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Characteristic distribution of finite-
time Lyapunov exponents for 
chimera states
André E. Botha

Our fascination with chimera states stems partially from the somewhat paradoxical, yet fundamental 
trait of identical, and identically coupled, oscillators to split into spatially separated, coherently 
and incoherently oscillating groups. While the list of systems for which various types of chimeras 
have already been detected continues to grow, there is a corresponding increase in the number of 
mathematical analyses aimed at elucidating the fundamental reasons for this surprising behaviour. 
Based on the model systems, there are strong indications that chimera states may generally be 
ubiquitous in naturally occurring systems containing large numbers of coupled oscillators – certain 
biological systems and high-Tc superconducting materials, for example. In this work we suggest a 
new way of detecting and characterising chimera states. Specifically, it is shown that the probability 
densities of finite-time Lyapunov exponents, corresponding to chimera states, have a definite 
characteristic shape. Such distributions could be used as signatures of chimera states, particularly in 
systems for which the phases of all the oscillators cannot be measured directly. For such cases, we 
suggest that chimera states could perhaps be detected by reconstructing the characteristic distribution 
via standard embedding techniques, thus making it possible to detect chimera states in systems where 
they could otherwise exist unnoticed.

Lyapunov characteristic exponents1,2, or more briefly Lyapunov exponents (LEs)3 characterise the time-averaged 
exponential divergence (positive exponents) or convergence (negative exponents) of nearby orbits along orthog-
onal directions in the state space. In numerical calculations of the LEs the asymptotic time averaging is usually 
accomplished by using a sufficiently long time to allow the averages of the exponents to converge within a set 
tolerance. Although less frequently used, probability densities (distributions) of the exponents, averaged over 
a much shorter time, also contain valuable dynamic information. Such distributions are made up of so-called 
finite-time, or local, Lyapunov exponents (LLEs)4–6.

For typical chaos the distribution of LLEs can be accurately fitted to a Gaussian function4,5, whereas for inter-
mittent chaos, at crises, and for fully developed chaos, the distributions are characteristically non-Gaussian7. In 
the past the concept of LLEs has been used to characterise how secondary perturbations, localised in space, grow 
and spread throughout distributed dynamical (flow) systems with many degrees of freedom8. Variations on this 
technique, i.e. of co-moving or convective Lyapunov exponents8–11, continue to find new applications in a variety 
of different contexts, ranging from information theory12,13 to fluid flow (see, for example, ref. 14, and the refer-
ences therein). The notion of finite-time Lyapunov exponents, averaged over initial conditions, has also been used 
to characterise transient chaos15.

In view of the fact that LLEs have been employed successfully to characterise many different types of nonlin-
ear behaviour, it is natural to ask whether a dynamical system in a so-called chimera state16, may also possess a 
characteristic LLE distribution. Chimera states are a relatively new type of synchronisation phenomenon. They 
occur in systems of (usually) identical phase oscillators, which can be coupled, nonlocally16–20 (most frequently 
the case), globally (all-to-all)21 or even locally22. Depending on the nature of the coupling and the initial condi-
tions, the oscillators may divide up into two or more spatially distinct groups, producing a spatiotemporal pattern 
which simultaneously contains domains of coherent and incoherent oscillations. However, such chimera states 
are fundamentally merely a different type of deterministic (hyper)chaos, having one or more positive LE(s)23,24.

Although the existence of chimera states was predicted more than a decade ago in the seminal paper by 
Kuramoto and Battogtokh17, experimental validation has only occurred recently21,25–32. Other than these 
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fascinating experiments, chimera states may also be of physical importance in systems of Josephson junctions 
(JJs)33–35. Recently the spontaneous appearance of chimera states was found in numerical simulations of so-called 
SQUID metamaterials36. The superconducting quantum interference devices (SQUIDs) are made of JJs. A SQUID 
metamaterial is a one-dimensional linear array consisting of N identical SQUIDs, coupled together magneti-
cally. The existence of a chimera state in this model suggests that they may soon be detected experimentally in 
existing one and two-dimensional SQUID metamaterials. At present there is a renewed and ongoing interest in 
these intriguing materials, which have even been proposed as a way of detecting quantum signatures of chimera 
states37.

Certain highly anisotropic cuprate superconductors, such as Bi2Sr2CaCu2O8+δ, contain natural arrays of 
intrinsic Josephson junctions (IJJs)38. At present there is a concerted effort being made towards achieving mutual 
synchronisation between stacks of IJJs, with the view of enhancing the power of the emitted radiation in the ter-
ahertz region39. In such systems the IJJs are coupled together in a way that is essentially nonlocal; a result of the 
breakdown of charge neutrality40, or a diffusion current41,42. IJJs could also provide a model for studying other 
synchronisation phenomenon, such as chaos synchronisation43,44. To this end, one of the difficulties that must 
first be overcome is related to the fact that, although the voltage across a stack of junctions can be measured with 
extreme precision, present experimental setups do not provide direct access to the voltages across individual 
junctions. Thus the states of the individual junctions have to be inferred, somehow, from indirect measurements. 
This is where the customary method of phase space reconstruction via embedding and the local function approx-
imation3,5,45,46 may play an important role. In principle, the distribution of LLEs for a stack of intrinsic JJs could be 
obtained from a sufficiently long time series of the total voltage across the stack; thus, making it possible to detect 
the existence of a chimera state in the stack. At present there are several highly sophisticated techniques that could 
potentially be of use in this regard47–50.

While some previous studies of chimera states have computed their LEs23,24, to the best of our knowledge, only 
one study exists in which LLEs are used in connection with chimera states51. In ref. 51 the positions of the peaks in 
the distributions of LLEs were used to characterise the time evolution of intermittent chaotic chimeras occurring 
in coupled Kuramoto oscillators with inertia.

In view of the above considerations, LLE distributions may play an important role in characterising chimera 
states in general; but particularly in systems where the individual oscillators are not accessible experimentally. 
To explore this possibility we compute several distributions of LLEs corresponding to classic chimera states. We 
show that these distributions have a common characteristic shape which can be used to signal the occurrence of 
chimera states.

Results
Model equations. As a basis for our investigation we consider a general class of equations that support 
chimera states:
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A similar form to Eq. (1) was originally derived by Kuramoto52 as an approximation to the complex 
Ginzburg-Landau equation, under weak coupling, when amplitude changes may be neglected. With relatively 
few exceptions, the form of Eq. (1) encompasses the majority of systems that have been considered in the litera-
ture on chimera states. (See Appendix A of the review article by Panaggio and Abrams32, and the references given 
therein.) It describes the dynamics of a non-locally coupled system of N phase oscillators, where ϕ(xi, t) is the 
phase of the ith oscillator, located at position xi. For identical oscillators the distribution of natural frequencies is 
given by16–19 ωi =  ω∀ i. The function G(x) describes the non-local coupling between the oscillators16. K controls the 
overall coupling strength and the coefficients Cij are either a coupling matrix, in the context of networks53, or else 
they are quadrature weights, in models where large numbers of oscillators have been considered16–18. In the latter 
models the oscillators are assumed to be continuously distributed throughout a one-dimensional spatial domain, 
leading to an integro-differential equation of the form
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Since neither Cij nor G(xi −  xj) depend on the phases, the Jacobian matrix of the system (1) can be expressed 
analytically as
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Equation (3) allows us to compute the LLEs via the standard algorithm, as explained in the first subsection of 
Methods.

Distributions for intermittent chaos. For the purposes of testing our numerical codes, and for making 
comparisons, several of the previously reported distributions6,7 were accurately reproduced. Since the charac-
teristic distributions for intermittent chaos are closest to those found here for chimera states, we provide an 
example of intermittent dynamics in Fig. 1. This example was discussed in detail in ref. 7. As shown Fig. 1(a), the 
time series for the system shows that the system trajectory sporadically switches between almost periodic and 
chaotic behaviour. The trajectory in fact corresponds to classic (Type-I) tangent bifurcation intermittency54. In 
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agreement with Fig. 6 of ref. 7 the characteristic distribution of LLEs consists of a superposition of two independ-
ent Gaussians, with stretched exponential interpolation between the two. Qualitatively, one can rationalise the 
shape of the distribution by considering that each Gaussian is roughly centred on the average value of the max-
imal LEs that would characterise each type of motion separately, i.e. if there was no switching. The exponential 
region, in-between the two Gaussian distributions, stems from samples that were taken over time intervals during 
which the system switched from one type of behaviour to the other.

Characteristic distributions for chimera states. We now turn our attention to computing the LLEs for 
chimera states. For the purposes of comparison, we will make use of the four exemplary types of coupling func-
tions discussed in the second subsection of Methods.

We begin by considering an interesting case of Eq. (1), that was analysed in detail by Wolfrum and 
Omel’chenko23. This case corresponds to Coupling 3, with r =  0.35, Cij =  1/N, N =  40, K =  1, and α =  1.46. In 
Fig. 2(a) we show our results after 400000 simulation time units, for α =  1.478. Snapshots of the distribution in 
phases, ϕ i, the time averaged frequencies, ϕ

 i , as well as the time series of the order parameter, 
ϕ= ∑ =Z t i( ) exp( )k

N
k1 , clearly indicate that the oscillators are in a chimera state throughout the whole simula-

tion. In Fig. 2(b) the corresponding distributions for the maximal LLE (blue, solid line) and all LLEs (red, dashed 
line), both averaged over 256 time steps, can be seen. As observed in previous calculations of the LLEs7, the dis-
tribution of all the exponents together has roughly the same shape as that of the maximal exponent alone. It is of 
course much smoother, due to the larger number of samples in the distribution, and is somewhat shifted towards 
the negative exponent side. As we will show, the general shape of the distribution in Fig. 2(b) appears to be a char-
acteristic for all classic chimera states, arising from Eq. (1). The characteristic shape consists of an asymmetric 
Gaussian-like peak with a shoulder on either side.

At first the shape of the distributions for chimera states may seem quite similar to that of intermittent chaos 
[cf. Fig. 1(b)], but it is in fact distinctively different. For the case of intermittent chaos, the LLEs contributing to 
the relatively narrow peak, that can be seen on the left side of Fig. 1(b), come from samples that were taken during 
time intervals for which the trajectory stays entirely in the laminar phase7. The main peak for intermittency is 
therefore centred on a value of λ ≥  0. By contrast, the much broader main peak of the characteristic distribution 
for a chimera state is always centred on some negative value of λ. Furthermore, as can be seen in Fig. 2(b), the 
chimera state distribution spans a more or less equal range in the positive and negative directions along the λ axis 
(measured from λ =  0).

To make the above qualitative observations more precise we have fitted a variety of distributions correspond-
ing to chimera states (all obtained by solving Equation (1) at different parameters and for a selection of coupling 
functions), and found that all such distributions can be fitted accurately by a linear combination of four functions 
(see the third subsection of Methods). By contrast, distributions of LLEs for intermittent chaos can be fitted to a 
comparable accuracy by a linear combination of only two Gaussians and one exponential function. The distribu-
tions for chimera states do not lend themselves to a simple physical interpretation, as mentioned for the case of 
intermittent chaos. Therefore, a discussion of how the fluctuations of the dynamic instabilities are related to the 
peak and shoulders, will be postponed to the last subsection of Results.

In the next three subsections we show that the general shape of the characteristic distribution manifests itself 
over a wide range of parameters and different coupling kernels; as long as the system is in a stable chimera states, 
having only two domains, as in the classic cases16–18. When the dynamics of the system does not support such 
chimera states, the shape of the characteristic distributions become radically different, as we shall see below.

Figure 1. Characteristic distribution for intermittent chaos. (a) Time series showing intermittent chaos in 
the Lorenz system: = −x a y x( ), = − −y x r z y( ) , = −z xy bz, at parameter values a =  10, r =  100.796 and 
b =  8/3. In this simulation a time step Δ t =  1/64 and initial condition (1, 5, 10) were used. (b) Logarithmic plot 
of the corresponding probability density, P3(λ, 2048), for the distribution of (10000) maximal LLEs, λ, each 
obtained by averaging over 2048 time steps. The bin width was set to 0.02 and the total simulation time was 
320000. An explanation of the notation P3(λ, 2048) is provided  in the first subsection of Methods.
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Intermittent chimera states. Based on an analysis of the system in Fig. 2, at only one value (α =  1.46) of 
the phase-lag parameter19,25, Wolfrum and Omel’chenko23 concluded that, “Chimera states are chaotic transients”. 
Notwithstanding the experimental observations, there have also been several numerical counter-examples, 
in which stable chimera states could be simulated, independent of the population size or initial conditions21. 
Moreover, as Suda and Okuda20 have shown, the system in ref. 23 does support stable chimera states at other val-
ues of α. Therefore, in a general sense, the claim that chimera states are chaotic transients, is certainly not valid20.

Consistent with the above findings, our numerical calculations also indicate that the system in Fig. 2 is capable 
of supporting different chimera states, depending on the value of α. In Fig. 3, we show our results for α =  1.481, 
1.513, 1.568, and 1.571. In Fig. 3(a) the time series of the order parameters can be seen at the different values of α, 
while the corresponding distributions are shown in Fig. 3(b). Interestingly, in the time series for α =  1.568 (third 
panel from the top), at least time intervals (marked by the two black arrows) can be seen where the order param-
eter sporadically drops down to almost zero, i.e. intermittently the chimera state is lost. For the majority of the 
simulation time, however, Z(t) hovers around 0.6. Random spot checks on the phases and averaged frequencies 
show that the system is unambiguously in a chimera state for times when .⪆Z t( ) 0 4. Thus, at α =  1.568, the chi-
mera state is intermittent.

In Fig. 3(b) it can be seen that the characteristic distribution for the chimera state becomes flat-topped when 
the state is intermittent. Consistent with our expectations, once the chimera disappears completely, the distribu-
tion for the completely incoherent oscillations, is Gaussian in form – corresponding to typical chaos. On the loga-
rithmic plot, in Fig. 3(b), it appears as a parabola. We emphasize that it is not out intention to study the transitions 
that occur here, as α changes. The purpose of the above considerations is merely to show that the distributions 
accurately reflect the different dynamic regimes that occur.

Different averaging times. Although characteristic distributions of LLEs are stationary over a wide range 
of averaging times, different averaging times, used to compute the LLEs, can have an effect on the widths (and 
hence shapes) of the distributions7. Our numerical calculations are consistent with this expectation. For very 
short averaging times (comparable with one integration time step), the distributions are not stationary, i.e. they 
keep changing their shape, while in the asymptotic limit of (approximately) infinite averaging time, they become 
delta functions. However, provided these two extremes are avoided, the distributions are stationary and maintain 
their characteristic shapes over a relatively wide range of averaging times.

To investigate the effect of using different averaging times, we consider the classic chimera state that was 
reported by Abrams and Strogatz16. This case corresponds to Coupling 2, with N =  256, A =  0.995, and α =  1.39 
in Eq. (2). As in ref. 16, we solve this system by using Simpson’s 3/8 quadrature rule55, for which Ck1 =  3h/8, 
Ck2 =  9h/8, Ck3 =  9h/8, Ck4 =  6h/8, Ck5 =  9h/8, Ck6 =  9h/8, Ck7 =  6h/8, … , CkN−1 =  9h/8, CkN =  3h/8. Here h =  1/
(N −  1) is the separation between the oscillators.

Figure 4(a) shows the distribution of phases, averaged frequencies, and the time series of the order parameter 
for this chimera state. More pertinent to the current discussion, Fig. 4(b) shows the distributions of the LLEs, 
obtained by averaging over successively larger time intervals, starting from an averaging time of 4/128 =  0.03125, 
which corresponds to only 4 time steps. All the distributions shown are stationary (in time), and their character-
istic shape remains clearly discernible for a range of averaging times, spanning about two orders of magnitude. 
We notice here that the left shoulder of the characteristic distribution is somewhat less prominent (even at the 
shorter sampling times), in comparison to the previously seen characteristic distributions. This is simply because 
the position of the main asymmetric peak, is now much closer to the left shoulder. It will also be noticed that the 

Figure 2. Characteristic distribution for a chimera state. (a) Instantaneous distribution of phases (top panel), 
the time averaged frequencies (middle panel), and a time series of the order parameter (bottom panel), for 
Coupling 3, as in ref. 23. Here ϕ

 i  was averaged over 16384 time steps, with Δ t =  1/128. (b) Corresponding 
probability distribution of the maximal LLEs (blue, solid line) and all LLEs (red, dashed line), averaged over 256 
time steps. The dotted (black) curve is the fitted distribution (see third subsection of Methods) for the maximal 
exponents, while the vertical dotted lines indicate the values of the (long-time averaged) LEs, the largest of these 
being λmax =  0.069.
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main peak is more asymmetric and sharper than before, as it now overlaps the left shoulder. As we will show in 
the next subsection, the position of the main peak, relative to the two shoulders, depends in a regular way on the 
value of the phase-lag parameter, within the approximate range: 1.3 <  α <  1.57.

From our simulations we have deduced a practical guideline for estimating the upper bounds of averaging 
times that still produce useful (easily recognisable) characteristic distributions. It appears that, as long as the 
averaging time is substantially less than the average rotational period of the coherent bunch of oscillators in the 
system, the characteristic shape of the distribution is easily discernible. In Fig. 4(a), for example, the average 
rotational period of the coherent bunch can be seen to be approximately 2π/0.72 ≈  8.7, while the largest averaging 
time shown in Fig. 4(b) (512/128 =  4) is roughly half this value.

Distributions for different N and α. We now consider how the LLE distributions vary in response to 
changes in the system size and phase-lag parameter. Figure 5(a) shows the distributions obtained for the system 
of Fig. 2 (with α =  1.46), as the number of oscillators is successively doubled, starting from N =  50. In all four 
cases we observe that the distributions maintain their characteristic shape, as described previously. However, as N 
increases, the two shoulders and central peak, become more pronounced, and the overall distribution appears to 
converge towards the (computationally unobtainable) limiting case of N →  ∞ , i.e. we see that the overall change 
in successive distributions become less apparent, even though N is doubled each time.

In Fig. 5(b) we consider again Coupling 2, but this time at six different phase-lag parameters. Here one can 
clearly see how the position of the main asymmetric peak shifts in response changes in α. At the lowest value the 
main peak is positioned close to the left shoulder, while at the high value, it is almost midway between the two 
shoulders. It should be noted that the main peak never moves beyond these two extremes, because the chimera 
state becomes unstable for slightly smaller or larger values.

Other coupling schemes. At present, chimera states have been observed in simulations of Eq. (1), for 
a variety of different couplings. Different studies have also revealed several new types of chimeras, including 
breathing56, virtual28, intermittent chaotic31,51, travelling57, and even imperfect chimeras30. Clearly it is beyond the 
scope of the present work to investigate the possibility of using the characteristic distributions to identify all these 
other types of chimeras. In this subsection we show that the different couplings all lead to the characteristic shape, 
provided that the chimeras are of the traditional type, i.e. they consist of only two domains and have a relatively 
constant (in time) order parameter. Figure 6 shows a comparison of the distributions for six different coupling 
schemes, including one that produces a multiple breathing chimera (see Fig. 6(c)). As in the case of the intermit-
tently appearing chimera, this multiple breathing chimera has an uncharacteristic shape.

Dynamic origin of the characteristic shape. So far we have not considered how the observed charac-
teristic shape of the distributions for chimera states comes about. In particular, one would like to understand the 
origin of the asymmetric central peak, with its two shoulders. How, precisely, may the peaks in the characteristic 
distribution be related (if at all) to the constituent domains of the chimera, i.e. the coherent domain, the incoher-
ent domain, and the dividing transitional domain? One way to address this question formally, could be via the 
theory of covariant Lyapunov vectors (CLVs)58–61. By this relatively new technique, the Lyapunov exponents may 
be numerically calculated in the directions of a spanning set of covariant vectors, which naturally co-rotate with 
the flow; thus, making it possible to keep track of how the different degrees of freedom may be contributing to the 
distribution. However, the efficient implementation of one or more of the available algorithms for this purpose 
would, in and of itself, constitute a whole new research project.

Figure 3. Transient and intermittent chimeras. (a) Time series of the order parameter ϕ= ∑ =Z t i( ) exp( )k
N

k1  
for three different types of chimera states (upper three panels) and typical chaos (bottom panel). In the top panel 
(α =  1.481), the chimera state is transient and the oscillators all synchronise for t ⪆t 225000. In the second panel 
from the top (α =  1.513), the state is stable, while in the third panel from the top (α =  1.568), it appears 
intermittently. The two downward pointing arrows, in the third panel from the top, show two time intervals during 
which the chimera state disappears. (b) The corresponding characteristic distributions of the maximal LLEs.
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Here, to develop a more intuitive (phenomenological) understanding of how the shape in the characteristic 
distribution comes about, we have performed many additional simulations for the same system that was dis-
cussed in connection with Fig. 5(a). Specifically, a total of 251 simulations were performed at the coupling ranges 
r =  0.1, 0.101, 0, 102, … , 0.349, 0.35, all at N =  100. These results are summarized by Fig. 7. At the two smallest 
coupling ranges shown (r =  0.1 and 0.15), no chimera state could be simulated, irrespective of the optimally pre-
pared initial conditions that were employed. Instead, as summarised in Fig. 7(a), for the case r =  0.1, we found 
that the system rapidly evolves to a state where all the oscillators are oscillating incoherently. This state persists for 
only a finite time ( ⪅ 7500), as can be seen in the lower panel of Fig. 7(a), before changing either to a synchronous 
state, or a splay state, for which there is a constant phase separation between all the oscillators. The corresponding 
distributions of LLEs, which are shown in Fig. 7(b), provide a good indication that the same basic dynamics giv-
ing rise to the synchronous or splay state may also be contributing to the central peak in the characteristic distri-
bution. In support of this assertion, in Fig. 7(b), one sees that the distributions corresponding to r =  0.1 and 0.15 
consist of two Gaussians; the broader Gaussian originates from LLEs sampled during the incoherent part of the 
trajectory, while the much narrower peak (spike) originates from the end part. Furthermore, as the coupling 
range increases, the spikes systematically shift towards the position where the asymmetric central peak eventually 
manifests itself for the larger coupling ranges (as shown for r =  0.3 and 0.35), for which chimeras do occur. Thus 

Figure 4. Different averaging times. (a) The chimera state for the system described in ref. 16, showing a 
snapshot of the phases (top panel) and the averaged frequencies (middle panel), after an integration time 
of 20000 dimensionless units. The averaging was done over 16384 time steps, each of duration Δ t =  1/128. 
The bottom panel shows the time series of the order parameter Z(t). (b) Comparison of the characteristic 
distributions of all LLEs for the system in (a), obtained by averaging the LLEs over 4, 16, 64, 256, and 512 time 
steps, respectively. The distributions for the lower three averaging times practically coincide.

Figure 5. Variation with system size and phase-lag parameter. (a) Comparison of the distributions for 
chimera states as the number of oscillators, N, is successively doubled. Other than the change in N, all the 
parameters for this system are the same as for Fig. 2. The same system, for N =  200, K =  2 and α =  1.46, was 
studied in ref. 62, where the position of the incoherent bunch of oscillators was shown to execute Brownian 
motion; a finite-size effect that vanishes in the thermodynamic limit62. Intriguingly, here the successive 
characteristic distributions appear to be converging for large N. (b) Distributions at different α, for Coupling 2 
with Cij =  1/N, A =  0.995 and K =  1. As α increases to its maximum (π/2 ≈  1.57), the position of the main peak 
systematically shifts, from close to the left shoulder, towards the middle of the two shoulders.
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there are indications that the central peaks seen in the characteristic distributions may be related to degrees of 
freedom corresponding to the coherent domain. At the same time, it should be remembered that, for a chimera 
state, there is an interdependence between the two (mutually existing) domains: the coherence in the one domain 
is supported by the incoherence in the other, and vice versa.

Two shoulders on either side of the asymmetric peak may also reflect the delicate balance on which the chime-
ra’s existence relies. Really, due to the form of the coupling in this model the directions of growth and contraction 
of vectors in the tangent space are governed by a Jacobian matrix which is essentially of the same form as the 
coupling itself. Each element of the Jacobian matrix [see Eq. (3)] is merely phase shifted by π/2. Furthermore, the 
maximum and minimum values that elements in the Jacobian matrix can assume are limited by the two extrema 
of the cosine function. This could explain why there are two shoulders in the characteristic distribution; one 
corresponding to pairs of oscillators at or near the maximal attraction, the other to pairs which are near maximal 
repulsion.

Discussion
We have calculated the probability distributions of local Lyapunov exponents (LLEs) corresponding to several 
classic chimera states. We found that these distributions all had a specific shape, which can be described as con-
sisting of a main asymmetric Gaussian-like peak, with a shoulder to either side. Generally the position of the main 
peak is located nearer to the left shoulder.

In principle, knowledge of the expected shape of the characteristic distribution could be used to identify the 
occurrence of chimera states in real physical systems, particularly in those for which it may not be possible to 
measure, directly the phases of all the oscillators. In such cases, we envisage that advanced embedding techniques 
could be employed to extract the characteristic distribution of LLEs, which would then be a useful signature of the 
chimera state (for it would otherwise have been undetectable). The present results may thus find application in a 
variety of systems where chimera states are thought possible, but are not directly/easily observable. A comprehen-
sive review of the relevant real-world systems may be found in ref. 32 and the references therein.

Figure 6. Other types of coupling. (a) Illustration of the six different couplings corresponding to the adjacent 
distributions. (b) LLE distributions corresponding to the couplings in (a). All the distributions, except the 
exponential coupling 4(1), which has a fraction, η =  16/256, of nearest links removed, are of the characteristic 
shape. Note that (a,b) share the same legend. (c) Snapshot of the phases (top panel), averaged frequencies 
(middle panel), and the time series of the order parameter (bottom panel) for the distribution 4(1), which 
does not conform to the characteristic shape for a chimera state. Here we see that the nonconforming case 
corresponds to a multiple, breathing chimera, i.e. one consisting of more than two different domains, showing 
significant oscillations in Z(t).
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Although we have provided a qualitative discussion of how the shape of the characteristic distribution may 
be related to the nature of the coupling and the different domains of oscillation in the chimera state, the problem 
of obtaining a more quantitative (mathematical) proof for this question remains open. It has been suggested that 
the method of covariant Lyapunov vectors58–61, which is increasingly being applied to a wide range of nonlinear 
models, may provide a suitable framework for such future investigations.

The case of intermittently appearing chimeras, as discussed in connection with Fig. 3, is currently of particular 
interest, in view of the fact that intermittent chaotic chimeras have only recently been reported in the literature 
for a much more complicated system31. This system consisted of two symmetrically coupled populations of N 
oscillators, where one population is synchronised and the other jumps erratically between laminar and turbulent 
phases31. The present considerations indicate that such intermittency also arises in the original prototype system 
for chimera states, although it was not previously reported.

Methods
Calculation of the LLE probability density. Consider an autonomous N-dimensional continuous 
dynamical system of the form =x F x( ). The probability density (distribution) of the th LLE, λP M( , )N , is 
defined so that λ λ P Md ( , )N  equals the probability that λ M takes on a value between λ and λ λ+ d , where

∑λ = .
=

 

M
e1 ln

(4)
M

j

M

j
1

Here e0  is the th vector of the initial set of orthonormal vectors, and ej  is its time evolved value under the 
action of the linearised equations of motion after j time steps. Thus the ej  are obtained by solving the equations

=� � �e JF x e{ ( )} , (5)

where J is the system Jacobian. Notice that λ M is the th exponent averaged over M time steps. Because the vectors 
e  diverge exponentially in magnitude, and tend to align themselves along the local direction of most rapid 

growth, their exact directions may rapidly become numerically indistinguishable. To overcome this difficulty, as 
explained in refs 1–3, Gram-Schmidt orthogonalisation can be performed on the set of frame vectors. In the 
present work we have performed the Gram-Schmidt orthogonalisation after every time step.

As a starting point for our calculations we made use of the Fortran implementation provided by Wolf, Swift 
and Swinney3, for the case when the system Jacobian matrix is known analytically. Their code required relatively 
few modifications. Other than changing the system equations, the code was rewritten in such a way that it could 
be called repeatedly over successive segments of the trajectory, at the same time returning a time series of the 
trajectory, from which the averages ϕ

 i  could be computed. To integrate the system, i.e. Eq. (1) and its linearisa-
tion, we employed a fifth-order Runge-Kutta integration scheme, with a fixed time step, Δ t =  1/64, unless indi-
cated differently. To check the numerical convergence of the calculations, all the calculations were repeated with 
the time step halved.

Figure 7. Dynamic origin of the characteristic shape. (a) Distribution of the phases (top panel), average 
frequencies (middle panel) and the time series of the order parameters (bottom panel), for the same system 
as in Fig. 5(a), with N =  100 and at different coupling ranges r. For .⪅r 0 295 there is no persistent chimera 
state, and the system eventually evolves to a splay or synchronous state, as shown for r =  0.1 and 0.2, 
respectively. For .⪆r 0 3 chimera states appear, as shown for r =  0.3 and 0.35. As the coupling range increases 
from 0.3 to 0.35 we observe that the amplitudes of the fluctuations in the time series of the corresponding 
order parameters for the chimera states decrease, and the average values of the order parameters increase.  
(b) The distributions of LLEs corresponding to four different coupling ranges. The sharp Gaussian peaks that 
can be seen in the distributions for r =  0.1 and 0.15 are due to contributions from the end portions of the 
(synchronous or splay state) trajectories. As the coupling range exceeds the threshold for the formation of 
chimeras ( .⪆r 0 3) the corresponding distributions assume the characteristic shape.
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Coupling Functions. Arguably, a widely studied model of chimera states consists of N identical (ω =  0) non-
locally coupled phase oscillators which are distributed uniformly over an interval, with periodic boundary con-
ditions. Within this model, different normalisations of the coupling function G(x), and the choice of the interval 
length itself, can lead to different coupling ranges and strengths. In the literature on chimera states, several differ-
ent interval lengths and normalisations have been chosen. This makes it difficult to obtain a clear understanding 
of how systematic changes in the system parameters, and different forms of the coupling, may lead to the wide 
variety of dynamical behaviours that have so far been reported.

In the present work, we fix the interval to be 

− 


,1

2
1
2

 and consistently make use of the normalisation 
∑ = ∑ − =C G x x( ) 1j

N
ij j

N
i j  (i =  1, 2, … , N). For convenience, more details about our exemplary coupling func-

tions are provided below. We list these functions in chronological order, as they first appeared in the literature.

Coupling 1: exponential. This exponentially decaying form of the coupling function was derived in the earliest 
report on chimera states, by Kuramoto and Battogtokh17, where = κ κ−G x e( ) x

2
 (with κ =  4) was normalised to 

unity over the entire real line, even though the oscillators were distributed only over the interval [0, 1]. When 
normalised to unity over 


− 


,1

2
1
2

, we find that

κ
=

−
.

κ

κ

−

−G x e
e

( )
2(1 ) (6)

x

/2

Coupling 2: co-sinusoidal. This co-sinusoidal form of coupling was devised, in the seminal paper by Abrams and 
Strogatz16, as a form which allowed Eq. (2) to be solved analytically. In the work by Abrams and Strogatz16,18, G(x) 
is normalised to unity over the interval [− π, π]. When normalised over the interval 


− 


,1

2
1
2

,

π= +G x A x( ) 1 cos(2 ), (7)

where ⩽ A0 1, as usual.

Coupling 3: rectangular. The rectangular coupling function was introduced in the literature on chimera states by 
Omel’chenko et al.62, where the interval [− 1, 1] was considered. It is given by

=



 .

⩽G x r x r( ) 1/(2 ), if
0, otherwise (8)

Clearly this function is normalised over any interval that is equal to or wider than twice the coupling length r, 
but one of course has to adjust r according to the chosen interval length. For example, the coupling range of 
r =  0.7, that was used in ref. 62, is equivalent to r =  0.35, over the interval 


− 


,1

2
1
2

.
We note that the model equation that was used in ref. 62 corresponds to K =  2 and Cij =  1/N in Eq. (1). It may 

therefore be viewed as the result of approximating the integral in Eq. (2) by a left Riemann sum, with an added 
factor of 2 in the coupling strength K.

Coupling 4: systematic or random link removal. In networks the idea of systematically or randomly removing the 
coupling (or links) between the oscillators (nodes) may also be related to chimera states. Recently, for example, it 
has been shown that such perturbations of the coupling configuration can lead to multicluster chimera states53,63. 
In the article by Nan Yao et al.63, the emergence of multicluster chimera states was reported to be a consequence 
of the systematic removal of a certain fraction (η =  2L/N) of nearest links in the network. In the present work, as 
in ref. 63, the coupling matrix Cij (in Equation (1)) is used to control the number of links between the oscillators. 
In particular, to remove the nearest L links from the oscillator i, we set

=





− ≤ − ≥ −
− − .

C i j L i j N L
N L

0, if or
1/( 2 1), otherwise (9)

ij

We use a similar scheme to remove a certain fraction of links, randomly, always ensuring that the normalisa-
tion of Cij is maintained. In passing, we note that, in ref. 63, the coupling matrix is not consistently normalised to 
unity. There, the η∑ = −C N (1 )j ij , leading to a decrease in the coupling strength (equivalent to setting 
K =  2π(1 −  η) in the present work), as L increases (L =  1, 2, … , N/2).

Fitting the characteristic distribution. It is found that the characteristic distribution of LLEs for chimera 
states can be fitted accurately by a linear combination of the form g1(x) +  f(x) +  g2(x) +  B exp(− x/τ), where g1 and 
g2 are Gaussians given by

σ π
µ σ= − −g x A x( )

2
exp[ (( )/ 2 ) ] ,

(10)i
i

i
i i

2 2

and f(x) is an exponentially modified Gaussian, given by
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γ µ γσ
γ

µ γσ

σ
=





− + 








+ − 




f x A x x( )
2

exp
2/

erfc
2

,
(11)

2 2

2

where erfc is the complementary error function55. To perform the fitting we made use of the Python package 
lmfit64, which stands for Non-Linear Least-Squares Minimisation and Curve-Fitting for Python. The initial 
parameters were chosen so that the Guassians were roughly centred on the two shoulders of the distribution, with 
f(x) on the central main peak.

As an example, the fitted distribution has been plotted in Fig. 2(b) as a dotted (black) line. Although the 
fitted distributions have not been shown in subsequent figures, fitting curves of comparable accuracy (reduced 
χ2 <  0.002) have been obtained with the same formula for all the chimera state distributions discussed in this 
article.
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