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Campylobacter jejuni is a major cause of food-borne human gastroenteritis worldwide and is designated as a high priority an-
timicrobial-resistant pathogen by the World Health Organization (WHO). In this study, a total of 26 C. jejuni isolates from broiler
chickens were screened for the presence of virulence and antimicrobial resistance genes by PCR. As a result, the study detected 11/26
(42.3%), 9/26 (34.6%), 8/26 (30.8%), 7/26 (26.9%), 6/26 (23.1%), and 6/26 (23.1%) of cdtC, pldA, cdtB, cdtA, cadF, and ciaB virulence
genes, respectively, with seven of the isolates carrying more than two virulence genes.'emajority of the isolates n� 25 (96.1%) were
resistant to nalidixic acid, followed by n� 21 (80.7%), n� 22 (84.6%), and n� 5 (19.2%) for tetracycline, erythromycin, and
ciprofloxacin, respectively. Most isolates were harboring catI (n� 16; 84.2%), catII (n� 15; 78.9%), catIII (n� 10; 52.6%), catIV (n� 2;
10.5%), floR (n� 10; 52.6%), ermB (n� 14; 73.7%), tetO (n� 13; 68.4%), tetA (n� 9; 47.4%), mcr-4 (n� 8; 42.1%), and ampC (n� 2;
10.5%). Meanwhile,mcr-1, mcr-2, mcr-3, mcr-5, tet(X), tet(P), and tet(W) genes were not detected in all isolates. Class I and Class II
integrons were detected in 92.3% (n� 24) and 65.4% (n� 17) isolates, respectively. About 31% (8 of the 26 isolates) isolates were
carrying more than two resistance genes. According to our knowledge, this is the first study to detect class II integrons in
Campylobacter spp. (C. jejuni). 'e high prevalence of cdtA, cdtB, cdtC, cadF, pldA, and ciaB genes and antibiotic resistance genes in
C. jejuni in this study indicates the pathogenic potential of these isolates. Majority of the isolates demonstrated resistance to nalidixic
acid, tetracycline (tet), and erythromycin (ermB), which are the drugs of choice for treating Campylobacter infections. 'erefore,
these findings highlight the importance of implementing an efficient strategy to control Campylobacter in chickens and to reduce
antimicrobial use in the poultry industry, which will help to prevent the spread of infections to humans.

1. Introduction

Poultry meat is an important source of protein and one of
the most consumed meat sources in South Africa [1]. To
date, about 2.152 million tonnes of poultry meat are con-
sumed in South Africa per year [2]. Despite chickens being
considered the main source of protein, they are also re-
sponsible for about 80% of human cases of food-borne and
zoonotic diseases [3]. Poultry is considered as the main

reservoir of many bacterial pathogens including Campylo-
bacter [4]. A number of chicken-borne Campylobacter
species of zoonotic importance include C. ureolyticus, C.
concisus, C. mucosalis, C. jejuni, C. hyointestinalis, C.
insulaenigrae, C. sputorum, C. helveticus, C. lari, C. fetus, C.
coli, C. upsaliensis, and C. rectus [5]. Of these, C. jejuni,
C. lari, and C. coli are documented as the main contributors
to food-borne diseases such as campylobacteriosis in
humans [3, 6, 7].
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In humans, Campylobacter infections are usually self-
limiting, although bacteraemia is more common among the
elderly, immunocompromised people, and children [8]. In
comparison with other enteric bacteria, Campylobacter has
multiple cell surface layers expressing virulent factors that
are responsible for its high prevalence and pathogenicity [9].
Motility, toxin production, mucus colonization, attachment,
and translocation are all virulence mechanisms used by
Campylobacter to cause disease [10]. 'e antibiotics used for
treating Campylobacter infections will usually target these
mechanisms of virulence in order to be efficacious.

Different antibiotics such as erythromycin, amoxicillin,
azithromycin, clarithromycin, tetracycline, and cipro-
floxacin have been used for treating campylobacteriosis
[11, 12]. In animals, some of these antibiotics are used as
additives to improve the growth rate and feed intake ratio
[13, 14]. As a result, the misuse of these antibiotics as ad-
ditives can lead to antibiotic residues on animal products
and the environment as well as the development of antibiotic
resistance [1, 11]. Antibiotic resistance is a global health
issue that involves the transfer of bacteria and genes between
humans and animals [15]. A number of genes which confer
resistance to antibiotics in Campylobacter have been de-
termined by previous studies [2, 6, 11]

Tetracycline is exported from the cell via membrane-
bound efflux proteins encoded by the efflux genes tetA and
tetB [16, 17]. Tetracycline resistance is caused by the tetO
gene, and it produces a ribosome-protective protein [16]. A
ribosomal methylase encoded by ermB is one of the Cam-
pylobacter mechanisms that confer resistance to macrolides
[16, 17]. 'e C257T mutation in the gyrase gene (gyrA) in
Campylobacter is the most common mechanism creating
quinolone and fluoroquinolone resistance [18]. In C. jejuni,
the gyrA gene region contains 'r86Ala, which is respon-
sible for high levels of nalidixic acid resistance and low levels
of ciprofloxacin resistance [15, 19]. 'e'r86Ile amino acid
alteration in the QRDR of gyrA is seen inmost ciprofloxacin-
resistant Campylobacter spp., especiallyC. jejuni strains [20].
Antimicrobial resistance genes such as erm(B), aadE,
blaOXA-61, and aphA-3 have also been linked to multidrug
resistance in Campylobacter strains [3].

Integrons, in particular, play a key role in the acquisition
and spread of antibiotic resistance [21, 22]. 'ere are five
classes, but only two classes, i.e., I and II are the most
important [23]. Class I and II integrons are frequently as-
sociated with the Tn7 transposon family [24, 25]. Gram-
negative bacteria have a wide range of class I integrons,
which are transferred by Tn402 [21]. Dihydroflavonol-4-
reductase (dfr), sulfonamide (sul1), broad-spectrum-lacta-
mase, quaternary ammonium compound disinfectants
(qacE1), and aminoglycoside-modifying enzymes (AMEs)
are all encoded by antimicrobial resistance gene cassettes
found in class I integrons [21]. However, the int gene in class
II is less active, it can carry unusual cassettes that encode the
lipoprotein signal peptidase [21, 26], and it has Dfr1, sul1,
and aadA1 gene cassettes [21]. Even though integrons have
been detected from class I in Campylobacter [27], neither
class II nor III have been detected in Campylobacter spp.
[27]. From the study conducted by van Essen-Zandbergen

et al. [28] in the Netherlands in broilers, none of the
Campylobacter isolates carried the integrons (class I, II, and
III). Hence, the aim of this study was to investigate the
presence of the virulence genes profile. Class I and II
integrons and antimicrobial resistance genes in C. jejuni
isolates recovered from the faeces of slaughter-age broiler
chickens in the North West province, South Africa.

2. Materials and Methods

2.1. Identification of Campylobacter. 26 Campylobacter
jejuni strains from our previous study were used [4]. In brief,
C. jejuni was isolated from faecal samples, and the genomic
DNA was extracted following Zymo Research Fungal/Bac-
terial DNA kit instructions (Zymo Research Corp., CA,
USA). 'e DNA concentration was quantified using a
NanoDrop spectrophotometer [29]. Conventional PCR was
used to detect the Campylobacter spp. in the chicken faeces
using universal 16S rRNA Campylobacter spp. All the PCR
products were sequenced at Inqaba Biotechnical Industries
(Pty) Ltd., Pretoria, South Africa, and sequence identity was
determined using the nucleotide Basic Local Alignment
Search Tool (BLASTn) (https://blast.ncbi.nlm.nih.gov/Blast.
cg). 'e nucleotide sequences were deposited in the Gen-
Bank database and assigned with accession numbers
(MZ209102 − MZ209127) available at https://www.ncbi.nlm.
nih.gov/nucleotide.

2.2. Antimicrobial Resistance (AMR) Profile. Antibacterial
susceptibility screening to ciprofloxacin (5 g), nalidixic acid
(30 g), erythromycin (15 g), and tetracycline (30 g) (Davies
Diagnostics, Johannesburg, South Africa) was conducted
based on the World Health Organization (WHO) Advisory
Group on Integrated Surveillance of Antimicrobial Resis-
tance guidelines [30] on food-borne bacteria. 'e Kir-
by–Bauer disc diffusion method was used, and the results
were interpreted according to the Clinical and Laboratory
Standards Institute (CLSI) [4]. Following CLSI recom-
mendations, antibacterial susceptibility testing was per-
formed on Muller–Hinton (MH) agar (LAB M, Neogen
Company) supplemented with 10% sheep blood. 'e zones
of inhibition detected around each antibiotic disc in milli-
meters were used to calculate antibiotic susceptibility.
Standard reference strains of Staphylococcus aureus (ATCC®29213) and Campylobacter jejuni ATCC (33560) were used
as controls.

2.3.Detection ofAntibiotic ResistanceGenes. 'e presence or
absence of chloramphenicol (catI, catII, catIII, catIV, and
floR), erythromycin (ermB), tetracycline (tet(A), tet(O),
tet(X), tet(P), and tet(W)), colistin (mcr-1, mcr-2, mcr-3,
mcr-4, and mcr-5), and ampicillin (AmpC) resistance genes,
including two classes of integrons (Int) (class I and II), was
determined in Campylobacter jejuni isolates using the
qualitative PCR technique. All the primers were obtained
from Inqaba Biotechnical Industries (Pty) Ltd., Pretoria,
South Africa. Each PCR reaction included a total reaction of
25 μL containing 12.5 μL of a 2X DreamTag Green Master
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Mix (0.4mM dATP, 0.4mM dCTP, 0.4mM dGTP, 0.4mM
dTTP, 4mM MgCl2, and loading buffer) ('ermoFisher
Scientific, South Africa), 8.5 μL of nuclease-free water, 2.0 μL
of the template DNA, and 1.0 μL of each oligonucleotide
primer. PCR reactions were performed using the ProFlex
PCR System (Applied Biosystems, USA). Amplified PCR
products were resolved on a 1.5% (w/v) agarose gel in a
40mM Tris (Sigma Aldrich, US), 1X TAE buffer (20mM
acetic acid (Merck, US), and 1mM EDTA (Merck, South
Africa) at pH 8.0), stained with 0.001 μg/mL ethidium
bromide, and visualized under ultraviolet (UV) light using
the ENDURO GDS Gel Documentation System (Labnet
International Inc., US). A molecular weight marker, 100 bp
ladder (PROMEGA, Madison, WI, USA), was used to de-
termine the size of the PCR product. A ChemiDoc Imaging
System (Bio-Rad ChemiDocTM MP Imaging System, UK)
was used to capture the images using Gene Snap software,
version 6.0022. 'e primers and PCR cycling conditions
used in the study are shown in Table 1.

2.4. Determination of Virulence Genes. Six virulence genes;
Cytolethal distending toxin subunits; cdtA, cdtB, and cdtC,
Campylobacter adhesion to fibronectin protein (CadF),
phospholipase A (pldA), and Campylobacter invasion an-
tigen B (ciaB) were screened from Campylobacter jejuni
isolates. 'e primers and PCR cycling conditions were
obtained from the previously published articles [10, 38, 39]
and are shown in Table 2. 'e 25 μL total reaction consisted
of 12.5 μL of a 2X DreamTag Green Master Mix (0.4mM
dATP, 0.4mM dCTP, 0.4mM dGTP, and 0.4mM dTTP,
4Mm MgCl2, and loading buffer), 8.5 μL of nuclease-free
water, 2.0 μL of template DNA, and 1.0 μL of each oligo-
nucleotide primer. PCR reactions were performed using the
ProFlex PCR System (Applied Biosystems, USA). Amplified
PCR products were resolved on a 1% (w/v) agarose gel in a
40mM Tris (Sigma Aldrich, US), 1X TAE buffer (20mM
acetic acid (Merck, US), and 1mM EDTA (Merck, South
Africa) at pH 8.0), stained with 0.001 μg/mL ethidium
bromide and visualized under ultraviolet (UV) light using
the ENDURO GDS Gel Documentation System (Labnet
International Inc., US).

2.5. Data Analysis. Statistical analysis was carried out using
Microsoft Excel 2016 (Microsoft Corporation, Redmond,
DC, USA) and Statistical Package for the Social Sciences v.
26 (IBM Corporation, Armonk, NY, USA). 'e sequenced
16S rRNA gene of the 26 isolates was compared to nucleotide
sequences available in GenBank. 'e closest representative
sequences of Campylobacter spp. strains were retrieved and
aligned with the sequenced isolates using ClustalW program
for phylogenetic analysis. 'e phylogenetic tree was con-
structed in the MEGAX package using the maximum
likelihood method and Kimura 2-parameter model [40] with
a bootstrap analysis of 1000 replicates [41].

3. Results

3.1. Molecular Detection of Virulence Genes. Many isolates
carried cdtC (11/26; 42.3%), followed by pldA (9/26; 34.6%),
then cdtB (8/26; 30.8%), cdtA (7/26; 26.9%), cadF (6/26;
23.1%), and ciaB (6/26; 23.1%). Multiple virulence genes
were observed in seven (n� 7) isolates. 'e distribution of
virulence genes in C. jejuni is presented on the heatmap
(Figure 1).

3.2. Phylogenetic Analysis of Campylobacter jejuni. Based on
the 16S rRNA phylogenetic analysis, C. jejuni formed two
well-supported monophyletic clades and were separated
from other Campylobacter species. All the C. jejuni isolates
from this study clustered in a single large monophyletic
clade consisting of C. jejuni and C. coli.'is clade represents
a polytomy with both campylobacter species. Some of the
isolates/strains from the current study formed poorly sup-
ported clades nested within this polytomy (Figure 2).

3.3.AntimicrobialResistanceProfile. Out of 26 tested isolates
for the occurrence of AMR, a majority (96.1%; n� 25) of the
isolates in this study showed resistance to nalidixic acid,
followed by erythromycin (84.6%; n� 22), tetracycline
(80.7%; n� 21), and ciprofloxacin (19.2%; n� 5) (Table 3).

3.4. Detection of Antibiotic ResistanceGenes. Out of 19 genes
investigated, only 63.2% (n� 12) were positively amplified
(Table 3). Most of the isolates harbored chloramphenicol
(catI (n� 16; 84.2%), catII (n� 15; 78.9%), catIII (n� 10;
52.6%), catIV (n� 2; 10.5%), floR (n� 10; 52.6%)), eryth-
romycin (ermB (n� 14; 73.7%)), tetracycline (tetO (n� 13;
68.4%), tetA (n� 9; 47.4%)), colistin (mcr-4 (n� 8; 42.1%)),
and ampicillin (ampC (n� 2; 10.5%)) resistance genes.
'irty-one percent (n� 8) of the isolates were carrying more
than two resistance genes, whereby most isolates carried
class I and II integrons. About 92.3% (n� 24) isolates and
65.4% (n� 17) harbored class I and II integrons, respectively.
'e mcr-1, mcr-2, mcr-3, mcr-5, tet(X), tet(P), and tet(W)
genes were not detected. A heatmap was generated to an-
alyze the antibiotic resistance genes of C. jejuni used in this
study (Figure 3). Eighty-one percent (n� 21) of the isolates
were tetracycline (TET) resistant and carried tetO gene, 33%
carried tetA gene, whilst 14.2% carried both tetO and tetA
genes. 'e ermB gene, which confers erythromycin resis-
tance, was present in the same Salmonella isolates (n� 12)
that demonstrated phenotypic resistance.'e occurrences of
mismatch related to erythromycin (ermB) and tetracycline
(tetA and tetO) were observed in eight and two isolates,
respectively.

4. Discussion

'is study was designed to determine the antibiotic resis-
tance profiles and occurrence of virulence genes associated

International Journal of Microbiology 3



Ta
bl

e
1:

A
nt
ib
io
tic

re
sis

ta
nc
e
ge
ne
s
(A

RG
s)
,p

ri
m
er
s,
an
d
PC

R
co
nd

iti
on

s
us
ed

in
th
is
st
ud

y.

Ta
rg
et

ge
ne

Pr
im

er
Pr
im

er
se
qu

en
ce

(5
′⟶

3′
)

C
on

di
tio

ns
A
m
pl
ic
on

siz
e
(b
p)

Re
fe
re
nc
es

Te
tr
ac
yc
lin

e
te
t(
A
)

TE
TA

-
FT

ET
A
-R

G
C
G
C
TN

TA
TG

C
G
TT

G
A
TG

C
A
A
C
A
G
C
C
C
G
TC

A
G
G
A
A
A
TT

94
° C

fo
r
6
m
in

(1
x)
,9
4°
C
fo
r
30

s,
62

° C
fo
r
30

s,
72

° C
fo
r
60

s
(3
0x
),

an
d
72

° C
fo
r
6
m
in

38
7

[3
1]

te
t(
O
)

TE
TO

-
FT

ET
O
-R

A
C
G
G
A
RA

G
TT

TA
TT

G
TA

TA
C
C
TG

G
C
G
TA

TC
TA

TA
A
TG

TT
G
A
C

94
° C

fo
r
6
m
in

(1
x)
,9
4°
C
fo
r
30

s,
60

° C
fo
r
30

s,
72

° C
fo
r
60

s
(3
0x
),

an
d
72

° C
fo
r
6
m
in

17
1

[3
2]

te
t(
X
)

TE
TX

-
FT

ET
X
-R

C
C
G
A
C
A
C
G
G
A
A
G
TT

G
A
A
G
A
A
C
C
TT

G
G
TG

A
G
A
TG

C
C
A
TT

A
G
C

94
° C

fo
r
6
m
in

(1
x)
,9
4°
C
fo
r
30

s,
60

° C
fo
r
30

s,
72

° C
fo
r
60

s
(3
0x
),

an
d
72

° C
fo
r
6
m
in

46
8

[3
2]

te
t(
P)

TE
TP

-
FT

ET
P-
R

C
TT

G
G
A
TT

G
C
G
G
A
A
G
A
A
G
A
G
A
TA

TG
C
C
C
A
TT

TA
A
C
C
A
C
G
C

94
° C

fo
r
6
m
in

(1
x)
,9
4°
C
fo
r
30

s,
63

° C
fo
r
30

s,
72

° C
fo
r
60

s
(3
0x
),

an
d
72

° C
fo
r
6
m
in

67
6

[3
3]

te
t(
W
)

TE
TW

-
FT

ET
W
-R

G
A
G
A
G
C
C
TG

C
TA

TA
TG

C
C
A
G
C
G
G
G
C
G
TA

TC
C
A
C
A
A
TG

TT
A
A
C

94
° C

fo
r
6
m
in

(1
x)
,9
4°
C
fo
r
30

s,
64

° C
fo
r
30

s,
72

° C
fo
r
60

s
(3
0x
),

an
d
72

° C
fo
r
6
m
in

16
8

[3
3]

Er
yt
hr
om

yc
in

er
m
B

ER
M
B-

FE
RM

B-
R

G
C
A
TT

TA
A
C
G
A
C
G
A
A
A
C
TG

G
C
TG

A
C
A
A
TA

C
TT

G
C
TC

A
TA

A
G
TA

A
TG

G
T

95
° C

fo
r
2
m
in

(1
x)
,9
5°
C
fo
r
30

s,
60

° C
fo
r
45

s,
72

° C
fo
r
1
m
in

(3
5x
),
an
d
72

° C
fo
r
7
m
in

57
3

[3
4]

C
ol
ist
in

m
cr
-1

m
cr
-1
-

Fm
cr
-1
-R

TA
TC

G
C
TA

TG
TG

C
TA

A
A
G
C
C
TG

C
G
TC

TG
C
A
G
C
C
A
C
TG

G
G

94
° C

fo
r5

m
in

an
d
25

cy
cl
es
,9
4°
C

fo
r
30

s,
56

° C
fo
r
1
m
in
,7

2°
C
fo
r

1
m
in
,a
nd

72
° C

fo
r
5
m
in

11
39

[3
5]

m
cr
-2

m
cr
-2
-

Fm
cr
-2
-R

TA
TC

G
C
TA

TG
TG

C
TA

A
A
G
C
C
TG

A
A
A
A
TA

C
TG

C
G
TG

G
C
A
G
G
TA

G
C

81
6

[3
5]

m
cr
-3

m
cr
-3
-

Fm
cr
-3
-R

C
A
A
TC

G
TT

A
G
TT

A
C
A
C
A
A
TG

A
TG

A
A
G
A
A
C
A
C
A
TC

TA
G
C
A
G
G
C
C
C
TC

67
6

[3
5]

m
cr
-4

m
cr
-4
-

Fm
cr
-4
-R

A
TC

C
TG

C
TG

A
A
G
C
A
TT

G
A
TG

G
C
G
C
G
C
A
G
TT

TC
A
C
C

40
5

[3
5]

m
cr
-5

m
cr
-5
-

Fm
cr
-5
-R

G
G
TT

G
A
G
C
G
G
C
TA

TG
A
A
C
G
A
A
TG

TT
G
A
C
G
TC

A
C
TA

C
G
G

20
7

[3
5]

A
m
pi
ci
lli
n

am
pC

A
m
pC

FA
m
pC

R
G
TG

A
C
C
A
G
A
TA

C
TG

G
C
C
A
C
A
TT

A
C
TG

TA
G
C
G
C
C
TC

G
A
G
G
A

95
° C

fo
r
2
m
in
,3

5
cy
cl
es

of
95

° C
fo
r
30

s,
60

° C
fo
r
45

s,
72

° C
fo
r

1
m
in
,a
nd

72
° C

fo
r
7
m
in

82
2

[3
6]

C
hl
or
am

ph
en
ic
ol

ca
tI

ca
tI
Fc
at
IR

G
G
TG

A
TA

TG
G
G
A
TA

G
TG

TT
C
C
A
TC

A
C
A
TA

C
TG

C
A
TG

A
TG

1
m
in

at
95

° C
,f
ol
lo
w
ed

by
40

cy
cl
es

of
15

sa
t9

5°
C
,3
0
sa

t6
0°
C
,

an
d
30

s
at

72
° C

34
9

[3
7]

ca
tI
I

ca
tI
I
Fc
at
II

R
G
A
TT

G
A
C
C
TG

A
A
TA

C
C
TG

G
A
A
C
C
A
TC

A
C
A
TA

C
TG

C
A
TG

A
TG

56
7

[3
7]

ca
tI
II

ca
tI
II

FC
at
II
I
R

C
C
A
TA

C
TC

A
TC

C
G
A
TA

TT
G
A
C
C
A
TC

A
C
A
TA

C
TG

C
A
TG

A
TG

27
5

[3
7]

ca
tI
V

C
at
IV

F
ca
tI
V

R
C
C
G
G
TA

A
A
G
C
G
A
A
A
TT

G
TA

TC
C
A
TC

A
C
A
TA

C
TG

C
A
TG

A
TG

45
1

[3
7]

flo
R

Fl
oR

FF
lo
R

R
C
G
C
C
G
TC

A
TT

C
C
TC

A
C
C
TT

C
G
A
TC

A
C
G
G
G
C
C
A
C
G
C
TG

TG
TC

1
m
in

at
95

° C
,f
ol
lo
w
ed

by
40

cy
cl
es

of
15

sa
t9

5°
C
,3
0
sa

t5
0°
C
,

an
d
30

s
at

72
° C

21
5

[3
7]

4 International Journal of Microbiology



Ta
bl

e
1:

C
on

tin
ue
d.

Ta
rg
et

ge
ne

Pr
im

er
Pr
im

er
se
qu

en
ce

(5
′⟶

3′
)

C
on

di
tio

ns
A
m
pl
ic
on

siz
e
(b
p)

Re
fe
re
nc
es

In
te
gr
on

s
In
tI
1

In
tI
1-

FI
nt
I1
-R

G
C
C
TT

G
C
TG

TT
C
TT

C
TA

C
G
G
G
A
TG

C
C
TG

C
TT

G
TT

C
TA

C
G
G

94
° C

fo
r
5
m
in

(1
x)
;3

0
s
at

94
° C
,

30
s,
55
–6

0°
C
,2

m
in

at
72

° C
(3
5x
),

an
d
5
m
in

at
72

° C
55
8

[3
5]

In
tI
2

In
tI
2-

FI
nt
I2
-R

C
A
C
G
G
A
TA

TG
C
G
A
C
A
A
A
A
A
G
G
TG

TA
G
C
A
A
A
C
G
A
G
TG

A
C
G
A
A
A
TG

94
° C

fo
r
5
m
in

(1
x)
;9

4°
C
fo
r

1
m
in
,6

0°
C
fo
r
1
m
in
,7

2°
C
fo
r

2
m
in

(3
2x
),
an
d
72

° C
fo
r
10

m
in

74
0

[3
5]

International Journal of Microbiology 5



with pathogenesis mediated by many virulence factors [38]
and the survival of Campylobacter spp. [10]. Six (cdtA, cdtB,
cdtC, cadF, pldA, and ciaB) virulence genes were assessed in
this study including Campylobacter invasion antigens A, B,
and C (cdtA, cdtB, and cdtC), the Cytolethal distending toxin
(cdt) gene which encodes for a protein that releases cyto-
toxins that promote DNA damage [2, 10] and the inhibition
of the cell cycle in G2 or M phase [15].

'e presence of the cdt gene is linked with the severity of
human campylobacteriosis. 'e cdt, which is encoded by
three linked genes, namely, cdtA, cdtB, and cdtC, is one of

the most well-studied virulence factors in Campylobacter
spp. [10, 42]. In this study, the cdtC gene was the most
prevalent gene (42.3%) followed by cdtB and cdtA with
30.8% and 26.9%, respectively. 'e detection of cytotoxicity
genes (cdtA, cdtB, and cdtC) raises food safety concerns. Our
results are in line with previous studies where cdtA, cdtB,
and cdtC genes were detected in isolates from pigs and
chickens [2, 10, 38]. In this study, 23.1% of the isolates
harbored Campylobacter adhesion to the fibronectin (cadF)
gene, which facilitates adherence to fibronectin in contact
regions [15]. 'is was lower than the results obtained from

Table 2: Primer sequences of virulence genes and PCR conditions used in this study.

Target
gene Primer Primer sequence (5′⟶ 3′) Conditions Cycles Size

(bp) References

cdtA CDTA-
FCDTA-R CCTTGTGATGCAAGCAATC ACACTCCATTTGCTTTCTG

94°C for
15min, 94°C
for 1min,
49°C for
1min, and
72°C for

1min, 72°C
for 7min

45 370 [39]

cdtB CDTB-FCDTB-
R

GTTAAAATCCCCTGCTATCAACCA
GTTGGCACTTGGAATTTGCAAGGC

94°C for
15min, 94°C
for 1min,
51°C for

1min, and
72°C for

1min, 72°C
for 7min

45 495 [39]

cdtC CDTCFCDTCR CGATGAGTTAAAACAAAAAGATA
TTGGCATTATAGAAAATACAGTT

94°C for
15min, 94°C
for 1min,
48°C for
1min, and
72°C for

1min, 72°C
for 7min

45 182 [39]

cadF cadF-F2BcadF-
R1B TTGAAGGTAATTTAGATATGCTAATACCTAAAGTTGAAAC

95°C for
3min, 94°C
for 30 s, for
30 s, 43°C

and 72°C for
1min, 72°C
for 5min

45 400 [10]

ciaB CIAB-652CIAB
R1159 TGCGAGATTTTTCGAGAATGTGCCCGCCTTAGAACTTACA

95°C for
3min, 94°C
for 30 s, for
30 s, 54°C

and 72°C for
1min, 72°C
for 5min

45 527 [38]

pldA PLDA-FPLDA-
R AAGAGTGAGGCGAAATTCCAGCAAGATGGCAGGATTATCA

95°C for
3min, 94°C
for 30 s, for
30 s, 46°C

and 72°C for
1min, 72°C
for 5min

45 385 [38]
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previous studies where the cadF gene was detected in
Campylobacter isolated from communal chicken, patriotic
stool and water, human and cattle, children, and rawmeat in
South Africa [10, 20], Canada [43], Brazil [44], and South
Africa [45], with the prevalence of 18.4%, 85.7%, 100%,
37.3%, and 85.7%, respectively.

'e prevalence of the pldA gene was 34.6% which is high
as compared to other studies conducted in South Africa,
whereby this gene was detected at 7.4% [38]. 'is gene is
responsible for adhesion and invasion, whereas the ciaB gene
which contributes to the invasion of epithelial cells [3, 46]. In
this study, the ciaB gene was detected in 23.1% of the isolates.
Multiple virulence genes (n� 7) were observed in 12 isolates,
and one isolate harbored all six virulence genes investigated
in this study. 'ese results are in line with the reports of
Igwaran et al. and Han et al. [6, 47], where the isolates
carried more than three virulence genes. 'e detection of
these genes in these isolates indicates the pathogenic po-
tential of the isolates [10]. 'ey attach and invade the host
epithelial cells [20], thus leading to detrimental effects on
human health [3].

In our phylogenetic analysis, Campylobacter species
isolated from avian/chicken hosts formed a well-supported
monophyly with other closely related species of Campylo-
bacter from a diverse range of vertebrate hosts. 'e clus-
tering of C. jejuni and C. coli strains in one clade is similar to
the findings reported in previous studies [48, 49]. 'e se-
quencing of the 16S rRNA gene is commonly used to dif-
ferentiate various bacterial species. However, given the
highly conserved sequence similarity between the 16S rRNA
gene of C. jejuni and C. coli, the phylogenetic analysis results
may demonstrate a closer relatedness than what is truly
represented in the case. Furthermore, this underlines the
importance of using the multigene target approach in dis-
criminating and explaining the evolutionary history of these
species globally, as highlighted by numerous authors
[50, 51].'is approach could result in well-supported clades,
and this polytomy of C. jejuni and C. coli could be resolved.
Our two isolates were clustered together and both carried
Campylobacter invasion antigens A, B, and C (cdtA, cdtB,
cdtC, cadF, and ciaB). Both isolates carried 70% of antibiotic
resistance genes including class 1 and 2 integrons.

KTM NW1
Straincd

tA

cd
tB

cd
tC

ca
dF

cia
B

pl
dA

KTM NW2
KTM NW3
KTM NW4
KTM NW5
KTM NW6
KTM NW7
KTM NW8
KTM NW9
KTM N001
KTM N002
KTM N003
KTM N004
KTM N005
KTM N006
KTM N007
KTM N008
KTM W001
KTM W002
KTM W003
KTM W004
KTM W005
KTM W006
KTM W007
KTM W008
KTM W009

Pos (+)

Neg (-)

Figure 1: Distribution of the six virulence genes in C. jejuni isolates. Red colour represents the presence, and blue colour represents the
absence of the virulence gene.
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'e use of antibiotics in the poultry industry has become
a big concern globally due to the spread of antimicrobial
resistance [52]. 'ey are utilized in chicken farming com-
panies for feed efficiency, growth promotion, and disease
prevention [53–55]. 'eir continued use and misuse have
resulted in the emergence of antibiotic-resistant Campylo-
bacter [53, 54]. Between 1998 and 2011, ciprofloxacin re-
sistance in clinical C. jejuni isolates from commercial
chicken in South Africa increased from 1.4% to 79% [53].

Furthermore, between 1998 and 2011, tetracycline re-
sistance in C. jejuni isolated from commercial poultry in-
creased from 14.2% to 86% in South Africa, according to
Basardien, [53]. Despite the fact that the therapeutic use of
tetracycline in humans with campylobacteriosis has de-
creased in recent years [56], the high (80%) detection of the
tetracycline resistance gene is not surprising in this study.
Furthermore, the high resistance to nalidixic acid, eryth-
romycin (macrolide that inhibits protein synthesis and

translation) [57], and ciprofloxacin (fluoroquinolone that
acts on bacterial DNA replication) [58] observed in this
study raise more concerns to public health. 'is is because
antibiotic resistance in Campylobacter spp., isolated from
both humans and animals, has emerged as a major public
health concern [11, 59].

'e current study also investigated the occurrence of
integrons (class I and II) and resistance gene patterns such as
catI, catII, catIII, catIV, floR, ermB, tet(A), tet(O), tet(X),
tet(P), tet(W), and AmpC of C. jejuni isolated from faeces of
slaughter-age broiler chickens. Molecular detection of the
antibiotic resistance gene disclosed the presence of 9 genes of
which 2 were for tetracycline resistance (tetO (42.3%) and
tetA (26.9%)). 'is finding is similar to previous findings of
92.3%, 83.1%, and 43.5% of tetO gene that was detected in
pigs, poultry, and broiler chicken in South Africa, Iran, and
China, respectively [6, 60, 61]. More specifically, about 81%
of the isolates were tetracycline (TET) resistant and carried
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Figure 2: Phylogenetic tree of the 16S rRNA gene constructed by using the maximum likelihood method and Kimura 2-parameter model
amongCampylobacter species.'e node numbers represent the levels of bootstrap support based on 1000 replicates.'e scale bar represents
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deletion option). 'e diamonds indicate C. jejuni isolates of the current study.
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the tetO gene, 33% carried the tetA gene, and 14.2% carried
both tetO and tetA genes. Tetracycline inhibits protein
synthesis [58].'e tetO gene in C. jejuni can be found on the
chromosome or, more commonly, on the plasmid pTet
[18, 62, 63], and results in binding to the 30S subunit of
ribosomes to inhibit protein synthesis [58, 64]. In C. jejuni,
tetracycline resistance is encoded on a self-transmissible

plasmid [65]. 'e alteration tetracycline ribosomal target
and efflux are two known mechanisms of tetracycline re-
sistance [18].

It is important to note that few (28%) isolates in this
study carried the ampC gene encoding for ampicillin re-
sistance which is a lower detection prevalence as compared
to other reported studies with a 55% and 63% prevalence in

Table 3: Distribution of integrons, phenotypic, and genotypic antibiotic resistance in C. jejuni strains.

Samples
ID Strain Accession

number Antibiotic class Resistant genes pattern
Integrase

IntI I IntI II
1 KTM NWI MZ209102 NAL, TET, and ERY tetA, tetO, catI, catII, catIII, and floR + +

2 KTM
NW2 MZ209103 TET and ERY tetO, catI, and catII + +

3 KTM
NW3 MZ209104 NAL, TET, and ERY mcr-4 and ermB, + −

4 KTM
NW4 MZ209105 NAL, TET, and CIP tetA, catII, and catIII + −

5 KTM
NW5 MZ209106 NAL, TET, and ERY mcr-4, ampC, ermB, tetA, tetO, catI, catII, catIII,

and floR + −

6 KTM
NW6 MZ209107 NAL, ERY, and CIP tetA, catI, and catIII + +

7 KTM
NW7 MZ209108 NAL and TET tetO and floR + −

8 KTM
NW8 MZ209109 NAL, TET and ERY tetO, catI, catIV, and floR + +

9 KTM
NW9 MZ209110 NAL, TET, ERY, and

CIP ermB + +

10 KTM N001 MZ209111 NAL and TET mcr-4, ermB, tetA, catII, and catIII + +

11 KTM
N002 MZ209112 NAL, TET, and ERY mcr-4 and tetO + +

12 KTM
N003 MZ209113 NAL and ERY ermB and catI + +

13 KTM
N004 MZ209114 NAL, TET, and ERY mcr-4, ampC, ermB, and catIII + +

14 KTM
N005 MZ209115 NAL, TET, and ERY mcr-4, ermB, tetO, and catII + +

15 KTM
N006 MZ209116 NAL and ERY ermB and floR + +

16 KTM
N007 MZ209117 NAL, TET, and ERY ermB + +

17 KTM
N008 MZ209118 NAL, TET, and ERY mcr-4, ermB, tetA, and catII + −

18 KTM
W001 MZ209119 NAL, TET, and ERY mcr-4, tetA, catIII, and floR + +

19 KTM
W002 MZ209120 NAL, TET, and ERY tetO, tetA, and catI + +

20 KTM
W003 MZ209121 NAL, TET, and ERY tetO + +

21 KTM
W004 MZ209122 NAL and ERY ermB, tetO, catIII, and catIV + −

22 KTM
W005 MZ209123 NAL, TET, ERY, and

CIP ermB, catI, catIII, and floR + −

23 KTM
W006 MZ209124 NAL and ERY ermB and floR + +

24 KTM
W007 MZ209124 NAL, TET, and ERY tetO − +

25 KTM
W008 MZ209126 NAL, TET, ERY, and

CIP tetA and tetO − −

26 KTM
W009 MZ209127 NAL and TET ermB and tetO + −

International Journal of Microbiology 9



South Africa frommeat, milk, and water [6, 45]. Other ARGs
detected included catI, catII, catIII, catIV, floR, and ampC
and were 61.5%, 57.7%, 38.5%, 7.7%, 38.5%, and 8%, re-
spectively. Colistin (polymyxin that acts in the destructuring
bacterial cell membrane) has been screened by different
studies phenotypically on Campylobacter spp. [64, 66–68].
However, the current study tested this antibiotic genotyp-
ically, resulting in 42.1% of the isolates carrying the mcr-4
gene that encodes for colistin resistance. Some of the isolates
were carrying more than two resistance genes. Our findings
are also similar to a previous study in South Africa [39]
where 33% of the isolates were carrying more than two
resistance genes. Multidrug resistance genes discovered in
Campylobacter isolates may limit treatment options for
campylobacteriosis patients.

'e class I integrons have been reported to harbor
aminoglycoside resistance genes in C. jejuni [69]. Out of the
26 confirmed isolates, 88% carried the integrase gene (IntI1),
a gene-encoding class 1 integrons. Similar findings con-
cerning the predominance of class 1 integrons were reported
previously by Chang et al. [70] and El-Aziz et al. [71],
whereby 86% and 97% of the Campylobacter isolates from
animals and humans carried the intI1 gene in Taiwan and
Egypt, respectively.

5. Conclusion

'is study revealed the occurrence of virulence and anti-
biotic resistance genes from C. jejuni isolated from faecal

samples obtained from slaughter-age broiler chickens. 'e
antimicrobial resistance tests indicated that C. jejuni isolates
used in this study were resistant toward tetracycline, nali-
dixic acid, ciprofloxacin, and erythromycin and are further
harboring antibiotic resistance genes (catI, catII, catIII,
catIV, floR, ermB, tetO, tetA, mcr-4, and ampC) from dif-
ferent classes. 'e class I and II integrons were also detected
in this study. According to our knowledge, this is the first
study in South Africa to detect integrons II in Campylobacter
spp. (C. jejuni). Due to the negative impact on human health
of these findings on Campylobacter, cautious use of anti-
biotics in farming practices must be scaled up. Furthermore,
we need to develop appropriate control measures to reduce
the emergence of multidrug-resistant strains and to prevent
the spread of strains carrying virulent genes.
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M.-L. Hänninen, “Antimicrobial resistance and Campylo-
bacter jejuni and C. coli,” in Antimicrobial Resistance and
Food SafetyAcademic Press, Cambridge, MA, USA, 2015.

12 International Journal of Microbiology

https://etd.uwc.ac.za/handle/11394/5068


[65] W. J. Page, G. Huyer, M. Huyer, and E. A. Worobec,
“Characterization of the porins of Campylobacter jejuni and
Campylobacter coli and implications for antibiotic suscepti-
bility,”Antimicrobial Agents and Chemotherapy, vol. 33, no. 3,
pp. 297–303, 1989.

[66] M. M. Feizabadi, S. Dolatabadi, and M. R. Zali, “Isolation and
drug-resistant patterns of Campylobacter strains cultured
from diarrheic children in Tehran,” Japanese Journal of In-
fectious Diseases, vol. 60, no. 4, 2007.

[67] A. El Baaboua, M. El Maadoudi, A. Bouyahya et al., “Prev-
alence and antimicrobial profiling of Campylobacter spp.
isolated from meats, animal, and human feces in Northern of
Morocco,” International Journal of Food Microbiology,
vol. 349, Article ID 109202, 2021.

[68] B. Mart́ın-Maldonado, L. Montoro-Dasi, M. T. Pérez-Gracia
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