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The innate immune system senses “non-self” molecules derived from pathogens

(PAMPs) as well as endogenous damage-associated molecular patterns (DAMPs)

and promotes sterile inflammation that is necessary for injury resolution, tissue

repair/regeneration, and homeostasis. The NOD-, LRR- and pyrin domain containing

protein 3 (NLRP3) is an innate immune signaling complex whose assembly and activation

can be triggered by various signals ranging from microbial molecules to ATP or the

abnormal accumulation of crystals, thus leading to IL-1β and IL-18 maturation and

secretion. Deregulation of the NLRP3 signaling cascade is associated with numerous

inflammatory andmetabolic diseases including rheumatoid arthritis, gout, atherosclerosis

or type 2 diabetes. Interestingly, the circadian clock controls numerous inflammatory

processes while clock disruption leads to or exacerbates inflammation. Recently, the

biological clock was demonstrated to control NLRP3 expression and activation, thereby

controlling IL-1β and IL-18 secretion in diverse tissues and immune cells, particularly

macrophages. Circadian oscillations of NLRP3 signaling is lost in models of clock

disruption, contributing to the development of peritonitis, hepatitis, or colitis. Sterile

inflammation is also an important driver of atherosclerosis, and targeting the production

of IL-1β has proven to be a promising approach for atherosclerosis management in

humans. Interestingly, the extent of injury after fulminant hepatitis or myocardial infarction

is time-of-day dependent under the control of the clock, and chronotherapy represents

a promising approach for the management of pathologies involving deregulation of

NLRP3 signaling.
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INTRODUCTION

Organisms evolved in presence of a recurring daily light–dark cycle generated by the
rotation of the Earth. To adapt to this predictable environmental change, they developed
an internal clock mechanism that is entrained to and anticipates environmental cues such
as light or food availability and optimizes physiological functions by ascribing them to
the best time window (1). Many, if not all, physiological pathways and functions are
regulated in a daily manner including sleep/active alternance, metabolism, heart rate, brain
and muscular activity, to cite a few. More recently, research efforts have been focused on
the circadian behavior of the immune system that allows optimization of immune responses
throughout the day/night cycle (2), leading to the emerging concept of circadian immunity.
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As a consequence, alteration of the circadian clock aggravates
acute and chronic inflammatory diseases, pointing to new
pharmacological approaches (3, 4).

The NLRP3 inflammasome was identified as a critical
immune component that orchestrates host immune homeostasis.
However, its chronic activation by endogenous danger signals
derived from tissue damage and abnormal accumulation of self-
components including urea and hydroxyapatite crystals in joints,
amyloid fibers in brain or cholesterol crystals in the vascular
wall, contributes to the development of a wide variety of diseases
(5). Hence, a tight control of its transcription and activation is
required to avoid overt deleterious activation.

In this review, we summarize the current knowledge on
clock-controlled inflammasome modulation and highlight the
underlying mechanisms as well as gaps of knowledge. We
discuss several pathological contexts in which clock alteration
contributes to NLRP3-driven pathologies and the potential of a
(re-) synchronization of the clock to fine-tune NLRP3 activation
and restore tissue homeostasis.

INNATE IMMUNE SYSTEM AND PATTERN
RECOGNITION RECEPTORS (PRRs)

The innate immune system is the first line of defense involved
in the clearing of invaders like bacteria and viruses and
also of abnormal accumulation of self-components including
cellular debris or crystals. Immune cells discriminate infectious
agents-derived molecules called pathogen-associated molecular
patterns (PAMPs) and non-infectious, endogenous “danger
molecules” or DAMPS (damage-associated molecular patterns)
released by damaged or dying cells following tissue injury.
These motifs are specifically recognized by tissue-resident
cells such as mast cells, monocytes/macrophages, neutrophils
and dendritic cells that express Pattern Recognition Receptors
(PRRs). PRRs may be classified depending on their nature,
their ligands and their cellular localization [see (6) for review].
Hence, they can be distinguished according to whether they
are located at the cytoplasmic membrane (membrane PRRs:
Toll-Like Receptors TLRs, C-type lectin receptors CLRs) or
in the cytoplasm (cytoplasmic PRRs: NOD-Like Receptors
NLRs, RIG-I-like Receptors RLRs and cytosolic DNA sensors
CDSs). For instance, TLR-2 and TLR-4 are membrane receptors
that are bound by PAMPs such as Gram+ peptidoglycans
or Gram- LPS, respectively. Detection of PAMPs by PRRs
triggers maturation and activation of immune cells that, in
turn, secrete inflammatory factors and stimulate adaptive
immunity (7). Non-infectious DAMPs are also recognized
by PRRs on innate immune cells and initiate a so-called
sterile inflammation. In addition to classical PRRs, numbers
of non-PRR transmembrane proteins including Receptor for
Advanced glycation endproducts (RAGEs), Triggering Receptors
Expressed on Myeloid cells (TREMs), G Protein-Coupled
Receptors (GPCRs) and ion channels are able to sense DAMPs
and to trigger migration and activation of immune cells (6).
PRRs and non-PRRs are involved in sterile inflammation and
inflammatory diseases such as ischaemia-reperfusion injury,

systemic lupus erythematosus, gout, neurodegenerative diseases,
diabetes, colitis, atherosclerosis, hepatitis, rheumatoid arthritis,
cancer, lung diseases, and gut diseases (6).

Inflammation is characterized by the production of histamine,
cytokines, chemokines, and lipid derivatives (6). Cytokines are
immunomodulatory signaling molecules playing a pivotal role
in inflammation. The IL-1 cytokine family is composed of
several members including IL-1α, IL-1β, IL-18, IL-33, IL-36α,
IL-36β, and IL-36γ (7). Except for IL-1α, IL-1 cytokines are
produced as inactive pro-cytokines and require maturation to
biologically active forms by enzymatic cleavage. Among those,
IL-1β is probably the most studied IL-1 family member because
of its central involvement in acute and chronic inflammatory
diseases. Pro-IL-1β, the inactive form of IL-1β, is processed
by the proteolytic activity of Caspase 1, the predominant IL-1
processing protease. Caspase 1 activity is tightly controlled by
cytosolic PRR-constituted inflammasome complex.

NOD-like receptors form the main class of cytosolic PRRs
that are activated by diverse exogenous signals including anthrax
lethal toxin (NLRP1), bacterial flagellin (NLRC4), double-
stranded DNA Absent in Melanoma 2 (AIM2), Toxin-induced
modifications of Rho-GTPase (Pyrin). In this regard, NLRP3 is
unique because it acts as an intracellular innate immune sensor
for a large variety of PAMPS and also DAMPs.

THE NLRP3 INFLAMMASOME: A STRESS
SENSOR

The nucleotide-binding domain (NOD)-, Leucine-rich repeat
(LRR)- and pyrin domain-containing protein 3 NLRP3
inflammasome was first identified in Cryopyrin-associated
periodic syndrome (CAPS) before its implication was
recognized in many inflammatory/immune diseases such as
gout, atherosclerosis, type 2 diabetes (T2D) and non-alcoholic
fatty liver disease (NAFLD) (8), as well as neurodegenerative
diseases (Alzheimer and Parkinson diseases) and aging (9–
11), and infection by various pathogens (12). The NLRP3
inflammasome is mainly expressed by monocytes/macrophages,
neutrophils and dendritic cells, but also by other cell types
including hepatocytes (13), neurons (14), cardiomyocytes (15),
pancreatic beta cells (16), or endothelial cells (17).

A Two-Step Activation Process
The NLRP3 inflammasome is a macromolecular protein
complex whose assembly is hierarchically organized and mostly
requires a sensor protein, an adapter protein and an effector
protein. The NLRP3 protein is a sensor protein that is
composed of a C-terminal leucine rich repeat (LRR) domain, a
central oligomerization domain (NOD, nucleotide-binding and
oligomerization domain, NACHT) and an N-terminal Pyrin
effector domain (PYD). This last PYD interacts with the amino-
terminal PYD domain of the apoptosis-associated speck-like
protein containing a Caspase recruitment domain (ASC) protein
to initiate the inflammasome assembly and the formation of the
so-called ASC speck. ASC is playing the role of adapter platform
for the Caspase 1 protein thanks to its a carboxy terminal CARD
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FIGURE 1 | NLRP3 inflammasome priming and activation. The priming (first step) of the NLRP3 inflammasome requires the binding and activation of PRRs (TLRs,...)

by PAMPs such as LPS, cytokines or ox-LDL, resulting in the transcription of the NLRP3 inflammasome components. Its activation (second step) is the result of

recognition of PAMPs (such as the bacterial pore-forming toxin nigericin) or DAMPs which are released by damaged or dying cells (such as ATP) following injury or

metabolic imbalance (such as mtROS), or accumulate in tissues (such as crystals). These lead to lysosomal damage, mitochondrial damages (exposition of cardiolipin,

mtDNA) which ultimately modify ion (K+, Ca2+) fluxes. Upon these two-step process, the NLRP3 inflammasome assembles, caspase-1 is activated, Gasdermin-D

and pro-IL-1β and pro-IL-18 are cleaved, leading to mature cytokines secretion and cell death by pyroptosis. ASC, apoptosis-associated speck-like protein containing

a CARD domain; ATP, adenosine triphosphate; casp, caspase; DAMPs, damage-associated molecular patterns; GSDMD, gasdermin-D; IL, interleukin; IL1R,

interleukin-1 receptor; LDL, Low Density Lipoprotein; LDLr; LDL receptor; LPS, lipopolysaccharide; mtoxDNA, mitochondrial oxidized DNA; NFκB, nuclear

factor-kappa B; NLRP3, nucleotide-binding, LRR and PYD domains-containing protein 3; Ox-LDL, oxidized low-density lipoproteins; PAMPs, pathogen-associated

molecular patterns; PRRs, Pattern Recognition Receptors; ROS, reactive oxygen species; P2X7R, purinergic receptor P2X 7; TLR, Toll-like receptor; TNF, tumor

necrosis factor; TNFR, tumor necrosis factor receptor.

domain that eventually recruits an unprocessed pro-caspase1
(18). Pro-caspase-1 oligomerization on the ASC filament enables
proximity-driven autocatalytic caspase-1 maturation.

This complex activation is tightly controlled by a two-step
process (Figure 1). A priming step is required to increase
gene and protein expression of its components in order to
sense stimuli and become activated (19). This priming occurs
via ligand binding to PRRs (eg. signals that engage TLRs).
These ligands may originate from exogenous sources such as
bacterial wall components (Lipopolysaccharides, proteoglycans),
or endogenous molecules (oxidized low-density lipoproteins
[oxLDL], IL1, TNFα). This priming step is tightly controlled
at the transcriptional level by the classical pro-inflammatory
NF-κB and AP1 pathways, but also by metabolic sensors
such as nuclear receptors including Liver X Receptors (20)
and Rev-erb (21). A second step is the activation of the
NLRP3 inflammasome in a primed cell/tissue that triggers the
NLRP3 multimeric complex assembly that allows caspase 1
maturation and results in caspase1-mediated maturation of the
pro-inflammatory interleukin-1β (IL-1β) and IL-18, the release
of the mature cytokines, as well as in the so-called pyroptotic

cell death (22). This second step may be triggered by a variety
of compounds identifying NLRP3 as a wide PAMPs and DAMPs
sensor as described below (8, 22, 23).

NLRP3: A PAMPs’ and DAMPs’ Sensor
The NLRP3 inflammasome detects a broad range of DAMPs
and PAMPs. Cholesterol crystals that accumulate in the arterial
wall during atherosclerosis (24), monosodium urate (MSU)
accumulation in joints leading to gout (25) and hydroxyapatite
crystals triggering rheumatoid arthritis (5) all activate the NLRP3
inflammasome (Figure 1). The internalization of crystals leads
to lysosomal damage and subsequent cathepsins and Ca2+

release that activates NLRP3 in a yet unknown manner. In
addition, NLRP3 activation is also triggered by metabolic stresses
such as hyperglycemia, some fatty acids and ceramides, and
mitochondrial dysfunction, in particular mtROS (26), exposition
of cardiolipin (27) or presence of mitochondrial oxidized DNA
(28). Bacterial pore-forming toxins such as nigericin act as
ionophores promoting K+ efflux which provokes the assembly
of the NLRP3 complex, activation of Caspase 1 and the release
of mature cytokines (29). Extracellular ATP released by dying
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FIGURE 2 | The molecular circadian clock in mammals. The molecular clockwork is formed by transcription–translation feedback loops. The transcription factors

BMAL1/CLOCK induce the expression of E-box-containing genes including the negative regulators Period (PER) and Cryptochrome (CRY). In turn, the PER/CRY

heterodimer inhibits the transcriptional activity of BMAL1/CLOCK. Once PER and CRY levels are sufficiently low, a new cycle may start. CLOCK/BMAL1 induce the

expression of the nuclear receptors Rev-erbα/β and retinoid-related orphan receptor α, β, and γ (RORα/β/γ). Rev-erbs and RORs interact with co-repressors (NCoR)

and co-activators (NCoA) and compete for the binding of RevRE/RORE elements in common target genes to repress or activate, respectively, their transcription.

Rev-erb and ROR are also able to repress E4BP4/Nfil3 which rhythmically inhibits D-box-dependent transcription. Additional layers of regulation of circadian gene

expression include rhythmic histone modifications, circadian chromosomal 3D conformation and post-translational modifications such as acetylation, phosphorylation,

sumoylation, O-GlcNacylation...The clock is involved in the control of so-called circadian immunity.

cells also results in K+ and Ca2+ fluxes through P2X7 channel
opening (23). In the same line, Ca2+ influx into the cytoplasm
after mitochondrial reactive oxygen species (mtROS)-mediated
cation channel transient receptor potential melastatin 2 (TRPM2)
opening has been suggested to trigger the NLRP3 inflammasome
assembly and IL-1β production in MSU-stimulated macrophages
(28). The NLRP3 inflammasome is also sensing accumulation
of aggregates (e.g., β-amyloid, Aβ) as well as metabolic stresses
(8). Thus, the NLRP3 inflammasome is considered as a stress
sensor that detects loss of homeostasis and abnormal endogenous
molecules that signal infection, metabolic abnormalities or tissue
damage (23).

CIRCADIAN CONTROL OF THE IMMUNE
SYSTEM

Molecular Organization of the Mammalian
Clock
The mammalian clock consists of transcriptional activators and
repressors forming interlocked feedback regulatory loops and

organized in positive and negative limbs that confer rhythmicity
to each other (30) (Figure 2). The positive limb is driven by
BMAL1 (Brain andMuscle ARNT-like 1) and CLOCK (Circadian
Locomotor Output Cycles Kaput) which heterodimerize and
bind to E-boxes in their target gene promoters, amongst
which Per and Cry clock genes whose transcription is activated
by BMAL1/CLOCK. Period (PER) 1/2/3 and Cryptochrome
(CRY) 1/2 form the negative limb. PER and CRY, once they
reach sufficient quantity in the cytoplasm, heterodimerize and
translocate to the nucleus where they bind BMAL1-CLOCK
heterodimers to inhibit BMAL1/CLOCK transcriptional activity
in a rhythmic manner (30). This first circuitry is finely tuned by
the nuclear receptors Rev-erbs and RORs (31), which compete for
binding to the same RevRE/RORE and RevDR2 DNA sequences
and regulate gene expression in an opposite manner. While Rev-
erbs act as transcriptional repressors, RORs compete with Rev-
erbs for DNA binding and activate transcription of common
target genes, including Bmal1 (32). Because Rev-erb isotypes
display strong circadian rhythmicity in their abundance, this
competition for binding to the Bmal1 promoter is rhythmic and
contributes to BMAL1 oscillations. It is noteworthy that these
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FIGURE 3 | Circadian immunity. The molecular clock regulates a large number of immune functions throughout the day/night cycle such as cytokine secretion,

phagocytosis, response to pathogens (bacterium, parasite) through the expression of TLR9 or the TLR4 pathway and danger signals through the regulation of the

NLRP3 inflammasome. Circulating leucocyte number also varies along the day altogether with their mobilization from bone marrow and their recruitment into tissues.

transcription factors not only control each other’s transcription
but also bind to numerous genes containing RORE/RevDR2 or
E-boxes, thereby generating rhythmic transcriptional waves in
transcriptional programs involved in local tissue functions. For
instance, Rev-erb-α controls the expression of E4bp4/Nfil3 in
the liver (33, 34) but also in immune cells thereby regulating
Th17 immune cell differentiation (35). Rev-erb also represses
Cry1 transcription thus controlling both limbs of the clock in a
coordinated manner (36).

The rhythmicity observed in gene transcription is not
only due to cyclic binding of these transcription factors but
also to circadian variations in histone marks and chromatin
organization at regulatory regions (30, 37). Beside epigenetic
control, dynamic 3D chromatin architecture is another layer of
circadian genome function (38). Additionally, post-translational
modifications such as phosphorylation, SUMOylation, O-Glc-
Nacylation are necessary to ensure the stability of these
transcription factors and thus the pace and robustness of the
clockwork [(39) for review].

Biological Clocks in the Immune System
Virtually all mammalian cell types harbor a functional circadian
clock, leading to circadian oscillations in the transcriptome,
proteome, and ultimately cell/tissue function. The central
pacemaker is located in the suprachiasmatic nucleus of the
hypothalamus. It receives light information and synchronizes
clocks throughout the body according to this time cue. The clock

is present in immune cells including macrophages, lymphocytes
and neutrophils as well as in lymphoid tissues such as the
spleen and lymph nodes (40). The number of circulating
leukocytes oscillates diurnally, peaking during the rest phase,
due to circadian variations in haematopoietic cell egress from
bone marrow which preferentially occurs at the onset of this
phase (Figure 3) (41, 42). In addition, tissue leucocytes display
circadian variations mainly due to oscillations in their rolling
and adhesion to the endothelium and infiltration into tissues
which predominantly occurs at the onset of the active phase
(43, 44). In parallel, immune cell functions such as cytokines
production, phagocytosis of exogenous particles or response to
pathogens also display daily oscillations resulting in time-of-
day-dependent difference in the susceptibility to septic shock or
injury (45–48). This temporal organization is meant to ensure
an optimization of the immune response in order to maintain
or rapidly and efficiently restore homeostasis after infection or
injury/tissue damage. Consequently, clock disruption has often
been associated with inflammatory diseases (Figure 4).

CIRCADIAN CONTROL OF THE NLRP3
INFLAMMASOME AND IMPLICATION IN
PHYSIOLOGY AND PATHOLOGIES

Expression of the NLRP3 inflammasome complex components is
low and increased transcription is achieved during the priming
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FIGURE 4 | NLRP3-associated diseases. NLRP3-associated diseases and potential for innovative chronotherapies.

step. It was recently demonstrated that the mRNA expression
of the components of the NLRP3 inflammasome oscillates in a
daily manner under the control of Rev-erbα in peritoneal mouse
macrophages in vivo, reaching a peak (or zenith) during the
active phase, corresponding to the lowest expression (or nadir)
of Rev-erbα mRNA (21). Similar oscillations were observed in
primary mouse bone marrow-derived and human monocyte-
derived macrophages synchronized by a serum shock ex vivo,
while circadian oscillations in Nlrp3 mRNA were lost upon
Rev-erbα ablation. NLRP3 protein amounts were accordingly
regulated upon modulation of Rev-erbα activity (21). Strikingly,
alteration in the NLRP3 pathway provoked by impairment
of Rev-erbα expression triggers alterations in IL-1β and IL-
18 secretion in peritoneum (21). Additionally, Rev-erbα also
regulates the NLRP3 activation step. Indeed, Rev-erbα ablation
led to increased speck formation, caspase-1 cleavage and NLRP3-
induced caspase-1 mediated maturation and secretion of IL-1β
and IL-18 in LPS-primed macrophages activated with nigericin
or ATP. By contrast, activation of Rev-erb by its natural (heme)
or pharmacological ligands reduced the secretion of these pro-
inflammatory cytokines. Mechanistically, Rev-erbα binds to
specific response elements in Nlrp3 and Il1β gene promoters to
silence their expression, and controls the NLRP3 inflammasome
assembly and caspase 1 maturation (21) (Figure 1). In an in
vivo model of acute sterile peritonitis induced by intraperitoneal
administration of LPS and a concomitant injection of alum to
specifically activate the NLRP3 pathway, IL-1β and IL-18 plasma

levels were higher in Rev-erbα-deficient mice toward the end
of the resting phase when Rev-erbα expression is highest in
the wild-type controls, whereas the difference was lost during
the active phase when Rev-erbα is nearly absent. Accordingly,
and although this was not studied at different times of the
day, Rev-erbα inhibition with an antagonist exacerbates the
severity of LPS-induced acute lung injury by increasing NLRP3-
dependent IL-1β secretion (49). These data demonstrate the
rhythmic regulation of the NLRP3 inflammasome expression and
activation, and suggest that Rev-erb pharmacological modulation
may exert beneficial action in acute or chronic inflammatory
diseases in which the NLRP3 inflammasome is over-activated, as
detailed below.

Fulminant Hepatitis
Fulminant hepatitis (FH) is a life-threatening condition
characterized by a fast-evolving hepatic dysfunction associated
with encephalopathy and coagulopathy (50, 51). Numerous
factors such as viral infection, metabolic and genetic diseases as
well as absorption of toxic compounds are able to trigger FH,
although overdose of acetaminophen still remains the main cause
of FH nowadays (52). Acetaminophen accumulation leads to the
production of large quantities of toxic metabolites provoking
oxidative stress, mitochondrial membrane potential loss and
hepatocellular death, the secretion of DAMPs and activation of
the NLRP3 inflammasome (52). Increased IL-1β and activation
of the NLRP3 inflammasome in macrophages has also been
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TABLE 1 | NLRP3-associated diseases linked to the clock.

NLRP3-associated Clock intervention with effects References

disease on NLRP3

Atherosclerosis Not tested

Colitis • Rev-erbα KO, Bmal1 KO: worsening

• Jetlag: worsening

• Rev-erbα agonist: improvement

(56)

Fulminant hepatitis • Rev-erbα KO: worsening

• Rev-erbα agonist (mice): improvement

• Chrono-pharmacological approach (mice)

(21)

Gout Not tested

Lung injury Rev-erbα antagonist: worsening Rev-erbα

agonist: improvement

(49)

Myocardial

infarction/ischemia-

reperfusion injury &

heart failure

• Rev-erbα KO (mice, in vivo): worsening

• Rev-erbα agonist (mice, in vivo, at

ZT6/ZT18): improvement

• Chrono-pharmacological approach

(57)

NASH Not tested

Rheumatoid arthritis Not tested

Type 2 Diabetes Not tested

shown in viral hepatitis (53–55). Strikingly, the susceptibility of
FH is time-of-day dependent, upon the control of the molecular
clock and Rev-erbα was identified as an important regulator of
the inflammasome in this context. In mice, ablation of Rev-erbα
led to exacerbated fulminant hepatitis, including increased liver
damage that was blunted upon administration of the MCC950
specific NLRP3 inhibitor (Table 1) (21, 58). Remarkably, Rev-
erbα pharmacological activation dramatically reduced liver
injury thereby delaying death and improving the rate of survival
from fulminant hepatitis from 10% in the control to 70% in the
treated mice (Figure 4) (21).

Colitis
Several studies have suggested a role of the NLRP3
inflammasome in inflammatory intestinal diseases and although
controversial results were first published, it is now accepted that
NLRP3 activation is detrimental in this context. Ablating IL-18
or blocking its signaling reduced the severity of experimental
colitis (59, 60). In addition, the NLRP3 inflammasome was
identified as a central mediator of intestinal inflammation in
dextran sulfate sodium (DSS)-induced colitis (61). Consistent
with the previously described role of the clock in the regulation
of the NLRP3 activation, DSS-induced colitis was found to
be more severe in mouse models of environmental or genetic
disruption of the clock (56). Confirming previous results, Rev-
erbα-deficient mice were found to display increased activation of
the NLRP3 pathway which accounted for the severe phenotype,
whereas pharmacological Rev-erb activation attenuated colitis in
vivo (Figure 4). Interestingly, when tested in vitro, the Rev-erb
agonist seems to be active only on the priming step, and was
ineffective at modifying caspase 1 maturation in cultured LPS-
primed macrophages activated with ATP. This might be due to
the fact that the cells were not synchronized in this study. Still,

the effects of Rev-erb activation were abolished by MCC950, a
specific inhibitor of the NLRP3 inflammasome activation.

Cardio-Vascular Diseases
Circadian Clock and Blood Vessels Physiology
Circadian clocks reside in the different cell types of blood
vessels (62, 63) and participate in vascular function and tone
(64). For instance, blood pressure displays circadian oscillations,
starting to rise before the rest-to-active transition while being
lower during sleep (65), coinciding with the higher frequency
of acute cardiovascular events and the exacerbated acute
thrombus formation in the early morning hours (66, 67).
Circadian oscillations in clock genes expression are attenuated
in human atherosclerotic plaque (68), suggesting a mechanistic
link between altered clock function and vascular pathologies.
Numerous studies revealed that clock disruption (e.g., altered
sleep patterns, shift-work) increases cardiovascular risk factors
such as dyslipidemia, diabetes, hypertension and lead to
cardiovascular diseases including stroke and coronary heart
disease (Figure 4) (66, 69). Several studies found a relationship
between shift work or acute circadian misalignment and
subclinical atherosclerosis, measured by higher intima-media
thickness (IMT) and elevated systemic inflammation even after
adjustment for age and common risk factors (70–73). Moreover,
lower sleep duration and fragmented sleep are independently
associated with an increased risk of subclinical coronary and
non-coronary atherosclerosis (74).

Clock Control of NLRP3 Inflammasome Activation,

IL-1β Production and Atherogenesis
Atherosclerosis is a lipid-driven inflammatory disease of the
arterial wall. Infiltration and modification of lipoproteins in
the subendothelial space result in their uptake mainly by
macrophages, forming foam cells, thus initiating atherosclerotic
lesion formation. Then, lipids (fatty acids, ox-LDL, cholesterol
crystals...) accumulate as well as inflammatory cells, notably
monocyte-derived macrophages, T and B lymphocytes (75–77).
Inefficient efferocytotic removal of these foam cells and apoptotic
cells promote lesion progression toward advanced lesions with a
necrotic core, degradation of the extracellular matrix, migration
of smoothmuscle cells and in some cases calcification, whichmay
become vulnerable (78). Genetic alteration of the molecular clock
contributes to metabolic imbalance and inflammation which
promote atherogenesis (79, 80). For instance, BMAL1 modulates
lipoprotein production and biliary cholesterol excretion, and
its ablation led to hyperlipidemia and atherosclerosis (81). In
the same line, Rev-erbα diminishes atherogenic lipoproteins
plasma levels (82), modulates the inflammatory profile of
macrophages toward an anti-inflammatory phenotype (83)
while its activation reduced atherogenesis (84). Accordingly,
BMAL1 regulates macrophage polarization as well as the cyclic
trafficking of Ly6Chi monocytes and myeloid Bmal1 deletion
increased monocyte recruitment and worsened atherosclerosis
(Figures 2, 3) (85). Pro-inflammatory recruitment through the
CCL2 (MCP-1)-CCR2 axis plays an important role in plaque
development (86). In a recent study, McAlpine and colleagues
revealed that sleep modulates haematopoiesis while chronic sleep
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fragmentation in amousemodel prone to atherosclerosis resulted
in increased production of Ly6Chigh monocytes and aggravated
atherosclerosis development due to increased infiltration to the
lesions (Figure 4) (87). In line, disruption of circadian rhythms
by chronic jetlag obtained by weekly alternating light-dark
cycles with 12 h shifts enhanced atherosclerosis development
and increased lesion macrophage content (Figure 4) (88).
Interestingly,Winter et al. elegantly showed that myeloid cells are
recruited to the lesions in a circadian manner, with a peak during
the active-to-rest transition, through the rhythmic deposit of
CCL2 on the arterial endothelium by circulating cells. A chrono-
pharmacological approach targeting monocyte recruitment via
timed inhibition of the CCR2/CCL2 axis during the active phase
dampened atherosclerotic lesions development (Figure 4) (89).

In atherosclerotic lesions, oxLDL can prime the macrophage
NLRP3 inflammasome by activating TLRs-dependent pathways.
In addition, CD36-mediated oxLDL uptake eventually results
into intra-lysosomal crystallization. Together with phagocytized
extracellular cholesterol, they are thought to trigger macrophage
lysosomal damage thus provoking cathepsins release (18).
Moreover, defective cholesterol efflux in myeloid cells results
in accumulation of unesterified cholesterol which contributes
to both priming and activation of the NLRP3 inflammasome,
promoting neutrophil recruitment and neutrophil extracellular
trap (NET) formation in atherosclerotic plaques (90). The
NLRP3 inflammasome activation contributes to the vascular
inflammatory response through enhanced production of IL-
1α and IL-1β, the latter driving inflammation during early
atherogenesis and the evolution of advanced atheroma in
mice (91). Canakinumab is an IL-1β-neutralizing antibody
approved for the treatment for CAPS-associated symptoms
which also reduced the incidence of two other NLRP3-
related diseases, arthritis and gout (92). Recently, the
CANTOS (Canakinumab Anti-inflammatory Thrombosis
Outcome Study) study demonstrated that IL-1β neutralization
decreased the incidence of atherosclerotic disease and reduced
systemic inflammation in at-risk patients with previous
myocardial infarction in the absence of effect on lipids,
indicating that suppressing IL-1β contributes to the reduction
in cardiovascular risk (93). However, substantial residual
inflammatory risk still subsisted after IL-1β neutralization,
with on-treatment IL-18 and IL-6 plasma levels associated with
future cardiovascular risk (94), advocating for therapies that
simultaneously inhibit IL-1β and IL-18. In mice, inhibition
of the NLRP3 inflammasome reduces atherogenesis in
ApoE−/− or LDLr−/−mice (24, 95). Although plausible, it
is currently unclear whether circadian control of NLRP3
inflammasome activation is perturbed within macrophage
foam cells from atherosclerotic lesions. In this perspective,
a therapy that targets the clock, and particularly Rev-erbα,
in a chrono-pharmacological approach would be worth
testing as Rev-erbα not only regulates NLRP3 inflammasome
expression and activation, reducing both IL-1β and IL-18, but
also MCP-1 expression and IL-6 production by macrophages
(Figure 4) (47, 96), as well as lipoprotein metabolism, thereby
simultaneously impacting both local inflammation and systemic
risk factors.

Myocardial Infarction and the Circadian
Control of NLRP3 Expression and
Activation
The NLRP3 Inflammasome Is Activated Upon Acute

Myocardial Ischemia/Reperfusion Injury
Myocardial infarction (MI) is one of the leading causes of
death worldwide and is associated with a poor quality of
life, acknowledging the increased interest in finding novel
therapeutics to reduce reperfusion injury and preserve cardiac
function. Despite improvement in reperfusion and treatment
strategies that have led to higher survival rates, fibrosis and
adverse left ventricular remodeling consecutive to reperfusion
injury leads to cardiac contractile dysfunction and eventually
heart failure (97).

Acute myocardial infarction (AMI) initiates a sterile
inflammatory response that enables necrotic cardiomyocyte
debris removal, angiogenesis and wound healing (98); however,
this inflammatory response also promotes cell death by
pyroptosis, expanding infarct size, and results in fibrosis and
adverse ventricular remodeling. Then, refined intervention
to rapidly attenuate this inflammatory burst is desirable (99).
IL-1β and IL-18 are rapidly increased upon MI. Interestingly,
administration of IL-1β- or IL-18-neutralizing antibody inhibits
cardiomyocyte apoptosis, reduces infarct size and improves
cardiac dysfunction after MI in mice (100, 101). In line,
reduction of IL-1β production in caspase1- and in ASC-deficient
mice upon ischemia/reperfusion is associated with a marked
reduction in the infarct size, left ventricle remodeling and
myocardial fibrosis (102). These data suggested that activation of
the inflammasome may provoke further tissue damage through
caspase-1-mediated production and release of IL-1β. Sandanger
et al. confirmed that Nlrp3 deletion in mice leads to reduced
infarct size and preservation of cardiac function in isolated
perfused hearts subjected to acute I/R ex vivo (103).

Expression of the NLRP3 inflammasome components is
very low and priming is induced during ischemic injury by
cellular debris. NLRP3 is then activated by extracellular ATP
as well as cardiolipin and mtDNA released by dying cells
from damaged tissue after acute ischemic injury, or within
minutes of reperfusion due to sudden surge of reoxygenation-
induced ROS production and mitochondrial damage (Figure 1)
(98). The NLRP3 inflammasome also senses extracellular-
mediated efflux of K+ in cardiac fibroblasts upon hypoxia
(103). In addition, the NLRP3 inflammasome is activated by
numerous danger signals stemming from co-morbidities such
as high glucose and lipid levels and derivatives (ceramides,
advanced glycation products, which may lead to chronic
activation of the NLRP3 inflammasome locally or in other
organs) (104).

Inhibition of the NLRP3 Activation as a Novel

Strategy to Reduce Myocardial I/R Injury?
Strategies to inhibit the activation of NLRP3 in the early
reperfusion period after ischemic MI to reduce infarct size, avoid
adverse remodeling and fibrosis and ameliorate cardiac function
have been tested. Several inhibitors of the NLRP3 inflammasome
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activation have been developed, enabling pharmacological
intervention in animal models undergoing AMI. Administration
of the NLRP3 inhibitor MCC950 (58) lowers infarct size and
area at risk (105, 106). Remarkably, NLRP3 inhibition by
MCC950 treatment was associated with preserved left ventricle
(LV) ejection fraction (LVEF), reduced fibrosis and myocardial
immune cell infiltration. Interestingly however, the benefit of
administering the NLRP3 inhibitor before AMI or within 1 h
of reperfusion was lost when the NLRP3 inhibitor was given
after 3 h of reperfusion, suggesting that inhibition should be
achieved at time of NLRP3 assembly and activation (107).
Other NLRP3 inhibitors have been shown to reduce infarct
size in mouse models of myocardial ischemia/reperfusion.
Among them, OLT1177 reduces infarct size in mice (108)
and is currently in Phase 1b in a randomized, double-
blinded, placebo-controlled, safety, and pharmacodynamics
study in 30 subjects with stable systolic heart failure (HF) with
impaired LVEF.

Circadian Rhythms in Cardiac Biology and Diseases
Daily oscillations of blood pressure and heart rate are
reduced or lost in cardiomyocyte-specific Clock-mutant (109)
acknowledging the important role of cardiomyocyte clock
machinery in cardiac function. Consistently, circadian disruption
due to either environmental out-of-sync stimuli or genetic
manipulation of clock genes results in cardiomyopathies, cardiac
dysfunction, arrhythmia, and reduced survival (110–113) and
for review (114) (Figure 4). Additionally, circadian variations
are seen in the onset and frequency of myocardial infarction,
stroke and sudden death (115, 116), as well as in the severity
of the diseases (117). Furthermore, environmental circadian
disruption adversely impacts cardiac remodeling and function,
increases macrophage infiltration and led to cardiac hypertrophy
in mice undergoing MI (Figure 4) (118). The circadian
influence in the tolerance to I/R injury was corroborated in
mice undergoing I/R at the resting-to-active and active-to-
rest transitions. The former led to exacerbated infarct size,
and subsequent fibrosis and adverse cardiac remodeling. This
time-of-day difference in the tolerance to I/R was markedly
attenuated in cardiomyocyte-specific circadian clock mutant
mice (119). In humans, it was recently assessed whether
myocardial tolerance of I/R differed depending on the timing of
aortic valve replacement surgery, as measured by the occurrence
of major adverse cardiovascular events (cardiovascular death,
myocardial infarction, and admission to hospital for acute heart
failure). Expectedly, perioperative myocardial injury was better
tolerated when patients underwent surgery in the afternoon
(120). Interestingly, targeting the circadian clock through
pharmacological modulation of Rev-erbα/β in mice was able to
reduce myocardial I/R injury ex vivo in an isolated Langendorff-
perfused mouse heart model of hypoxia-reperfusion, thus
providing new therapeutic ways to dampen the adverse outcome
of cardiac I/R injury. Whether Rev-erbα might be an interesting
target to reduce cardiac dysfunction was further established
in a model of transaortic constriction-induced heart failure
(121) as well as in a mouse model of AMI (122). In this
later report, the author suggested that blunted inflammation

and reduced recruitment of neutrophils and pro-inflammatory
macrophages upon pharmacological Rev-erbα modulation may,
at least in part, contribute to the benefit of targeting Rev-erbα.
Remarkably, Schloss et al. elegantly demonstrated that infarct
size is higher at ZT13 vs. ZT5 when the number of cardiac
Ly6Chigh monocytes is highest likely because of increased CCR2-
mediated recruitment of these cells, and that blocking the CCR2-
CCL2 axis blunted the time-of-day variations in infarct size
(123). These data, together with the observation that Rev-erbα
controls macrophage NLRP3 activation (21), point to a possible
role of monocyte/macrophage Rev-erbα in I/R tolerance. In a
recent report, Martino and colleagues questioned the cell-specific
role of Rev-erbα in the protective effect of Rev-erbα activation.
They found that activating Rev-erbα at time of reperfusion
in wild-type mice limits infarct expansion, improves cardiac
function and outcomes, and reduced recruitment of neutrophils
and macrophages as well as cardiac NLRP3 inflammasome
activation. However, myeloid cells were unlikely to account
for this beneficial effect as shown by bone marrow transfer
experiments (57). Instead, Rev-erbα may downregulate the
NLRP3 inflammasome in cardiac fibroblasts although further
studies using cell-specific mutant mice are necessary to pinpoint
the exact contribution of each cell types. More importantly,
pharmacological Rev-erbα activation showed the greatest benefit
when given at time of reperfusion, whenever it happened during
the active (ZT18) or resting (ZT6) phase, although the benefit was
greater at ZT6 corresponding to maximal Rev-erbα expression
(Figure 4). This suggests that beyond the time of treatment
and potentially differential effect on the pace of the clock, Rev-
erbα-regulated inhibition of NLRP3 before or at reperfusion
may hold promise to reduce myocardial I/R damages, whenever
the time at which the patient will undergo cardiac surgery or
experience MI.

CONCLUSION

In this review, we have highlighted the relationship between
circadian immunity and the NLRP3 inflammasome pathway. As
a central sensor of tissue damages and metabolic imbalance,
NLRP3 plays a pivotal role in tissue homeostasis in many
tissues including liver, heart and the vasculature. Sustained
activation of NLRP3 by exogenous or endogenous triggers thus
aggravates chronic inflammatory diseases such as atherosclerosis
(24) or worsen acute inflammatory conditions such as fulminant
hepatitis (21) or myocardial infarction (121). As such, the
NLRP3 inflammasome represents an innovative target, as
exemplified by the use of NLRP3 inhibitors in several disease
models. However, MCC950 displays hepatotoxic properties,
advocating for the development of alternative NLRP3 inhibitory
strategy (124). Strikingly, because NLRP3 is controlled by
the clock machinery, the time of exposure to intruders and
their sensing has a dramatic impact on the inflammatory
response amplitude, the disease outcome and its resolution.
As such, a chrono-pharmacological approach targeting NLRP3
may have greater benefits for the treatment of NLRP3-
driven diseases (Figure 4). Since pathological tissues often
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display distinct circadian oscillation patterns compared to
healthy tissue, such strategies would allow to target NLRP3
specifically in pathological areas and then preserve homeostasis
in healthy tissue and thus reduce adverse effects. Several
targets should be considered, either the NLRP3 pathway
itself or NLRP3-regulating clock components such as Rev-
erbα. Finally, alteration of NLRP3 pathway is involved in
other diseases including diabetes, Alzheimer disease, gout,
rheumatoid arthritis, or asthma (5). Clock-driven NLRP3
resynchronisation may represent an additional approach to help
treating these diseases.
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