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Abstract: In the present study, biocompatible manganese nanoparticles have been linked with
zinc and iron molecules to prepare different derivatives of Mn0.5Zn0.5ErxYxFe2−2xO4 NPs (x = 0.02,
0.04, 0.06, 0.08, 0.10), using an ultrasonication approach. The structure, surface morphology, and
chemical compositions of Mn0.5Zn0.5ErxYxFe2−2xO4 NPs were elucidated by X-ray diffractome-
ter (XRD), High-resolution transmission electron microscopy (HR-TEM), scanning electron mi-
croscope (SEM), and Energy Dispersive X-Ray Analysis (EDX) techniques. The bioactivity of
Mn0.5Zn0.5ErxYxFe2−2xO4 NPs on normal (HEK-293) and (HCT-116) colon cancer cell line was
evaluated. The Mn0.5Zn0.5ErxYxFe2−2xO4 NPs treatment post 48 h resulted in a significant reduction
in cells (via MTT assay, having an IC50 value between 0.88 µg/mL and 2.40 µg/mL). The specificity
of Mn0.5Zn0.5ErxYxFe2−2xO4 NPs were studied by treating them on normal cells line (HEK-293).
The results showed that Mn0.5Zn0.5ErxYxFe2−2xO4 NPs did not incur any effect on HEK-293, which
suggests that Mn0.5Zn0.5ErxYxFe2−2xO4 NPs selectively targeted the colon cancerous cells. Using
Candida albicans, antifungal activity was also studied by evaluating minimum inhibitory/fungicidal
concentration (MIC/MFC) and the effect of nanomaterial on the germ tube formation, which exhib-
ited that NPs significantly inhibited the growth and germ tube formation. The obtained results hold
the potential to design nanoparticles that lead to efficient bioactivity.

Keywords: ultrasonication; magnetic nanoparticles; biomedical; anti colon cancer activity; antifungal
activity

1. Introduction

In recent years, many approaches were developed to customize and synthesize differ-
ent metallic nanoparticles (MNPs), which are useful in drug design and delivery, experimen-
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tal medicine, electrochemical sensors, electrical and electronic engineering, and biochemical
sensor [1–3]. Globally, cancer has caught a notable attention due to the non-availability
of effective therapy. Nanoparticles, especially metallic nanoparticles, are considered to
be effective candidates for various biological applications due to their enhanced reactive
surface area.

Over the past few years, researchers are continuously trying to produce eco-friendly
and efficient MNPs that contain different physicochemical properties, with sizes varying
from 0.1 to 1000 nm. There are basically few approaches to synthesize MNPs, such as co-
precipitation, hydrothermal, citrate assisted auto-combustion, microwave synthesis, reverse
micelle, sol-gel, and ultrasonication [4–8]. However, among these techniques, ultrasonic
approach is the more efficient method to synthesize the homogenized dispersed phase,
small particles with better de-agglomeration capability. The method of ultrasonication,
firstly, helps to produce high-purity materials, and secondly, from the economic view, it
consumes less raw materials with an improved reaction rate [9].

Among synthesis approaches, ultrasonication is different because the chemical effects
occur from acoustic cavitation. The implosive collapse of bubbles in the solution causes
a prompt pressure pulse and high temperature in the solution [10,11]. As a result of
this acoustic cavitation, local intense micro-mixing is attained [12]. The advantages of
sonochemical synthesis can be given to the rate of the ultrasonic chemical reaction, which
is so high due to the high number of collisions between reactant molecules. This approach
does not need the usage of any other external reagents such as surfactants or capping
reagents. Besides, sonochemical synthetic products have high purity, and the reaction
environment is eco-friendly. Furthermore, just by varying ultrasound frequency and power,
the size distribution of the products can be easily controlled. Bimetallic alloys and core-
shell materials can be synthesized sonochemically at RT; otherwise, it would require high
reaction temperatures and longer times [10,12].

MNPs are inorganic and zero-dimensional materials with a metal-based configuration.
These NPs have gained increased importance because they can be easily manipulated
using alternating current magnetic field (ACMF) and subsequently employed in various
applications. Nanometer-sized MNPs exhibit intrinsic and unique properties, such as high
saturation magnetization (Ms), biocompatibility, and less toxicity; in this regard, some
breakthroughs have been conducted in various fields, such as industrial, environmental,
analytical, and biomedical applications. In particular, MNPs have attracted attention
for biomedical applications because these particles feature easy controllability, biological
compatibility, physicochemical properties, and superior magnetic properties [13].

The present study synthesized different derivatives of manganese zinc nanocom-
posites (Mn0.5Zn0.5DyxEuxFe2−2xO4) NPs, with x = 0.02, 0.04, 0.06, 0.08, 0.10, using an
ultrasonication method. Subsequently, their biological activities were also evaluated by
examining their anticancer and antifungal impact.

2. Materials and Methods
2.1. Synthesis of Nanoparticles

Mn0.5Zn0.5ErxYxFe2−2xO4 NPs (x = 0.02, 0.04, 0.06, 0.08, 0.10) were formed by ul-
trasonic irradiation procedure. All chemicals were obtained from Merck (Darmstadt,
Germany) with high purity and used as received. The following metals were used as
initial materials: nitrate and chloride, zinc nitrate (Zn(NO3)2), manganese(II) chloride
(MnCl2·4H2O), iron (III) nitrate nonahydrate ((Fe(NO3)3·9H2O), erbium (III) nitrate hy-
drate (Er(NO3)3), and yttrium(III) nitrate hexahydrate (Y(NO3)3). Spinel nanoferrites of
the chemical composition Mn0.5Zn0.5ErxYxFe2−2xO4 NPs (x = 0.02, 0.04, 0.06, 0.08, 0.10)
were prepared by the sonochemical reaction technique. First, the specific amounts of
metal nitrates and chlorides (batch composition of constituents) were thoroughly mixed
in deionized (DI) water of 50 mL volume. Later, the different solutions were mixed with
each other, and NaOH solution (2 M) was added to achieve a resultant pH of 11. Finally,
the solution was exposed to ultrasonic waves (Ultrasonic Homogenizer UZ SONOPULS
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HD 2070) of 20 kHz frequency (power of 70 W), for 1 h. At the end of the ultrasonication
process, the solution temperature was as high as 90 ◦C because of several collisions. Upon
cooling, a fine powder was obtained, which was further washed using DI water. Finally,
the blackish powder was isolated from the DI water via an external magnet and dried up
at 90 ◦C, for 8 h, without any calcination process [14]. The structure for each composition
was investigated by Rigaku Benchtop Miniflex XRD with CuKα radiation (Rgaku, Tokyo,
Japan). The morphological study was imaged through SEM (FEI Titan ST) having EDX
system and TEM (FEI Morgagni 268).

2.2. Anti-Colon Cancer Activity
2.2.1. In Vitro Cytotoxicity

To study the impact of ultrasonicated Mn0.5Zn0.5ErxYxFe2−2xO4 NPs, we have used
normal, non-cancerous cells (human embryonic kidney cells (HEK-293) and colon cancer
cells (HCT-116, human colorectal carcinoma cells). Both HCT-116 and HEK-293 cells were
obtained from ATCC-American Type Culture Collection, Manassas, Virginia, United States.
The cell viability was measured by MTT assay, as described previously [15,16]. In brief,
70–80% confluence cells were grown with varying concentrations (2.0 µg/mL–40 µg/mL)
of ultrasonicated Mn0.5Zn0.5ErxYxFe2−2xO4 NPs. In the control group, NPs were excluded,
and, after 48 hours, the cells were incubated in MTT (Sigma-Aldrich, St. Louis, MO,
USA) for 4 hours. The cells were washed and read using a microplate reader (Bio-Rad
Laboratories, Hercules, CA, USA) at 570 nm. ANOVA was used to analyze the data. All of
the analysis was run on GraphPad Prism software [Version 6.0]. P value less than 0.05 was
taken as a significant difference in results.

2.2.2. DAPI Staining

To visualize the nuclear morphology of cancer cells after NPs treatment, the cells were
stained with DAPI (4′,6-diamidino-2-phenylindole), which is a fluorescent stain that binds
strongly to adenine–thymine-rich regions in DNA. It is used extensively in fluorescence
microscopy. Both the control and the treated cancerous cells were studied after 48 h. Post
48 h of treatment, cells were added with (4%) paraformaldehyde and later washed with
(0.1%) Triton X-100, for 5 min. Then cells were stained with DAPI (1 µg/mL), for 5 min, in
the dark environment, as per the previously described method [16]. The morphology of
nucleus was visualized using a Confocal Scanning Microscope (Zeiss, Frankfurt, Germany)
having a digital camera.

2.3. Antifungal Activity

C. albicans ATCC 14053 was selected for the antifungal studies. The MIC was obtained
in SDB (Sabouraud’s broth), using synthesized ultrasonicated Mn0.5Zn0.5ErxYxFe2−2xO4
NPs ranging from 16 to 0.5 mg/mL of concentration. The initial fungal inoculum of
2.5 × 106 CFU mL−1 was prepared by using 24 h old culture, grown at 28 ◦C. The prepared
Candida with varying concentrations of NPs were further incubated at 28 ◦C with aeration
for 24 h. The MIC is taken as the least amount of a test drug that apparently inhibits 99%
growth of an organism [17].

2.3.1. Minimal Fungicidal Concentration (MFC)

After the MIC determination of NPs, an aliquot from MIC tubes, which had no visible
growth, was inoculated on fresh SDA plates (Sabouraud’s agar) and incubated for 48 h
at 28 ◦C. The MFC is taken as the least amount of a drug that can completely kill the
fungus/yeast and has a CFU of less than 3 per plate.

2.3.2. Effect of Ultrasonicated NPs on Germ Tube Formation

The impact of ultrasonicated Mn0.5Zn0.5ErxYxFe2−2xO4 NPs on the formation of germ
tube in C. albicans using liquid medium was studied, as per the method described by [18].
Precisely, the inoculum of C. albicans was prepared and adjusted, as mentioned in the
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previous section. Further, the Candida was grown in sterile RPMI 1640 broth (supplemented
with sterile pooled sheep serum) added with the desired concentration of ultrasonicated
Mn0.5Zn0.5ErxYxFe2−2xO4 NPs obtained as the MIC in the earlier experiment (16, 8, 8, 8,
4 mg/mL, for x = 0.02, 0.04, 0.05, 0.06 and 0.1, respectively). The prepared broth of Candida
and NPs were incubated at 37 ◦C for 4h with aeration. Untreated C. albicans were taken as
a negative control. Subsequently, the incubated Candida was used for smear preparation
for microscopic visualization, and photo was captured using a light microscope (Nikon
ECLIPSE Ni, New York, United States), at a magnification of 40×. The observation and
presence of germ tube were manually carried out and obtained in percentage, equivalent
to the total number of cells per image [18].

3. Results and Discussion
3.1. Morphological Analyses

Figure 1 presents the X-ray powder patterns of Mn0.5Zn0.5ErxYxFe2−2xO4 (x = 0.02,
0.04, 0.06, 0.08, 0.1) NPs. All patterns revealed the indexed peaks of spinel ferrite. The
lattice constants were estimated and found to increase with the increase in the content of
substituted ions, from 8.4221 to 8.4623. The average of the crystallites’ size was estimated
to be about 30 nm.
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Figure 1. X-ray powder patterns of Mn0.5Zn0.5ErxYxFe2-2xO4 NPs (x = 0.02, 0.04, 0.06, 0.08, 0.10). 
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Figure 1. X-ray powder patterns of Mn0.5Zn0.5ErxYxFe2−2xO4 NPs (x = 0.02, 0.04, 0.06, 0.08, 0.10).
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Figure 2 shows the FE-SEM micrographs of Mn0.5Zn0.5ErxYxFe2−2xO4 NPs (x = 0.02,
0.04, 0.06, 0.08, 0.10). The samples revealed the assembling of cubic grains. EDX and elemen-
tal mapping offered the stoichiometric of the consisting elements of Mn0.5Zn0.5ErxYxFe2−2xO4
NPs (x = 0.04) NPs with no occurrence of any contamination, as observed in Figure 3. The
TEM micrographs demonstrated the cubic shape and size of nanoparticles of Mn0.5Zn0.5ErxYx
Fe2−2xO4 NPs (x = 0.02, 0.04, 0.06, 0.08, 0.10), as seen in Figure 4.Biomolecules 2020, 10, x FOR PEER REVIEW 6 of 14 
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3.2. Anticancer Activity

Anti-proliferative activities of ultrasonicated Mn0.5Zn0.5ErxYxFe2−2xO4 NPs (x = 0.02,
0.04, 0.06, 0.08, 0.10) analyzed by MTT assay were used to measure NPs on cancerous cells.
The cytotoxic impact of ultrasonicated Mn0.5Zn0.5ErxYxFe2−2xO4 NPs (x = 0.02, 0.04, 0.06,
0.08, 0.10), post 48 h of treatment, was observed, and it was found that ultrasonicated
Mn0.5Zn0.5ErxYxFe2−2xO4 NPs (x = 0.02, 0.04, 0.06, 0.08, 0.10) inhibited the growth of HCT-
116 cells. Table 1 displays the obtained inhibitory concentration (IC50) of different ratios.
The IC50 of x = 0.02, 0.04, 0.06, 0.08, 0.1 NPs were 0.88, 2.40, 0.85, 0.78, and 0.45 µg/mL,
respectively. Similar reports were shown in different studies, where the treatments of
different types of NPs showed an IC50 of about 21.6 µg/mL [19], 100-200 µg/mL [20],
40 µg/mL [21] and 48 µg/mL [22] on colon cancer cells. We also determined the effects of
ultrasonicated Mn0.5Zn0.5ErxYxFe2−2xO4 NPs (x = 0.02, 0.04, 0.06, 0.08, 0.10) on HEK-293
to assess if they produce any cytotoxic effects on normal cells. The results showed that
HEK-293 cells remained unaffected post 48 h of ultrasonicated NPs treatment.

Table 1. Effect of Mn0.5Zn0.5ErxYxFe2−2xO4 NPs on cancerous cells (HCT-116) and normal cells
(HEK-293).

x IC50 (HCT-116 IC50 (HEK-293)

0.02 0.88 µg/mL No inhibition
0.04 2.40 µg/mL No inhibition
0.06 0.85 µg/mL No inhibition
0.08 0.78 µg/mL No inhibition
0.10 0.45 µg/mL No inhibition

IC50 Value [µg/mL] = Inhibitory concentration (IC).

3.3. Cancer Cell Nuclear Disintegration

The nuclear morphology was assessed by CLSM, which stipulated that the treatment of
ultrasonicated Mn0.5Zn0.5ErxYxFe2−2xO4 NPs with x = 0.02 and 0.10 depicted a substantial
inhibitory impact on HCT-116 cells (Figure 5B,C), compared with the control group cells
(Figure 5A).
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Figure 5. DAPI-stained cancer cell morphology. HCT-116 cells treated with ultrasonicated Mn0.5Zn0.5ErxYxFe2−2xO4 NPs
(x = 0.02, 0.10) for 48 h. (A) shows the untreated cells (control); (B) shows NPs treatment x = 0.02 concentration 0.88 µg/mL;
and (C) shows treatment with x = 0.10 concentration (0.45 µg/mL). Arrows in (B,C) show the nuclear disintegration. 200×
magnifications.

These results suggest that ultrasonicated Mn0.5Zn0.5ErxYxFe2−2xO4 NPs (x = 0.02, 0.04,
0.06, 0.08, 0.10) selectively affected both breast and colon cancerous cells, and no harm
was noted for the normal and healthy cells. Several reports demonstrated that magnetic
nanoparticles have potential utility in drug delivery and diagnostic fields [1,23–25] Some
studies also delineated the role of NPs in the death of cancer cells where nuclear disinte-
gration and nuclear fragmentation were notable features [2,15,16,26–28]. We conclude that
ultrasonically Mn0.5Zn0.5ErxYxFe2−2xO4 NPs hold the capability to target cancerous cells
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and could be considered as candidates for cancer therapy. These results are in coherence
with the study of [29], who proposed the tested mixture manganese dioxide NPs as ra-
diosensitizers. They particularly used the reaction of NPs with H2O2 (the tumor metabolite)
that leads to oxygen production. The decreased hypoxia was correlated with a reduction in
the radiation challenges and was therefore an enhanced antitumor influence [29]. Linking
or encapsulating drug-loaded NPs to the target cells may lead to toxicity and may change
the natural physiological capabilities in preserving homeostasis [30].

3.4. Antifungal Activities
3.4.1. MIC and MFC Determination

In the current study, the evaluation of anticandidal activity of ultrasonicated Mn0.5
Zn0.5ErxYxFe2−2xO4 nanoparticles was made by determining MFC and MIC. The nanopar-
ticles were screened at varying concentrations that ranged from 16 to 0.5 mg/mL. The
obtained MIC values of ultrasonicated Mn0.5Zn0.5ErxYxFe2−2xO4 nanoparticles was 16,
8, 8, 8, 4 mg/mL, for x = 0.02, 0.04, 0.06, 0.08 and 0.1, respectively, whereas the MFC
values were obtained as >16, 16, 16, 16, 8 mg/mL, for x = 0.02, 0.04, 0.06, 0.08 and 0.1 ultra-
sonicated Mn0.5Zn0.5ErxYxFe2−2xO4 nanoparticles, respectively (Figure 6). The obtained
results depicted that antifungal activity was maximum with x = 0.1, i.e., with the increased
concentration of metal substitution in the nanomaterial. Therefore, the antifungal activity
of the liquid culture was concluded as the influence of the content of element Er (x = n)
in the synthesized nanomaterial. Various studies have previously reported the bioactiv-
ities of metal-substituted NPs such as zinc, nickel, manganese, and copper [31,32] The
influence of element Er on the antibacterial properties has been demonstrated in another
report [33] against different types of strains, Escherichia coli, Staphylococcus aureus, Entero-
coccus faecalis, and Pseudomonas aeruginosa, with decreased levels of toxicity against the
tested Desmodesmus subspicatus. However, the antifungal activity of this rare combination of
ultrasonicated Mn0.5Zn0.5ErxYxFe2−2xO4 nanoparticles is the first of its kind, to the best of
our knowledge. The possible explanation for this activity can be attributed to the size and
shape of the synthesized ultrasonicated Mn0.5Zn0.5ErxYxFe2−2xO4 nanoparticles, which
enable the smooth and easy contact with the candida cell surface and penetration inside
the cell, leading to the cell’s death [34].
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3.4.2. Effect of Ultrasonicated Mn0.5Zn0.5ErxYxFe2−2xO4 NPs on Germ Tube Formation

This assay was performed to evaluate the effect of synthesized ultrasonicated Mn0.5Zn0.5
ErxYxFe2−2xO4 nanoparticles on germ tube formation of C. albicans. The results obtained dur-
ing the study demonstrated that the treated Candida cells were inhibited in terms of growth
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and the formation of germ tube. The inhibition of germ tube, calculated in percentage,
was found approximately 10, 25, 30, 40, 40 and 60% for untreated, x = 0.02, 0.04, 0.06, 0.08
and 0.1, ultrasonicated Mn0.5Zn0.5ErxYxFe2−2xO4 nanoparticles, respectively (Figure 7A).
The formation of germ tube was significantly suppressed in Candida in the presence of
x = 0.10 and moderately affected in the presence of x = 0.06 and 0.08, when compared to
x = 0.02 and 0.04 untreated cells (Figure 7B). Therefore, the inhibitory action of ultrasoni-
cated Mn0.5Zn0.5ErxYxFe2−2xO4 nanoparticles on the formation of germ tube of Candida is
enhanced with the increasing ratio of element Er (x = n) in the synthesized nanomaterial.
C. albicans is a polymorphic human pathogen that continues to form a germ tube as one of
its phenotypic traits required for pathogenicity. The ability of the Candida to adhere to the
host cell is effectively achieved by its germ tube form [35]. Furthermore, the development
of germ tubes in Candida provides resistance against cellular responses, such as phagocyto-
sis [36]. The inhibition of the formation of germ tube by synthesized nanomaterial could
be exploited to suppress the pathogenicity in C. albicans for various pharmaceutical and
biomedical applications.

Biomolecules 2020, 10, x FOR PEER REVIEW 11 of 14 

3.4.2. Effect of Ultrasonicated Mn0.5Zn0.5ErxYxFe2-2xO4 NPs on Germ Tube Formation 
This assay was performed to evaluate the effect of synthesized ultrasonicated 

Mn0.5Zn0.5ErxYxFe2-2xO4 nanoparticles on germ tube formation of C. albicans. The results 
obtained during the study demonstrated that the treated Candida cells were inhibited in 
terms of growth and the formation of germ tube. The inhibition of germ tube, calculated 
in percentage, was found approximately 10, 25, 30, 40, 40 and 60% for untreated, x = 0.02, 
0.04, 0.06, 0.08 and 0.1, ultrasonicated Mn0.5Zn0.5ErxYxFe2-2xO4 nanoparticles, respectively 
(Figure 7A). The formation of germ tube was significantly suppressed in Candida in the 
presence of x = 0.10 and moderately affected in the presence of x = 0.06 and 0.08, when 
compared to x = 0.02 and 0.04 untreated cells (Figure 7B). Therefore, the inhibitory action 
of ultrasonicated Mn0.5Zn0.5ErxYxFe2-2xO4 nanoparticles on the formation of germ tube of 
Candida is enhanced with the increasing ratio of element Er (x = n) in the synthesized 
nanomaterial. C. albicans is a polymorphic human pathogen that continues to form a germ 
tube as one of its phenotypic traits required for pathogenicity. The ability of the Candida 
to adhere to the host cell is effectively achieved by its germ tube form [35]. Furthermore, 
the development of germ tubes in Candida provides resistance against cellular responses, 
such as phagocytosis [36]. The inhibition of the formation of germ tube by synthesized 
nanomaterial could be exploited to suppress the pathogenicity in C. albicans for various 
pharmaceutical and biomedical applications. 

 

 
Figure 7. Inhibition in germ tube formation of treated C. albicans; (A) depicts the inhibition in 
percentage; (B) light microscopic images at 40× (a) control (untreated cells); (b) x = 0.02; (c) x = 0.04; 
(d) x = 0.06; (e) x = 0.08 and (f) x = 0.10 ultrasonicated Mn0.5Zn0.5ErxYxFe2-2xO4 NPs. 

Figure 7. Inhibition in germ tube formation of treated C. albicans; (A) depicts the inhibition in percentage; (B) light
microscopic images at 40× (a) control (untreated cells); (b) x = 0.02; (c) x = 0.04; (d) x = 0.06; (e) x = 0.08 and (f) x = 0.10
ultrasonicated Mn0.5Zn0.5ErxYxFe2−2xO4 NPs.
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4. Conclusions

This study linked manganese nanoparticles with zinc and iron molecules and prepared
different derivatives of Mn0.5Zn0.5ErxYxFe2−2xO4 NPs using an ultrasonication approach.
The surface morphology and structure of Mn0.5Zn0.5ErxYxFe2−2xO4 NPs were attributed
by the EDX, SEM, TEM, and XRD methods. The bioactivity of Mn0.5Zn0.5ErxYxFe2−2xO4
NPs on normal (HEK-293) and (HCT-116) colon cancer cell line was evaluated. The
Mn0.5Zn0.5ErxYxFe2−2xO4 NPs treatment post 48 h resulted in the significant reduction in
cancer cells via MTT assay, having an IC50 value between 0.88 µg/mL and 2.40 µg/mL.
The specificity of Mn0.5Zn0.5ErxYxFe2−2xO4 NPs was studied by treating them on normal
cells line (HEK-293). The results showed that Mn0.5Zn0.5ErxYxFe2−2xO4 NPs did not incur
any effect on HEK-293, which suggests that Mn0.5Zn0.5ErxYxFe2−2xO4 NPs selectively
targeted the colon cancerous cells. Using Candida albicans, antifungal activity was also
studied by evaluating minimum inhibitory/fungicidal concentration (MIC/MFC) and the
effect of nanomaterial on the germ tube formation, which exhibited that NPs significantly
inhibited the growth and germ tube formation. Based on these findings, we suggest
that ultrasonicated Mn0.5Zn0.5ErxYxFe2−2xO4 NPs possess potential anti-cancer and anti-
fungal capabilities.
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