
(DOC)

Table S3 SAGE analysis of gene expression regulated by
deletion of MoSOM1 in Magnaporthe oryzae.
(XLS)

Novel Regulators for Pathogenicity of M. oryzae

PLoS Pathogens | www.plospathogens.org 22 December 2011 | Volume 7 | Issue 12 | e1002385



Table S4 Several genes up- or down-regulated by deletion of

MoSOM1, MoRIC8 or MoLDB1 in Magnaporthe oryzae.

(DOC)
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