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Lancefield group B streptococci (GBS), also referred to as Streptococcus agalactiae, is a 

gram-positive, opportunistic pathogen that colonizes the gastrointestinal and genito-

urinary tracts of up to 50% of healthy adults [1-3]. In 1938, it was first identified as a hu-

man pathogen, causing human fatal puerperal sepsis [4], but remained relatively un-

known as sporadic asymptomatic cases were reported until the 1960s. By the 1970s, 

GBS had emerged as the predominant pathogen causing septicemia and meningitis in 

neonates and infants living in diverse regions [5-10]. GBS infection in newborns is usu-

ally classified as an early-onset disease (EOD) and late-onset disease (LOD), respec-

tively) depending on the age of the infant at the time of disease manifestation [11]. Re-

cent advances in the diagnosis and treatment of GBS infections and global hygiene 

standards have significantly reduced the development of neonatal infections and mor-

tality, particularly due to EOD. However, recent estimates also show 0.5–2 cases of 

neonatal GBS infections per 1,000 births with a mortality rate of 9.6%–22% [12,13]. In 

addition, recent reports have revealed that an increasing number of those infections 

occurred in pregnant women and non-pregnant adults who typically had an underly-

ing medical condition. The incidence of GBS infection among those adults increased 

from 3.6 cases/100,000 persons in 1990 to 7.3 cases/100,000 persons in 2007, with sig-

nificantly higher case fatality rate at 15% [14]. Although vaccination is the most prom-

ising strategy for preventing GBS infection, currently no licensed GBS vaccine is avail-
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Streptococcus agalactiae (group B streptococcus, GBS) is a leading causal organism of 
neonatal invasive diseases and severe infections in the elderly. Despite significant advances 
in the diagnosis and treatment of GBS infections and improvement in personal hygiene stan-
dards, this pathogen is still a global health concern. Thus, an effective vaccine against GBS 
would augment existing strategies to substantially decrease GBS infection. In 2014, World 
Health Organization convened the first meeting for consultation on GBS vaccine development, 
focusing on the GBS maternal immunization program, which was aimed at reducing infections 
in neonates and young infants worldwide. Here, we review the history of GBS infections, the 
current vaccine candidates, and the current status of immunogenicity assays used to evaluate 
the clinical efficacy of GBS vaccines. 
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able in the market. Thus, the development of a GBS vaccine 

is the need of the hour, considering the risk involved in pres-

ently used prenatal strategies and the prevalence of GBS in-

fections in the elderly. 

 GBS are covered with a sialic acid-rich capsular polysac-

charide (CPS) and belong to one of the ten serotypes (Ia, Ib, 

and II–IX). Each CPS consists of variously arranged mono-

saccharides and a sialic acid residue on the branching termi-

nus of the repeating unit (Fig. 1) [15,16]. Similar to that of pneu-

mococci, GBS CPSs also show potential immune evasion me-

chanism for GBS by inhibiting complement deposition and 

pha gocytosis [17,18]. Recent systemic meta-analyses indicate 

that five serotypes (Ia, Ib, II, III, and V) account for 97% of in-

vasive isolates in all geographical regions [19]. Owing to its 

importance in GBS pathogenesis, CPS is considered to be the 

prime vaccine candidate for GBS. 

 In 2014, World Health Organization convened the first meet-

ing of the Product Development for Vaccines Advisory Com-

mittee for consultation regarding the development of GBS 

vaccines [20]. In this meeting, they agreed that native CPS 

vaccine is ineffective due to its poor immunogenicity, but the 

immunogenicity of the GBS polysaccharide conjugate vac-

Fig. 1. Chemical-repeating unit structures of group B streptococcus (GBS) capsular polysaccharides (CPSs). CPSs are classified in three class 
depending on similarity of chemical structures and the enzymes involved in the assembly of the repeating units. (A) Class 1: the repeating unit 
consists of two sugars containing a β (1→3) linked side chain whose terminus possesses a sialic acid residue. (B) Class 2: the repeating unit 
consists of three sugars containing a β (1→6) linked side chain whose terminus possesses a sialic acid residue. (C) Class 3: CPS has no simi-
larity with any other GBS CPSs.
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cine (PCV) may be able to induce a stronger and higher func-

tional CPS-specific IgG response [21,22]. Novartis has devel-

oped a trivalent (Ia, Ib, and III) CRM197 conjugate vaccine, 

and conducted a phase 1b/2 clinical trial (NCT01193920) in 

infants born to women who were vaccinated with a trivalent 

GBS PCV [23]. In infants born to the GBS PCV recipients, the 

level of CPS-specific antibody was higher at birth than at 43 

and 91 days, indicating that maternal GBS PCV immuniza-

tion is intended to protect infants by sufficient CPS-specific 

antibody transfer across the placenta. In 2017, Pfizer started 

to evaluate a pentavalent GBS PCV targeting Ia, Ib, II, III, and 

V in a phase 1 trial on healthy volunteer (NCT03170609). De-

spite the promising result from the clinical trial, recent change 

of serotype distribution worldwide requires the replacement 

of old serotypes, or the addition of new serotypes in the GBS 

PCV. 

 Although multivalent CPS PCVs are well established in terms 

of their production, safety, and immunogenicity, it has sever-

al limitations and various concerns have been raised regard-

ing its use. The limitations are immune interference with sim-

ilar type of conjugate vaccines, including Haemophilus influ-

enzae type b, meningococcal, and pneumococcal conjugate 

vaccines, potential problems of serotype replacement and 

switching, and diverse serotype distribution across and with-

in geographical regions [24-27]. In addition, an increasing 

number of reports show that nonencapsulated GBS strains 

are a concern for the implementation of an anti-CPS vaccine 

[28-31]. Structurally conserved protein antigens that are es-

sential for GBS virulence and can induce a strong immune 

response against most of the GBS strains, are emerging as the 

most attractive and cost-effective vaccine candidates [12,32-

34]. MinervaX Inc. recently announced that their protein-on-

ly vaccine based on the fusion of highly immunogenic N-ter-

minal domains of Alpha C and Rib (GBS-NN) showed posi-

tive results from a phase I trial in 240 healthy adult women 

[35]. All subjects immunized with one or two doses of GBS-

NN showed an increase of over 30-fold in GBS-NN specific 

antibodies compared to pre-immune level [36]. GlaxoSmith-

Kline also identified a conserved sequence encoding compo-

nents of GBS pili proteins, which induced the immune re-

sponse against different GBS serotypes in preclinical studies 

[32,33]. We investigated that the C-terminal end of a serine-

rich repeat surface glycoprotein named latch domain could 

provide serotype-independent protection in mouse meningi-

tis model [37]. In addition, many surface proteins of GBS are 

being investigated, at the pre-clinical stage, as broad spectrum 

vaccines [35,38-47].

 Because of the possibly low baseline incidence of the pri-

mary endpoint of invasive disease, there is an urgent need for 

a standardized clinical efficacy assay for GBS vaccines in or-

der to support and accelerate the clinical studies. In pneu-

mococcal PCV, two standard immunological methods, en-

zyme-linked immunosorbent assay (ELISA) and multiplex-

opsonophagocytosis assay (MOPA) for measuring CPS-spe-

cific antibody and functional antibody titers, are well estab-

lished and accepted as standard vaccine efficacy assays. The 

radio-antigen binding assay (RABA) has been the gold stan-

dard for the quantification of anti-GBS antibody as it mea-

sures antibody in its native state [48]. However, the RABA has 

several limitations, such as low detection sensitivity, limited 

ability to quantify Ig isotypes, and the difficulties of procuring 

and using radioisotopes. Several ELISA protocols that are 

more sensitive and isotype-specific have subsequently been 

developed based on pneumococcal CPS ELISA. However, the 

sensitivity and non-specific binding remain a concern for 

these methods as well [49-51]. It is important to note that the 

results of RABA and ELISA might not always reflect functional 

antibody level for encapsulated bacteria, as experienced in 

pneumococcal vaccines [52].

 In vitro opsonophagocytic assay (OPA) is believed to have 

a reliable correlation with the functional efficacy of pneumo-

coccal PCVs, because host protection against pneumococcus 

is mainly mediated by opsonin-dependent phagocytosis [53, 

54]. As pregnant women are mainly immunized with the GBS 

vaccine, and as the maternal transfer of anti-polysaccharide 

(PS) specific IgG should be tested using extremely small amo-

unts of serum from the newborns, our group developed, stan-

dardized, and validated three-fold multiplexed GBS-OPA (GBS-

MOPA) to enable practical, large-scale assessment of GBS 

vaccine immunogenicity [55]. Therefore, the standardized 

functional efficacy assay would be essentially used to evalu-

ate the clinical efficacy in the process of GBS PCV approval 

and licensure.

 Application of a GBS vaccine is the most promising strate-

gy for the prevention of GBS infections in both newborns and 

adults with underlying diseases. However, numerous ques-

tions arise during the designing and evaluation of GBS vac-

cines. First, recent epidemiology studies have introduced the 

phenomenon of serotype switching and replacement occur-

ring worldwide [25,56-58]. Thus, a streamlined effort is need-

ed to update the global disease burden estimate and serotype 

distribution. Second, a standardized immunological assay is 
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urgently needed. Although we developed and standardized 

GBS-MOPA, it needs to be further optimized to suit the spe-

cific needs of different countries. In addition, standard ELISA 

to quantify CPS-specific antibody should be characterized by 

multi-national based assessment. This review will support 

the development of a new strategy for GBS vaccine develop-

ment, evaluation to substantially reduce the global burden of 

GBS infections, achieve substantial reduction in premature 

and still births worldwide.
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