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Abstract: Taiwan is an island with a humid subtropical climate. The relatively warm seawater
results in biofouling of the surfaces of marine facilities. Biocide application is a common practice for
combating and eliminating adhesive fouling. However, a single type of biocide may have limited
antimicrobial effects due to the relatively high microbial diversity in marine environments. Therefore,
applying a mixture of various biocides may be necessary. In this study, the antimicrobial and anti-
corrosion properties of a newly designed composite biocide, namely a combination of thymol and
benzyldimethyldodecylammonium chloride, were investigated by applying the biocide to 304 stain-
less steel substrates immersed in inocula containing bacterial strains from Tamsui and Zuoying
harbors. The ability of 3TB and 5TB treatments to prevent sessile cells and biofilm formation on the
304 stainless steel coupon surface was determined through scanning electron microscopy investi-
gation. In addition, confocal laser scanning microscopy indicated that the 5TB treatment achieved
a greater bactericidal effect in both the Tamsui and Zuoying inocula. Moreover, electrochemical
impedance spectroscopy revealed that the diameter of the Nyquist semicircle was almost completely
unaffected by Tamsui or Zuoying under the 5TB treatment. Through these assessments of antimicro-
bial activity and corrosion resistance, 5TB treatment was demonstrated to have superior bactericidal
activity against mixed strains in both southern and northern Taiwanese marine environments.

Keywords: biofouling; composite biocides; corrosion; electrochemical impedance spectroscopy;
confocal laser scanning microscopy

1. Introduction

Corrosion is a common phenomenon that leads to the failure of engineering materials
in marine environments. The economic losses resulting from microbiologically influenced
corrosion constitute approximately 20% of all losses attributable to corrosion, and the cost
of microbiologically influenced corrosion is equivalent to 2% of the gross national product
of developed countries [1,2]. Thus, the effect of microbiologically influenced corrosion
should not be overlooked. The failure of materials due to microbiologically influenced cor-
rosion is mainly attributable to the formation of biofilms containing mixed microorganisms.
Microbiologically influenced corrosion is an electrochemical process involving interactions
among microorganisms, metals, and the corrosive environment. Various studies have
focused on the aerobic and anaerobic microbial corrosion mechanisms by single species of
bacteria, including sulfate-reducing bacteria (SRB) [3–5], iron-oxidizing bacteria (IOB) [6–8],
nitrate-reducing bacteria (NRB) [9,10], and methanogenic bacteria [11,12], among other
types [13–15]. Numerous researchers have made progress in studying the corrosion be-
havior and interactions in a mixed system of SRB/IOB [16,17] and SRB/NRB [18,19]. The
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literature indicates that the synergistic action of mixed bacterial strains exerts a strong
corrosive effect on metals. Furthermore, biofilms formed by mixed strains are relatively
loose and provide a channel for oxygen transmission, and mixed strains produce corro-
sive metabolites such as sulfides, phosphides, and other acids, which further exacerbate
localized corrosion.

To control biocorrosion, various techniques have been employed, including protec-
tive coatings [20], corrosion inhibitors [21], cathodic production [22,23], biological ap-
proaches [24], and biocides [25,26]. Among these methods, all of which are based on
the inhibition of bacterial growth and excessive biofilm formation, biocides are the most
commonly used. However, many traditional biocides, such as tributyltin and heavy metal
compounds, are environmentally hazardous and may exert adverse effects on immune
responses in aquatic animals due to the release of disinfectant byproducts. Herein, the
use of less toxic or environmentally friendly compounds for treating microbiologically
influenced corrosion is considered.

Benzyldimethyldodecylammonium chloride (BDMDAC) consists of quaternary am-
monium compounds (QACs) and benzalkonium chloride (BAC), a type of cationic surfac-
tant comprising two components [27]. QAC antimicrobial activity has been attributed to
their long alkyl chains, which promote electrostatic interactions with negatively charged
areas on cell membranes [28,29]. Thus, QAC cations and anionic groups of membrane
polymers can be cross-linked to disrupt bacterial cells. In our previous study, the antimi-
crobial properties of BDMDAC in anaerobic conditions against Dulsulfovibrio desulfuricans
were investigated. We previously observed that the application of 25 ppm BDMDAC
achieved satisfactory results against microbial corrosion by D. desulfuricans [30]. Accord-
ing to their respective material safety datasheets (Alfa Aesar, Ward Hill, MA, USA), the
medial lethal dose (LD50) of BDMDAC indicates it is less toxic than tributyltin (LD50 of
BDMDAC: 400 mg/kg in rats; LD50 of tributyltin: 132 mg/kg in rats), but the toxicity of
BDMDAC continues to call into question its use. Furthermore, a single BDMDAC may
exert limited antimicrobial effects due to the relatively high microbial diversity of marine
environments. Therefore, the application of a mixture of various biocides may be required
in local seawater.

Thymol is a monoterpenoid phenol derivative of cymene found in thyme essential
oil. The majority of essential oils are classified as generally recognized as safe substances
by the US Food and Drug Administration [31]. However, thymol is easily degraded in the
marine environment because of its chemical structure [32]. Owing to its lipophilic proper-
ties, thymol exhibits inhibitory activity against sessile organisms and biofilm formation,
which can reduce the stability of cell membranes and interfere with the structure of the
phospholipid bilayer [33,34]. Notably, the LD50 of thymol (LD50 of thymol: 980 mg/kg in
rats) is two to three times higher than that of BDMDAC, indicating thymol’s potential for
use in environmentally friendly antibiofouling strategies.

The goal of this study was to evaluate the antimicrobial properties of composite
biocides by examining the effect of a mixture of thymol and BDMDAC as a composite
biocide against Shewanella and Vibrio. This study is the first to report the biocidal activity of
a composite biocide against representative bacterial strains in the coastal waters of Taiwan.
The usage and concentrations of each compound in the composite biocide were determined
by their minimum inhibitory concentrations (MICs). The influence of this composite
biocide and mixed field strains on the corrosion behavior of 304 stainless steel (304 SS) was
systematically analyzed using polarization curves, scanning electron microscopy (SEM),
and confocal laser scanning microscopy (CLSM).

2. Materials and Methods
2.1. Sample Preparation

The square 304 SS coupons (30 mm × 30 mm × 1 mm) were prepared. The surfaces
were abraded with silicon carbide papers of varying grades (80, 400, 800, and 1200 grit),
rinsed with deionized water, and ultrasonically washed with ethanol. All coupons were
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placed in an experimental laminar airflow chamber and sterilized under an ultraviolet
lamp (Genprice Inc., San Jose, CA, USA) for 60 min before incubation.

2.2. Mixed Strains and Culture Media

The study sites were the harbors of Tamsui and Zuoying (25◦10′59.1′′ N, 121◦24′41.7′′ E
and 22◦41′22.4′′ N, 120◦16′25.9′′ E), which are located in northern and southern Taiwan,
respectively. Mixed strains were obtained separately from these harbors and grown aerobi-
cally in Marine Broth 2216 (Zobell Marine Broth: NaCl, 19.45 g/L; MgCl2, 5.9 g/L; MgSO4,
3.24 g/L; CaCl2, 1.8 g/L; KCl, 0.55 g/L; NaHPO3, 0.16 g/L; ferric citrate, 0.1 g/L; KBr,
0.08 g/L; peptone, 5.0 g/L; yeast extract, 1.0 g/L). Prior to each test, the mixed strains were
inoculated with broth culture for 24 h, and bacterial cultivation was performed at 30 ◦C.

2.3. Mixed Strain Purification

Agar dilution is the most commonly used method to purify bacteria and thus identify
representative species. In the present study, a 1 mL aliquot of a bacterial suspension was
transferred from the water sample to a 1.5 mL microcentrifuge tube and then diluted with
sterile water to produce solutions of varying concentrations. Each solution was spread on
a separate marine broth agar plate. The inoculated plates were incubated for 24 h at 30 ◦C.
The colony morphologies after each purification step are graphically presented in Figure 1.
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Figure 1. Colony morphology of Zuoying inocula on the marine broth agar.

2.4. Polymerase Chain Reaction and Strain Identification

For strain identification, we amplified the genomic DNA extracted from isolated
colonies using primers. Polymerase chain reaction (PCR) was performed in a final volume
of 25 µL containing a template, 1.25 units of YEAtaq II DNA polymerase (Yeastern Biotech,
Taipei, Taiwan), 10× buffer, 0.2 µM primers, 0.2 mM deoxynucleoside triphosphate, and
distilled water. The thermal cycling conditions were as follows: an initial denaturing step
at 95 ◦C for 5 min, followed by 30 cycles of denaturation at 95 ◦C for 30 s, annealing at
55 ◦C for 30 s, extension at 72 ◦C for 30 s or 120 s, and then a final extension at 72 ◦C for
10 min. The 345/346 and 347/348 primers were used to amplify 400 base pairs (bp) and
1200 bp of 16S rDNA, respectively. The PCR products were subsequently purified using
the DNA Clean & Concentrator kit (Zymo Research, Irvine, CA, USA), quantified with the
Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA), and sequenced
at the Institute of Biotechnology at National Taiwan University. The Basic Local Alignment
Search Tool (BLAST) was used to align sequences to the Nucleotide database maintained
by the US National Center for Biotechnology Information [35]. Strain identification was
performed after sequence alignment.

2.5. MICs of Composite Biocides

The inhibition of bacterial growth and biofilm formation are the key aspects of treating
microbiologically influenced corrosion. MIC determination, an essential measure of the
antimicrobial performance of composite biocides, was conducted herein, as described
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by Wiegand and Balouiri [36,37], with minor modifications. Broth dilution, a basic an-
timicrobial susceptibility testing method, involved preparing dilutions of antimicrobial
agents in a liquid growth medium with lower volumes on a 96-well microtiter plate. Each
concentration was detected with three replicates. Each well was inoculated with micro-
bial inoculum prepared in the same medium, and the bacterial suspension was diluted
according to the 0.5 McFarland standard, corresponding to an optical density of 0.1 at
600 nm (O.D.600). McFarland standards [38] are employed as a reference for examining the
approximate number of bacteria in a liquid suspension according to the turbidity of the
suspension, which in the present study was approximately 1.5 × 109 CFU/mL. In each
well, various concentrations of composite biocides were mixed separately. The 96-well
plate was next incubated without agitation for 36 h at 30 ◦C. The absorbance of the inocula
was measured every 2 h on an enzyme-linked immunoassay reader (Infinite 200 Pro, Tecan,
Switzerland). The results are expressed as the MICs of composite biocides against the
mixed microorganisms. All the MIC measurements were conducted at least three times to
confirm the reproducibility of the results.

2.6. Crystal Violet Assay for Biofilm Quantification

Crystal violet (CV) can be used to stain the nuclei of adherent cells. Herein, CV
staining was performed to quantify the accumulation of biomass in tubes and evaluate
the antimicrobial activity of the composite biocides. First, the absorbance of the bacterial
suspensions was adjusted to an O.D.600 of 0.1 with fresh medium, and 2 mL of culture was
transferred to each tube. Various concentrations of composite biocides were added, and
the tubes were incubated without agitation for 5 days at 30 ◦C to allow biofilm formation.
Subsequently, the tubes were gently rinsed twice with deionized water, after which 2 mL of
CV was used to stain the cells for 15 min at room temperature. The tubes were then washed
twice and dried. Finally, 2 mL of 30% acetic acid was added to each tube. Antimicrobial
activity was estimated by measuring the O.D.550 value.

2.7. MIC Immersion and Electrochemical Measurements

Five immersion conditions were applied before the polarization curve measurement:
(1) 304 SS coupon in the culture medium (labeled as blank), (2) 304 SS coupon in the Tamsui
or Zuoying inocula (labeled as Tamsui or Zuoying), (3) 304 SS coupon in the bacterial
culture medium and composite biocides at the MIC (labeled as TB), (4) 304 SS coupon in
the bacterial culture medium and composite biocides at triple the MIC (labeled as 3TB),
and (5) 304 SS coupon in the bacterial culture medium and composite biocides at five times
the MIC (labeled as 5TB).

Electrochemical impedance spectroscopy (EIS) was performed in a 3.5 wt % NaCl
solution by using a potentiostat (Reference 600, Gamry Instruments, Warminster, PA, USA).
The electrochemical cell was composed of a 304 SS coupon, platinum plate, and saturated
calomel electrode as the working, counter, and reference electrodes, respectively. The
testing area on the 304 SS coupon for electrochemical measurements was 7 cm2. To obtain
the electrochemical responses generated from the pure surface of corroded 304 SS, all
biofilms were stripped from the surface of the 304 SS coupons in an ethanol ultrasonic
bath before EIS. Moreover, prior to EIS, the coupons were immersed in a NaCl solution for
1800 s to ensure that a stable open circuit potential was reached. The EIS measurements
were then recorded at an open circuit potential in the frequency range of 105 to 10−2 Hz,
employing an alternating current amplitude of 10 mV.

2.8. Surface Morphology Examination

After immersion in working solutions over varying durations, the surface morpholo-
gies of 304 SS coupons were examined under a scanning electron microscope (JSM-6510,
JEOL, Tokyo, Japan). The chemical compositions of the biofilms were analyzed using an
energy-dispersive X-ray spectrometer (INCA x-act, Oxford Analytical Instruments, Abing-
ton, UK). The 304 SS coupons that had undergone 12 or 336 h of immersion in various
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working solutions were subjected to SEM. Before the procedure, the coupons were first
removed from the solutions and fixed with 2.5% (v/v) glutaraldehyde solution for 20 min.
They were then sequentially dehydrated with ethanol solutions (25%, 50%, 75%, and 99%)
and air dried.

2.9. Biofilm Characterization

For biofilm characterization, the 304 SS coupons were immersed under the five afore-
mentioned conditions for 12 or 336 h. The coupons were subsequently rinsed twice with
a phosphate-buffered saline (pH 7.0) solution. The live and dead bacteria in the biofilm
were imaged after staining with the LIVE/DEAD BacLight Bacterial Viability Kit (Thermo
Fisher Scientific, Eugene, OR, USA) containing SYTO 9 (3.34 mM in dimethyl sulfoxide)
and propidium iodide (20 mM in dimethyl sulfoxide). Fluorochromes were excited using a
tunable laser with a photomultiplier tube filter, and a GaASP detector was employed. The
coupons were placed in the devices with coverslips, mounting oil, and clear nail polish
prior to CLSC (LSM780, Carl Zeiss, Jena, Germany). Z-stacking and images captured with
the LSM780 camera were used to determine the thickness of the biofilm. Optical sections
approximately 0.2 µm in height were collected from the bottom to the top of the biofilm,
after which the entire biofilm architecture was visualized.

3. Results
3.1. Strain Purification and Classification

With reference to a study [37], the agar dilution method and PCR were employed for
strain purification and classification. In our previous study, we examined mixed strains
collected from Tamsui harbor [39]. Figure 1 displays the colony morphology of mixed
strains incubated overnight on the marine broth agar. Five representative strains were
identified, as indicated by the areas circled in the figure. Figure 2 presents the PCR products
amplified from 16S rDNA from the Zuoying strains. The PCR products were purified and
sequenced. The sequences were aligned to the Nucleotide database with BLAST. Table 1
shows the representative strains from Tamsui and Zuoying harbors. The majority of the
isolated strains from the Zuoying inocula were Gram-negative bacteria, characterized by
their thin peptidoglycan cell wall and outer membrane. In the Zuoying inocula, Vibrio was
the main genus found.
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Figure 2. 16S rDNA from the Zuoying isolates amplified through PCR. M: Marker; Lanes 1, 2, 3, 4,
and 5: ISZ1, ISZ2, ISZ3, ISZ4, and ISZ5, respectively.

3.2. Determination of the MICs of Composite Biocides

To determine the MICs of the composite biocides, the O.D.600 of the Tamsui and
Zuoying inocula were measured separately over 36 h. Moreover, the antimicrobial activity
of different concentrations of composite biocides were evaluated against two inocula. The
testing concentrations of thymol or BDMDAC ranged from 0 to 60 mg/L.
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Table 1. Representative strains of Microorganisms from Tamsui and Zuoying harbors.

Tamsui Strains Microorganism

IST1 Oceanimonas doudoroffii [39]

IST2
Shewanella algae [39]

Shewanella haliotis [39]
IST3 Shewanella baltica [39]
IST4 Vibrio neocaledonicus [39]

IST5
Acinetobacter johnsonii [39]

Acinetobacter tjernbergiae [39]
IST6 Oceanisphaera donghaensis [39]

Zuoying Strains Microorganism
ISZ1 Vibrio alginolyticus

ISZ2
Vibrio harveyi

Vibrio natriegens
ISZ3 Vibrio algnolyticus
ISZ4 Shewanella algae
ISZ5 Oceanimonas baumannii.

Figures 3 and 4 display the growth curves of the Tamsui and Zuoying inocula over 36 h.
Figure 3 presents the antimicrobial activity of composite biocides against the Tamsui inocula.
Treatment with thymol only (20 and 60 mg/L) yielded weak antimicrobial effects; these
effects were superior under treatment with 20 mg/L BDMDAC. Although the combined
use of 20 mg/L BDMDAC and 20 mg/L thymol did not enhance antimicrobial activity, the
application of 60 mg/L thymol resulted in relatively high antimicrobial activity and had
similar effects as did higher concentrations of composite biocides (i.e., 60 mg/L thymol
and 40 mg/L BDMDAC; 60 mg/L thymol and 60 mg/L BDMDAC). A similar tendency
in antimicrobial effects against the Zuoying inocula was observed (Figure 4). Specifically,
treatment with thymol alone (20 and 60 mg/L) resulted in weak antimicrobial activities.
Treatment with 20 mg/L BDMDAC or with 20 mg/L thymol was less effective against the
Zuoying inocula than against the Tamsui inocula. However, the combined application of
20 mg/L BDMDAC with 60 mg/L thymol promoted the inhibition of bacterial growth.
Thus, the MIC of composite biocides against mixed strains isolated from the study sites
was determined to be 60 mg/L thymol + 20 mg/L BDMDAC. The combination of 60 mg/L
thymol and 20 mg/L BDMDAC is presented as TB in the following sections.
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3.3. Effect of Composite Biocides on Biofilm Formation: CV Staining

The inhibition of biofilm formation was quantified through CV staining. As shown
in Figure 5, the antibiofilm activity of varying concentrations of biocides (0, 20, 40, and
60 mg/L thymol + 0 and 20 mg/L BDMDAC) against Tamsui and Zuoying inocula was
examined. Each tube was incubated for 5 days at 30 ◦C, allowing biofilm to form at the
air–liquid interface. Treatment with 60 mg/L thymol resulted in favorable antibiofilm
activity in the Tamsui inocula but not in the Zuoying inocula. The combination of 40 mg/L
thymol and 20 mg/L BDMDAC was effective in inhibiting biofilm formation in both the
Tamsui and Zuoying samples.
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3.4. Surface Morphology and Characterization

The surface morphologies of 304 SS coupons after 12 and 336 h of immersion in Tamsui
and Zuoying inocula with the application of composite biocides at varying concentrations
were characterized through SEM (Figures 6–10). For comparison, SEM images of the 304 SS
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coupons immersed in the uninoculated culture medium are also presented. As shown in
Figure 6a,b, only ground grooves caused by the polishing process were distinguishable on
the surface of the 304 SS coupons after 336 h of immersion in the culture medium. However,
a large number of rod-shaped sessile cells, either isolated or grouped in small clusters, were
observable on the coupons immersed in the uninoculated Tamsui and Zuoying inocula
(Figures 7a and 9a). Furthermore, deposits of a dense, lumpy substance were noted on the
surface of the coupons subjected to 336 h of immersion (Figures 8a and 10a). As shown
in Table 2, energy-dispersive X-ray spectroscopy (EDS) revealed that this substance was
mainly composed of Fe, Cr, Ni, O, S, and P. Iron oxide, among other oxides, is a possible
source of oxygen. S can be traced to the SRB in the inocula; this may constitute evidence
of the formation of FeS in the biofilm [5,30]. The presence of P is related to the sodium
phosphate (Na2PO4) in the culture medium. The phosphate (PO4

3−) in the Na2PO4 that
accumulates on steel substrates when the medium contains sulfides and when the pH of
the surrounding environment is less than 7 tends to be reduced to iron phosphide (Fe2P),
especially in anaerobic environments [40]. Thus, the EDS results were indicative of bacterial
adhesion and biofilm development in both the Tamsui and Zuoying inocula, regardless of
the significant reduction in the number of sessile cells found on the coupons’ surfaces after
immersion in the inocula with TB application. The sessile cells in Figures 7b and 9b suggest
that the efficiency of the composite biocide at the MIC was limited. By contrast, few sessile
cells, if any, were detected on the coupons immersed in the Tamsui or Zuoying inocula
under 3TB and 5TB treatment, as shown in Figures 8c,d and 10c,d. These findings suggest
that a composite biocide with three or five times the MIC was required to minimize or
prevent bacterial adhesion and biofilm formation on the coupons immersed in the Tamsui
and Zuoying inocula, respectively.
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Table 2. Elemental composition ratio on the surfaces of 304 SS corresponding to the Tamsui and
Zuoying inocula.

Tamsui Element (wt %) Fe Cr Ni O S P

12 h Spectrum 1 74.36 21.11 4.53
Spectrum 2 62.39 19.48 8.32 7.78 2.03
Spectrum 3 47.40 15.83 5.81 25.91 5.06

336 h Spectrum 4 71.87 21.61 6.52
Spectrum 5 35.51 11.20 1.83 36.13 15.33
Spectrum 6 41.65 7.31 1.54 31.05 18.45

Zuoying Element (wt %) Fe Cr Ni O S P

12 h Spectrum 7 70.61 21.57 7.82
Spectrum 8 54.78 16.99 3.91 17.02 1.28 6.03
Spectrum 9 61.36 17.50 5.10 12.48 0.70 2.87

336 h Spectrum 10 74.81 18.05 7.14
Spectrum 11 59.86 18.91 8.04 10.10 3.08
Spectrum 12 53.64 13.42 3.68 22.12 7.14

3.5. Characterization of Biofilm and Antimicrobial Activity

Although the attachment of sessile cells and biofilms is easily observable, differentiat-
ing between live and dead sessile cells in biofilms through SEM micrographs of surface
morphology is challenging. Thus, CLSM was employed to examine the status of sessile
cells deposited on the surface of 304 SS coupons after the immersion tests. As presented
in Figures 11a and 12a, a large number of live cells (green) were noted on the coupons
immersed in the uninoculated Tamsui and Zuoying inocula. By contrast, dead cells (red)
were mainly observed when various composite biocides were applied to the inocula
(Figures 11b–d and 12b–d). However, the green dots in Figures 11b,c and 12b sug-
gest that the TB and 3TB treatments resulted in inadequate antimicrobial effects. Com-
pared with the TB- and 3TB-treated coupons, the 5TB-treated coupons exhibited signif-
icantly reduced bacterial cell populations. In addition, only dead cells were noted on
the 304 SS coupons immersed for 336 h, whether in the Tamsui or Zuoying inocula
(Figures 11d and 12d). These findings suggest that the attachment of cells to the sur-
face of 304 SS coupons can be strongly inhibited by both cell deactivation and cell death
under the 5TB treatment [41].
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3.6. EIS

EIS is a well-known, nondestructive method for evaluating the electrochemical prop-
erties of metal surfaces. Nyquist plots of coupons immersed in various media over 168 h
were generated (Figure 13). All the coupons exhibited similar features, namely incomplete
semicircles. However, the dimensions of the semicircles differed by coupon. In general, the
diameter of semicircles in Nyquist plots reflects the corrosion behavior at the interface of
the film–electrolyte interface, with larger diameters typically indicating higher corrosion
resistance [42]. The diameter of the semicircles corresponding to the Tamsui and Zuoying
inocula were smaller than that of the semicircle corresponding to the uninoculated culture
medium. This result suggests that the Tamsui and Zuoying inocula destroyed the passive
properties of 304 SS over the 168 h of immersion. By contrast, the diameter of the semicircle
was almost completely unaffected by the Tamsui and Zuoying inocula under the 5TB
treatment. This means the application of composite biocides at five times the MIC was
effective in killing most bacterial cells, thereby preventing the coupons from exhibiting
microbiological degradation or deterioration with regard to the passive properties of the
steel surface.
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4. Discussion

Corrosive bacteria derive nutrition from various sources and are able to oxidize
numerous carbon sources utilized as electron donors, including hydrocarbons, methanol,
ethanol, acetate, propionate, butyrate, and sugar [43]. Among these model organisms,
sulfate SRB primarily contribute to souring in oil field pipelines [44], and the synergistic
effects of SRB and CO2 under a soil layer promote the corrosion of X52 steel [45]. In the
present study, Shewanella and Vibrio were identified as the two major bacterial genera, and
these strains were dissimilatory metal-reducing microorganisms (Table 1). Studies have
demonstrated that Shewanella and Vibrio are dominant genera in seawater and that SRB are
not abundant in transported seawater [46,47]. As iron-reducing bacteria, Shewanella spp.
can dissolve protective ferric oxide layers (Fe3+) for anaerobic respiration [47]. Vibrio spp.
are fast-growing facultative anaerobic bacteria, as indicated by a doubling time at 37 ◦C of
9.8 min. The extracellular polymeric substances around the bacterial cells and, as revealed
through CLSM, the adhesion of live bacterial cells on the coupons’ surfaces indicate that
the bacterial cells enhanced the corrosion rate of the 304 SS. A developmental process
involving microbiologically influenced corrosion and mixed microorganisms has been
reported [17,47]. Bacteria colonize metal surfaces, and oxygen is depleted through aerobic
respiration. Localized anodes and cathodes accelerate the corrosion rate. As oxygen is
depleted, bacteria respire through fermentation, which provides SRB with a favorable
growth environment. The interaction between aerobic and anaerobic bacteria promotes the
corrosion of metal materials. These corrosion mechanisms may allow aggressive species
such as sulfides to affect metals [48,49].

The mechanism of action of biocides, including QACs [50,51] and essential oils [52–54],
has been investigated. QACs with chain lengths between C12 and C16 have maximal
efficacy [55]. These permanent positive charges enable such QACs to bind readily to
microbes’ negatively charged membranes, causing cell leakage and membrane damage [50].
Thymol is hydrophobic and prone to interacting with the outer membrane of Gram-negative
bacteria, causing a fluidifying effect, triggering the release of lipopolysaccharides, and
increasing the permeability of the cytoplasmic membrane to ATP. Thus, thymol hinders
the energy-generating processes of Gram-negative bacteria and reduces their recovery
ability [56,57]. The MIC of biocides can be reduced through a synergistic effect. Essential
oils have various antimicrobial effects [56]. The synergistic antimicrobial activity achieved
through a combination of QACs and Cu2+ is effective in controlling biofilm formation [58].
The present study is the first to report the combined effects of thymol and BDMDAC.
Treatments with three concentrations of composite biocides (thymol + BDMDAC) led to
synergistic effects. The MIC of thymol against Gram-negative bacteria was reduced from
256–500 mg/L to 60 mg/L through synergistic action with BDMDAC [53,59]. Furthermore,
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EIS demonstrated that the composite biocides, in certain concentrations, were effective in
protecting the stainless steel substrate against microorganisms.

After 336 h of incubation, the microorganisms treated with the composite biocides
at the MIC were still able to grow. However, the exponential phase, during which cell
doubling occurs, was longer. CLSM indicated that this concentration of composite biocides
killed most cells (red dots) and delayed biofilm development. Approximately 50% of live
cells (green dots) were found on the coupons’ surfaces. The application of an agent at
the MIC usually means that bacterial growth is prevented, and the exponential phase is
prolonged. The minimum bactericidal concentration (MBC) is the lowest concentration
of an antimicrobial agent required to kill ≥99.9% of bacteria in starting inocula upon
subculture (i.e., a 3-log10 reduction in colony-forming units per milliliter) [60]. Bactericidal
activity can be defined as an MBC to MIC ratio of≤4 [61]. Thus, we increased the composite
biocide concentration to the MBC—approximately triple the MIC (3TB)—to ensure that
99.9% of bacteria could be killed and that bacterial cell growth could be inhibited. Thus, the
growth of marine microorganisms was controlled over the short term. For long-term control,
higher concentrations are required to eliminate bacterial populations. Consequently, five
times the MIC (5TB) was selected as a composite biocide concentration.

5. Conclusions

In the present analysis of mixed bacterial strains isolated from the Tamsui and Zuoying
harbors in Taiwan, Shewanella and Vibrio were identified as the two dominant species.
The combination of phenolic and QACs exerted strong antimicrobial effects and was
effective in slowing the corrosion rate of the 304 SS coupons. SEM and CLSM revealed
that the composite biocides reduced the adhesion of sessile cells and biofilm. Through a
synergistic effect, the dose of thymol and BDMDAC used to reduce bacterial growth in the
combination treatment was considerably lower than those in the individual treatments.
The 5TB treatment had favorable antimicrobial and anticorrosion effects in both southern
and northern Taiwanese marine environments.
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