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* pdemarco@ufg.br

Abstract

The increasing use of species distribution modeling (SDM) has raised new concerns regard-

ing the inaccuracies, misunderstanding, and misuses of this important tool. One of those

possible pitfalls − collinearity among environmental predictors − is assumed as an important

source of model uncertainty, although it has not been subjected to a detailed evaluation in

recent SDM studies. It is expected that collinearity will increase uncertainty in model param-

eters and decrease statistical power. Here we use a virtual species approach to compare

models built using subsets of PCA-derived variables with models based on the original

highly correlated climate variables. Moreover, we evaluated whether modelling algorithms

and species data characteristics generate models with varying sensitivity to collinearity. As

expected, collinearity among predictors decreases the efficiency and increases the uncer-

tainty of species distribution models. Nevertheless, the intensity of the effect varied accord-

ing to the algorithm properties: more complex procedures behaved better than simple

envelope models. This may support the claim that complex models such as Maxent take

advantage of existing collinearity in finding the best set of parameters. The interaction of the

different factors with species characteristics (centroid and tolerance in environmental

space) highlighted the importance of the so-called “idiosyncrasy in species responses” to

model efficiency, but differences in prevalence may represent a better explanation. How-

ever, even models with low accuracy to predict suitability of individual cells may provide

meaningful information on the estimation of range-size, a key species-trait for macroe-

cological studies. We concluded that the use of PCA-derived variables is advised both to

control the negative effects of collinearity and as a more objective solution for the problem of

variable selection in studies dealing with large number of species with heterogeneous

responses to environmental variables.

Introduction

Species distribution modeling (SDM) is an interesting and efficient tool to deal with a variety

of questions related to species geographic distributions [1–4]: What is the distribution of rare
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and/or endangered species? Which current areas should be turned into reserves to foster con-

servation of a species set? Where it is most profitable to search for new populations of a rare

and little-known species? Which environmental factor controls and constrain the distributions

of species or clades or ecosystems or biomes? What is the expected distribution of these species

in the future, facing global climatic change? The list of questions is large, the reason why atten-

tion from scientific community continues increasing.

Nevertheless, as we accommodate this tool in our hands and our minds, we find several

flaws, inaccuracies, misunderstanding, and misuses that affect its usefulness. Recent evalua-

tions have revealed ineffective results due to incompleteness in occurrence datasets or environ-

mental layers [5,6], uncertain due to modeling decisions [7–9], choice of climate variables

[10], selection of background/pseudo-absence data [11–13], lack of transferability [14–16],

inability or restrictive inclusion of biological interactions [17,18] or dispersal limitations

[19,20], difficulties with prevalence estimations [21], spatial autocorrelation among occurrence

points [22,23] or environmental predictors [24–26], ensembles of model results [8,9] and

unstable model function resulted from collinearity in environmental datasets [27,28]. All these

problems are important but some, such as uncertainty in model predictions, have received

much more attention in the current literature. In this contribution, we add to the development

of this tool by dealing with a less-analyzed factor, the collinearity of environmental predictors.

Every basic statistical text includes a big warning sign about effects of collinearity on regres-

sion model fit. Fitting regression models with collinear variables will generate large changes in

estimated coefficients because partial regression coefficients are nonlinear functions of

remaining collinear variables [29]. Thus, collinearity may produce unstable results since differ-

ent random samples of the same datasets produce different estimated slopes. Consequently,

collinearity is expected to increase uncertainty in model results. In a simulation study designed

to analyze the importance of collinearity effects in ecological regression analysis, Graham [29]

showed that even a low level of collinearity (on the order of r>|0.28|) may cause inaccuracies

in model parameters and decreased statistical power. This effect is especially important since,

when acknowledged by researchers using SDM, collinearity problems are frequently treated

via analysis of pairwise correlation coefficients [30], followed by selection of only less collinear

variables, using so different criteria such as Rspearman<0.7 [30], Rpearson< |0.5| [31], Rpearson< |

0.7| [32], Rpearson< |0.8|.[33] or Rpearson< |0.85| [34].

Numerous methods have been designed to deal with collinearity problems, but (surprising)

they appear to be neglected by current statistical machinery applied to SDM and similar stud-

ies. Dormann et al. [27] reviewed those methods, showing considerable variation in perfor-

mance among them; nevertheless, latent variable methods, such as use of the scores of a

principal component analysis (PCA) in the regressions (usually known as principal compo-

nent regression, PCR), presented good results. This set of methods is easily implemented and

may overcome possible caveats that hinder use of collinearity-controlling methods in macroe-

cological studies. Nevertheless, there is no detailed analysis of the collinearity effects on SDM

or an evaluation of PCA derived variables for use in such studies. The only quantitative evalua-

tion of uncertainty related to collinearity is the use of PCA and sequential regression explored

by Dorman [35] in analysis of the distribution of Great Gray Shrike (Lanius excubitor L.) in

relation to climate change. He found that model collinearity was of minor importance com-

pared to other sources of uncertainty, but the analysis of only one species limits the generaliza-

tion of these results. Otherwise, even if the original simulations of Dormann et al. [27] were

not related directly to SDM techniques, they provide a comprehensive explanation of problems

that emerge with collinear predictor variables, highlighting that no solutions exist to identify

the correct causal relationships based on collinear predictors. However, particularly under

latent-variable approaches, we rely only on a general expectation that a set of variables be “a
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proxy of some set of underlying ‘true’ relationships to unobserved or unavailable environmen-

tal variables” [27].

Considering the problem of choosing sets of environmental predictor variables for SDM,

we must recall Austin’s [36] distinction between proximal, physiologically related, and distal,

broad climatic variables in modeling. Even if proximal variables that are directly interpretable

in terms of species niche requirements, collinearity among those variables and broad and eas-

ily-available climatic variables will help in producing effective model results [10]. Otherwise, it

is still possible that strong collinearity may cloud the importance of a real proximal variable

during any variable selection approach, affecting model results. Hence, collinearity among var-

iables should be a key factor in SDM performance. Considering our incomplete knowledge on

the real requirements of each individual species, this open the possibility that collinearity be a

helper instead of an adversary to SDM improvement.

Dupin et al. [37] used principal component analysis to produce a new set of uncorrelated

variables to model distributions of a widespread species. Hanspach et al. [38] used PCA-

derived climatic variables to model distributions of European plant species. Serra et al. [39],

Silva et al. [40] and Silva et al. [41] use the same procedure studying different aspects of bee

species distribution in Brazil. More recently, Velazco et al. [42] evaluate of the use of climate

and soil data for modelling neotropical plant species distribution also using PCA to control for

collinearity. This procedure may be promising because, instead of dropping variables, which

may contain useful or interpretable information about regional environment, it allows sum-

marizing the broad axis of climatic variation across the study area, favoring both efficient pre-

diction and interpretability. Since model performance and possible effects of collinearity on

model performance may depend on a variety of incidental variables, with special focus on vari-

ation in environmental variables and individual characteristics of the species, a broader evalua-

tion of PCA as an effective solution for this problem is required. We hypothesized that

intrinsic model characteristics determine the sensitivity of SDM to collinearity effects, with the

expectation that simpler (i.e. few parameters), presence-only methods will produce better

results. Because collinearity increases model instability [27,29], we test whether use of PCA-

derived variables, instead of the original set of collinear variables, can reduce variability in

model performance measures. Nevertheless, intrinsic characteristics of the species directly

affect its range size, prevalence, range geometry, and ecological/geographical marginality, all

important features that affect SDM performance [43–46]. To deal with such complexity and to

bring more generality to our evaluation, we use the “virtual species” approach [47] controlling

key features of modeled species and environmental data.

In addition to pitfalls directly related to SDM development, other important sources of

uncertainty are related to intrinsic species traits. Several of these issues are time- and space-

dependent, and can drive or limit the species distribution in an (apparently) idiosyncratic way.

These issues includes dispersal ability [19,20,48]; position in geographic space [45,49]; position

in the ecological space (i.e. niche marginality), ecological tolerance or ecological specialization

[43,50]; geometric properties such as range-cohesion, range-size, and prevalence [45,46,51–

53]; and finally, non-equilibrium between species’ distribution and the environment [54]. All

these issues can augment uncertainty in SDM predictions because they vary dramatically

among species. Consequently, species’ distributions do not necessarily express their environ-

mental requirements, and it is possible that species with identical niches may have very distinct

distributions [55,56]. Otherwise, specific model settings may be more appropriate to model

particular species in light of these differences [57], generating lack of standardization of accu-

racy between models. Even if we cannot control these issues, it is important to know that they

exist and, eventually, to measure species’ idiosyncratic responses in SDM performance.

Collinearity in species distribution models
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We distinguish here two different uses of SDM that directly affect the way those methods

are interpreted or evaluated. First is the use to predict which of individual cells where expected

the occurrence of a given species or to identify cells with high suitability to that species. This

particular objective is shared by the majority of studies under a conservation biogeography

approach such as reserve prioritization [58,59] with or without considering climate change

issues [60]. The second is focusing on the range dynamics under a macroecological approach

[54,61], which usually has a main focus on general patterns such as range-size variations

among species [62,63]. Thus, good models for this approach are those that can predict the cor-

rect range-size independently than if individual cells are correctly predicted. As both

approaches encompasses interesting ecological questions, our analysis was designed to deal

with the accuracy of predictions for both the species distribution in each cell and of total

range-size of modeled species.

Methods

Methods overview

Our general approach was to create realistic species distribution based on simulated ecological

niches. The simulated distribution of each species is assumed as truth and, due to our simula-

tion procedures, it represents both the environmental niche and the spatial restriction in colo-

nization. Thus, it resembles better the general theoretical BAM scheme of species distribution

[64,65] in which actual distribution is affected by the macro-climate variables that usually

describes the Grinnelian niche of species [64] and the dispersal limitations determining the

accessible are for species distribution [20]. Then, we produce spatial predictions of the distri-

bution using common SDM procedures with original, collinear, climatic variables and non-

collinear PCA-derived factors from the same climatic variable dataset. Finally, we compare the

geographical prediction against the true spatial distribution of the species to evaluate the effects

of model choices, model procedure and collinearity on SDM performance. Our approach

based on geographical space allows to a proper evaluation if our SDM methods can estimate

species distribution under those constrains.

General simulation approach

We employed what has recently described as the “virtual ecologist approach” [47] to evaluate

effects of collinearity among environmental variables on SDM results. This framework allows

for the “evaluating of sampling schemes and methods, (statistical) analysis tools, model

approaches and structures. Virtual data are generated by simulating (a) a virtual ecological

model which includes key processes of the ecological system, (b) a virtual sampling model

mimicking the observation procedure, (c) the methodological tools to analysis the ‘virtually’

observed data” [47]. Virtual species are seeing increasing use in SDM [66–69] mostly because

they allow to separate the effects of individual features in complex models, which is never pos-

sible when using real species for comparisons. Moreover, evaluation of models for real species

is subject to problems such as bias in sampling points [5,34], choice of environmental descrip-

tors [70,71] and availability of appropriate independent sets of observations not affected by

spatial autocorrelation in the environmental data [14]. Using virtual species allows comparing

the resulting models with “true” distributions, overcoming these problems. Obviously, the suc-

cess of this approach lies in the ability of the simulating procedure to mimic underlying pro-

cesses in the range-distribution phenomena and the sampling points/SDM procedures.

Our approach is based on (1) the definition of virtual species suitability in a given site as a

function of the environmental variables and species Grinnellian niche, (2) its projection in the

geographic space producing known distributional patterns, (3) sampling points in these

Collinearity in species distribution models
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distributions, (4) fitting SDM from these points using environmental datasets with and with-

out controlling for collinearity and then, (5) comparing the results with the known distribu-

tional patterns. Fig 1 summarizes this process. One of the key aspects that contribute to the

realism of these simulations is the process of projection of species distribution using a cellular

automata model. Otherwise, each of these steps includes many parameters or methodological

details that are described separately.

Environmental data

The basic environmental data for our analysis were the 19 bioclimatic variables in WorldClim

website (http://www.worldclim.org). Bioclimatic variables are derived from monthly tempera-

ture and rainfall values, and represent means and seasonal extremes of the environmental fac-

tors [72]. Many of these variables can be understood to play interpretable roles in constraining

on the distributions of species and this dataset is used commonly in the literature [37]. We

selected a spatial resolution of 10 arc-minutes (about 20 x 20 km cell size) across all South-

America for analysis.

We calculate a principal component analysis (PCA) based on the correlation matrix of the

environmental variables to derive new uncorrelated variables for the study, using standard

procedures [73]. This analysis illustrates the high level of collinearity among the original cli-

matic layers since the first four axes retain 90% of the variation in the overall dataset (Table 1).

Examination of the first two PCA loadings reveals some of the strong correlations among vari-

ables in the dataset (Fig 2), most of the variables were positively related to the first axis, but

Fig 1. General simulation and analytical scheme to test the effect of collinearity among environmental variables

on species distribution modeling results.

https://doi.org/10.1371/journal.pone.0202403.g001
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temperature seasonality (b4) and temperature annual range (b7) were negatively associated.

The most important variables for the second axis were related to the precipitation with positive

loadings for precipitation in the driest month (b14) or quarter (b17) and negative loadings for

precipitation seasonality (b15). Indeed, some variables had almost identical positions on the

Table 1. Eigenvalues and proportion of total variance explained by each axis derived from a principal components analysis of climate data for South America.

Axis

Eigenvalue Proportion (%) Cumulative proportion

PC1 10.42 54.84 54.84

PC2 3.86 20.30 75.14

PC3 1.71 9.02 84.16

PC4 1.14 6.01 90.17

PC5 0.74 3.92 94.08

PC6 0.49 2.56 96.64

PC7 0.29 1.51 98.16

PC8 0.15 0.77 98.92

PC9 0.11 0.56 99.49

PC10 0.05 0.27 99.76

PC11 0.02 0.08 99.84

PC12 0.01 0.07 99.91

PC13 0.01 0.03 99.94

PC14 0.00 0.02 99.97

PC15 0.00 0.02 99.98

PC16 0.00 0.01 100.00

PC17 0.00 0.00 100.00

PC18 0.00 0.00 100.00

PC19 0.00 0.00 100.00

https://doi.org/10.1371/journal.pone.0202403.t001

Fig 2. Factor loadings for the first two principal components of the Bioclim environmental variables for South

America. Identifiers of the Bioclim variables: b1: annual mean temperature; b2: mean diurnal range; b3: isothermality;

b4: temperature seasonality; b5: max temperature of warmest month; b6: min temperature of coldest month; b7:

temperature annual range; b8: mean temperature of wettest quarter; b9: mean temperature of driest quarter; b10: mean

temperature of warmest quarter; b11: mean temperature of coldest quarter; b12: annual precipitation; b13:

precipitation of wettest month; b14: precipitation of driest month; b15: precipitation seasonality; b16: precipitation of

wettest quarter; b17: precipitation of driest quarter; b18: precipitation of warmest quarter; b19: precipitation of coldest

quarter.

https://doi.org/10.1371/journal.pone.0202403.g002
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first two axes, suggesting high collinearity in pairwise comparisons (e.g. mean temperature in

the wettest quarter (b8) and warmest quarter (b10); precipitation of the wettest month (b13)

and wettest quarter (b16); precipitation of the driest month (b14) and driest quarter (b17).

Many criteria could be used to select a representative set among PCA-derived variables

[74], with the choice among them affected by sample size, correlation structure, and departure

from normality [75]. Since this choice may affect the SDM results, we also evaluated the use of

different criteria for model performance. We chose to use two simple criteria that are conser-

vative, extrapolating the number of dimensions needed to describe the correlation matrix

[74,75]. Regardless, this step is consistent with our objective in modeling species’ distributions,

trying to include as much as possible environmental information. One criterion was to retain

the axis with latent root higher than one (i.e. the Kaiser-Guttman criteria), which selected the

first four axes in our analysis (Table 1). The second was to retain the set of components that

explained at least 95% of the total variance (i.e. fixed cumulative eigenvalue criteria), which

selected the first six axes (Table 1). PCA scores of each cell were calculated using the eigenvec-

tors; Layers were re-projected into the geographic space as ASCII files for further analyses (this

dataset is available from the corresponding author).

Species distribution simulation

We follow the general approach of De Marco et al. [54] to generate geographic distributions of

the virtual species. This approach includes: (1) definition of a centroid in ecological space, (2)

establishing tolerance values, (3) setting the relation between suitability and environmental

values in ecological space, (4) projecting suitability into geographic space, and (5) simulating

species’ distributions based on suitability using a spatially explicit automata cellular model.

This protocol was designed to be consistent with current view of distribution of species as a

function of intrinsic traits that limit position and tolerance in niche space, but also regarding

spatially explicit dispersal constraints [20,65]. Hence, we echoed Austin [36] in emphasizing

that generating artificial data or virtual species’ distributions must reflect an existing theory

about the whole process.

The ecological space for this study comprised the same climatic variables described above.

We modeled suitability for each virtual species as a Gaussian multivariate distribution function

of the basic environmental variables [67,69,76]. This approach allows evaluating possible influ-

ences on final SDM accuracy due to differences in relative positions of the optimal environ-

mental combination (i.e., the centroid in environmental space) and the environmental

tolerance (the variance of the Gaussian function). Fifteen centroids were chosen to represent a

variety of environmental conditions in South America, and the different biomes present there.

For each centroid, we chose two tolerance values representing narrow and broad tolerances.

We used previous simulations of variance values to guide choice of actual tolerance values. We

finally selected 20% of the variance of each environmental variable in South America for the

narrow tolerance species and 60% for the broad tolerance species (description of the centroids

of each species in environmental space is provided in S1 and S2 Tables).

The Gaussian curve was re-scaled to have a value of 1.0 for the optimal environment (cen-

troid). This assures that species will be persistent on optimal environments, reducing stochasti-

city in optimal environments and, thus, reducing internal fragmentation in range during

simulations. This relation was then projected as a deterministic suitability map in the geo-

graphic extent of the environmental variables, and treated as the input for the cellular autom-

ata model. The suitability of a given cell did not change during the simulation. A seed point,

representing the center of origin of the virtual species’ distribution, was selected among the

points with highest suitability. Whether attributable to this cell a value of one, meaning that

Collinearity in species distribution models
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the species is present there. The automata model was based on a simple colonization-extinc-

tion model evaluated iteratively for each cell. First, for each occupied cell, environmental suit-

ability was converted directly into a probability of persistence to the next time step. To reduce

variability in both low and high suitability sites, occupancy in cells with<0.1 suitability were

always set to zero and those>0.9 were always set to one. These thresholds reduce the possibil-

ity of of instable distribution in high-quality habitats or colonization of poor-habitats. In previ-

ous tests of this simulations, the absence of such thresholds produced less stable distributions

and high fragmentation of species-ranges. Otherwise, populations in a cell of suitability of p
had a probability 1-p to gone extinct. The second component was colonization: an occupied

cell provides invasion propagules that can colonize nearby cells (1 cell distant) or ‘jump’ to

cells 2–5 cells apart. As such, the species can pass through unsuitable areas up to 4 cells wide.

The number of cells traveled by each propagule followed a uniform distribution with three dis-

persal attempts allowed by iteration. The dispersal process here was different from De Marco

et al. [54], but was more realistic since it allowed long-distance dispersal. If the target cell is

unoccupied, it may be colonized based on the same random test related to its suitability

described for the extinction process. Rescue effects are allowed since colonization is evaluated

before the extinction process.

The resulting distribution for each species is thus a function of the intrinsic properties of

the species, which are controlled by our experimental design, but also by availability and distri-

bution of suitable areas in geographic space. This caused some broad-tolerance species to differ

only subtly from its corresponding narrow-tolerance species (see species 4, in Fig 3). On the

other hand, the difference in the range size observed in geographic space may be greater than

that predicted based only on its tolerance (see species 2 in Fig 3). Both cases may represent the

realism of our simulations and highlights the importance of distinguish broad/narrow toler-

ance in environmental space from broad/narrow ranges in the geographic space for interpreta-

tion of the resulted models.

Sampling occurrence points

The number of sampling points relates directly to the representativeness of the climatic niche

in a species for the modeling process. Effects on efficiency of modeling algorithms are well-

known, with documented tendencies toward to overfitting in Maxent [28,77]. For each species,

we selected a set of 50 points at random among the occupied cells at the end of the range-dis-

tribution simulation. We repeated the process 10 times allowing evaluation the uncertain

related to different samples from the same species range, which is essential to the analysis of

model instability related to collinearity.

Species distribution modeling techniques

We used four different modeling techniques to generate species distribution models: Envelope

Score (ES), Mahalanobis Distance, Maximum Entropy (Maxent) and Support Vector

Machines (SVM). They are selected to represent a spectrum of model complexity [52], and dif-

ferent ways of using information from the occurrence points. Envelope Score and Mahalanobis

Distance are true presence-only methods while Maxent and SVM uses background informa-

tion during the model fitting process [21]. We expect that those differences may influence the

collinearity effects on SDM performance.

Envelope Score is the simplest algorithm used in this study, since it is a quantitative version

of the Bioclim algorithm, which describes rectilinear bioclimatic envelopes around occurrence

points in the environmental space. Envelope Score was implemented using OpenModeller

Desktop version 1.1.0 [78]. Mahalanobis Distance, the second simplest algorithm, is an

Collinearity in species distribution models
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Fig 3. Virtual species used in simulations. In each cell, the two maps represent species with the same niche centroid but with small and large tolerance in ecological

space, respectively. The numbers will be used to identify each species for the rest of this paper.

https://doi.org/10.1371/journal.pone.0202403.g003
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environmental distance method that controls the covariance between variables at occurrence

points. As a result, it requires more occurrence points than environmental variables; since the

matrix inversion cannot be done using standard methods when the reciprocal condition of the

covariance matrix is lower than 1. In such cases, we estimate the Mahalanobis distance using

the pseudo-inverse of the covariance matrix.

Maxent version 3.3.3e [79,80], is considered one of the most efficient algorithms [81,82]

and certainly among of the most used. Maxent can be adjusted based on several parameters,

including choice of the feature types, number of background points, and the regularization

parameter. The features types control the possible relationships between the occurrence data

and the environmental variables, allowing for linear, quadratic, product, hinge and discrete

responses. More features demand increased number of parameters and elevate the possibility

of overfitting. In this paper, we follow Anderson & Gonzalez [57] by comparing the Maxent

default (MXDEF) to a tuned model settings aiming to reduce model complexity by allowing

only linear+quadratic (MXLQ) features. Due to internal settings of Maxent, this choice cause

the use linear+quadratic+hinge features for our models.

The last algorithm used was SVM (Support Vector Machines), which is characterized as a

group of supervised learning methods. This algorithm maps input vectors into a higher dimen-

sional space by finding a hyperplane that separates presence and pseudo-absence records. We

used the standard algorithm (C-SVC regularized support vector classification) with a radial

basis kernel function as implemented by the OpenModeller.

Both Maxent and SVM models depends on the choice of background points. In all cases we

choose 10000 random points in the geographical extent of South America as background for

model fit.

Models for each virtual species were developed with each SDM algorithm using all raw

environmental variables (RAW) and the two sets of uncorrelated PCA-derived variables: four

PCA axes (PCA4) and six PCA axes (PCA6).

Evaluating binary predictions

Our evaluation procedure was based on comparison of real distribution of the virtual species

and a binary prediction of the models. We apply a threshold that maximizes the sum of sensi-

tivity and specificity to minimize both omission and commission errors, and could be derived

from the ROC curve. This will be referred hereafter as balance threshold. The balance thresh-

old is the most commonly used method in practical applications [83,84], therefore it was used

here to the core evaluation of the collinearity effects. Otherwise, only for the comparison of

estimated range-sizes we also apply the “least training presence threshold” (LPT), which

assumes that species must occur in locations equally or more suitable than those at which it

has been found. Thus, LPT threshold is designed to only minimize omission errors. As the

LPT is expected to generate larger distributions, we compared its accuracy to estimate the

overall range-size with the balance threshold. Although there are other ways to derive range-

size, we choose simply to use the estimate derived from the thresholding the suitability map.

These estimates are simpler and frequently used in practical studies of conservation biology

[85–87]. Moreover, they represent known methodological constrains related to omission and

commission errors that will be useful to evaluate the factors affecting model performance.

To evaluate the models we used the overprediction rate (OP) [88], underprediction rate

(UP) [= false negative rate 89], and the composite index True Skill statistics (TSS) that per-

formed more effectively than other evaluation measures [90]. We choose to use the basic mea-

sures of model performance related to the omission (UP) and commission (OP) together with

a synthetic measure (TSS) following Lobo et al [91] about possibly misleading results of
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synthetic measures. TSS was hypothesized to be less sensitive to prevalence, a common prob-

lem in such measures [92], including the more commonly used AUC [93]. Nevertheless, there

is a lot of evidence that TSS is always affect by prevalence (our simulation results; Leroy, B

et al., pre-print https://www.biorxiv.org/content/early/2018/05/11/235770). Thus, we try to

include prevalence as a covariate in our analytical procedures. This choice suited our need to

control for prevalence since we are comparing the results to its “true” distribution but may not

function for analysis SDM exercises with real data. Another general problem with evaluation

measures is the requirement of pseudo-absences data; we did not have that problem thanks to

our virtual species, with complete knowledge of their presence and absence. Hence, model

evaluation was achieved by comparing the actual and predicted distribution after

thresholding.

Statistical analysis

The main hypothesis in this study is that using PCA axes may produce better models, than

those based on original variables. This increased accuracy may be affected by model proce-

dures, species’ tolerance in environmental space (“narrow” and “wide”), and individual species

real prevalence. Prevalence is calculated as the ratio of number of occupied cells of each virtual

species simulations and the number of cells of geographical extent in the analysis. Inclusion of

prevalence was especially important to control of its effects on our response variables. We may

also expect interactions among those explanatory variables. For instance, some procedures

may be more effective for restricted than for broadly distributed species [94–96]; hence, most

relevant issues in this analysis refer to the existence of interactions among those variables [97].

We used a three-factor (type of environmental variables, algorithm and tolerance) ANCOVA

with each species prevalence as a covariate. We explored significant interaction terms of the

ANCOVA with a special caution considering the large degrees of freedom that resulted from

simulation procedures, giving our tests high statistical power. Thus, we used confidence inter-

val estimates to support the more important conclusions from these analyses.

We also evaluated effects of collinearity on model stability by estimating the variance of the

TSS as a quantitative measure of the variability among sub-samples of occurrence points. We

estimated this quantity for each virtual species, sampling effort and SDM algorithm and com-

pared among the raw variables and 4 PCA and 6 PCA. For these analysis, we used inferences

based on 95% confidence interval estimates.

Finally, as observed earlier, variation of the environmental variables in geographic space

may affect the conversion of environmental tolerances into geographic ranges. Hence, toler-

ance alone may not be a good surrogate for range size, while range size alone may be an impor-

tant factor affecting model accuracy. Thus, we tested accuracy of the models by a standard

least-squares linear regression between predicted and real species range size. “Good” models

should produce a close relationship. Models with high R2 with intercept near zero and slope

near 1 are good predictors of absolute range size values. Nevertheless, if R2 are high but the

other criteria are not met, the model could be considered still a good predictor of relative dif-

ferences among range sizes.

Results

The interaction of all of our main explanatory variables were statistically significant for TSS,

but not for OP and UP (Table 2). Nevertheless, all other interactions were significant. This

result highlights the complexity of species responses as regards predictive ability and on the

choice of the best algorithm for modelling. The importance of prevalence was clearly observed

affecting OP, UP and TSS, but its explanation power vary widely. Prevalence explains only
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2,6% of the variation of OP but explains 36% of variation in UP and 56% of variation in the

TSS in our experiment. This support our initial use of this covariate, but create a special con-

cern about studies that do not control for this variable in the evaluation of the predictive ability

of SDM procedures.

Considering the observed interaction in the analysis of all our response variables, we pres-

ent all 3-interaction plots to allow a better understanding of the observed patterns. Consider-

ing only the results of the Underprediction rate with raw collinear variables (Fig 4A) it is easy

to discriminate ES and Mahalanobis (hereafter low accuracy models) with UP higher than 0,3

from MXDEF, MXLQ and SVM (high accuracy models) with UP values never higher than

0,15. The use of PCA-derived variables reduce the UP for all algorithms, except for SVM

which appears relatively unaffected by the collinearity in environmental variables. In general,

the lowest UP values are observed for the use of 4-PCA variables. Moreover, the general pat-

terns appear similar from narrow and wide tolerance species simulations. An almost opposite

pattern is observed for the Overprediction rate (Fig 4B). First of all, the highest OP are

observed for 4-PCA followed by 6-PCA variables, with the raw collinear environmental dataset

as the most accurate model under this measure. There are less difference among algorithms,

but ES and Mahal presented the best results. Otherwise, there a clear higher OP for species

with narrow tolerance compared to wide tolerance.

Taking in account the interpretation above of the OP and UP, the composite measure TSS,

may provide some confuse signs (Fig 5). TSS shows the distinction between low (ES and

Mahal) and high (Maxent, SVM) accuracy models, most drived by the UP results. Clearly, the

use of non-collinear variables produced best models, but this improvement is most observed

for low accuracy models. SVM appear unaffected by collinearity or may perform slightly better

with raw data. For Maxent models, the increase in TSS values is higher for wide tolerance

species.

Idiosyncrasy–a variable response of individual species to model procedures—appears

slightly higher for wide-tolerance than for narrow-tolerance species (Fig 6). It is possible to

observe higher variation of the residuals in relation to different algorithms for the same species

in Fig 6, which means that no single algorithms has a superior performance over all modelled

species.

The results of models support the claim that a collinear set of variables increase model insta-

bility, especially for ES and Mahalanobis, but also for MXDEF (Fig 7). Range-size linear regres-

sion predictions yielded good agreement with real range sizes (Table 3). All R2 of balance

thresholds for models were higher than 0.919; LPT-derived models were similar with R2 higher

Table 2. Results of the factorial ANCOVA for the Overprediction (OP), Underprediction (UP) rates and TSS measure as dependent variables calculated under the

balance threshold. DF is degrees of freedom.

OP UP TSS

DF F p F p F p

Prevalence 1 30 <0.001 1398 <0.001 2843 <0.001

Environmental Vars (ENV) 2 453 <0.001 1272 <0.001 970 <0.001

Algoritm (ALG) 4 58 <0.001 790 <0.001 805 <0.001

Tolerance (TOL) 1 505 0.427 0.6 0.427 24 <0.001

ENV�ALG 8 23 <0.001 308 <0.001 294 <0.001

ENV�TOL 2 40 <0.001 9 <0.001 5 0.010

ALG�TOL 4 22 <0.001 51 <0.001 45 <0.001

ENV�ALG�TOL 8 1 0.247 1 0.219 3 0.016

Error 4469

https://doi.org/10.1371/journal.pone.0202403.t002
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than 0.894. Considering slope and intercept values, ES models met all criteria for use in abso-

lute analysis of range-size relations: i) high R2; ii) intercept close to zero and iii) slope�1

(Table 3). All high performance models presented slopes higher than 1.0, suggesting over-esti-

mation of absolute range-size (Table 3, Fig 8). Nevertheless, MXDEF with all variables had a

close to 1.0 slope, and higher R2 among the high-performance models (Table 3, Fig 8). Consid-

ering all possibilities MXLQ with 4 PCA axes thus presented the best combination of all crite-

ria with best absolute prediction of range-size (Table 3, Fig 8).

Discussion

Collinearity decreases the efficiency and increases the uncertainty of species distribution mod-

els. Nevertheless, the intensity of this effect among the algorithms ran contrary to our original

hypothesis: More complex models behaved better than simple envelope models, which turn

Fig 4. Interaction plots for the effect of environmental variables, modeling algorithm, and species tolerance in the

environmental space on the Overprediction (A) and Underprediction (B) rate of the distribution models using balance

threshold. Bars represent confidence intervals of 95%.

https://doi.org/10.1371/journal.pone.0202403.g004
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out to be highly sensitive to collinearity effects. No comprehensive test of these effects exists in

the literature except Dormann et al. [35], who “. . .hesitantly conclude from our analysis that

collinearity is a lesser problem than overfitting . . . or data uncertainty”. Based on a larger set of

possible algorithms under evaluation, we conclude differently: collinearity exerts a strong

effect, but these effects are higher on the simpler algorithms. Moreover, data uncertainty

clearly remains as an important issue, but its interaction with collinearity may also be highly

Fig 5. Interaction plots for the effect of environmental variables, modeling algorithm and species tolerance in the

environmental space on the TSS of the distribution models using balance threshold. Bars represent confidence

intervals of 95%.

https://doi.org/10.1371/journal.pone.0202403.g005

Fig 6. Residual plot of the ANCOVA results of the TSS response variable in relation to modelled species,

modeling algorithm, and tolerance in environmental space. Bars represent confidence intervals of 95%.

https://doi.org/10.1371/journal.pone.0202403.g006
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relevant. A positive message at this point lies in the relative efficiency that those complex mod-

els both described the spatial distribution of the virtual species and estimated its correct range-

size. This supports its use both for theoretical discussions as for practical or applied questions.

Complex models are prone to overfitting as much as we define complex models as those

with a larger number of parameters. Increased local fitting in some parts of the species’ range

Fig 7. Variance of the TSS measure for different SDM algorithms with raw environmental variables and the first

four PCA axis (4 PCA) and six PCA axis (6 PCA). Bars represent the 95 confidence intervals.

https://doi.org/10.1371/journal.pone.0202403.g007

Table 3. Relationship between real and predicted range sizes based on a linear regression model. a is the intercept, b is the slope of the regression. R2 is the coefficient

of determination. R2 values higher than 0.8 are highlighted. Higher R2 associated with a�0 and b�1 denotes best models for range-size prediction.

LPT Balance

Environm.

Variables

Modelling

procedures

a b R2 A b R2

All ES 107.4087 0.7586 0.974 107.4087 0.7586 0.974

All Mahal -103.1712 0.9338 0.954 129.8441 0.8254 0.943

All MXLQ 261.7759 1.5257 0.955 584.5047 1.1697 0.958

All MXDEF 169.613 1.3059 0.961 590.3274 1.0117 0.962

All SVM 145.9529 1.5522 0.939 716.1815 1.1428 0.949

6 PCA ES 234.4172 1.0185 0.972 234.4172 1.0185 0.972

6 PCA Mahal 956.7514 1.4758 0.943 1071.594 1.1754 0.942

6 PCA MXLQ 484.8208 1.4689 0.940 773.1833 1.16 0.959

6 PCA MXDEF 416.2603 1.4710 0.945 752.6322 1.1566 0.958

6 PCA SVM 676.0404 1.7828 0.901 1261.578 1.1252 0.919

4 PCA ES 291.2412 1.1855 0.971 291.2412 1.1855 0.971

4 PCA Mahal 628.8269 1.7099 0.926 1142.131 1.2586 0.954

4 PCA MXLQ 682.4333 1.5067 0.943 927.4211 1.2327 0.954

4 PCA MXDEF 658.1231 1.5100 0.940 922.4394 1.237 0.953

4 PCA SVM 1040.6258 1.7033 0.894 1306.712 1.2166 0.936

https://doi.org/10.1371/journal.pone.0202403.t003
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may decrease accuracy of prediction on other parts of the range [16,98]. Nevertheless, and

despite these problems, complex models functioned better in face of collinearity. It is not easy

to explain these differences, but complex methods clearly produced best fit to the data. The fit-

ting process appears to be efficient in dealing with increased instability, and consequent uncer-

tainty, related to the correlational structure of the independent variables. Difference in

performance between collinear and not-collinear environmental datasets were low for meth-

ods such as Maxent, which may support the claim that the fitting process takes advantage of

existing collinearity in finding a best set of parameters. Moreover, our results show that most

of the problems with low performance algorithms are related to higher omission rates.

Overfitting is known to be a possible problem in Maxent models [28], and the algorithm

had explicit ways to deal with this problem [99,100], but this effect may decrease model perfor-

mance [77]. Use of MXLQ or other forms to constrain numbers of parameters [57], offers

ways to control overfitting. Our results do not support the existence of large overfitting effects

on model performance, but we did not explore spatial and environmental bias in sampling, or

transferability problems that may emerge. Further evaluations may include other sampling

schemes designed to mimic more accurately such effects.

Algorithm choice is considered as the most important source variation among SDM’s in

recent studies [8,101]. Our results support this view, but we found that SVM and Maxent pre-

sented higher performance. Many other studies have also shown that Maxent models show

lower uncertainty and may be considered the most reliable option [81,82,95,96,102]. A large

number of current applications of SDM comprise very large sets of species to be evaluated, and

observed idiosyncrasy among species may represent a problem. In such cases, it is difficult to

perform a close look to individual responses and, in a worst scenario, very distinct choices

applied to different species may lower the confidence on the generality of some results or on

the comparisons we made [103]. Otherwise, the deeper understanding of Maxent omission/

commission errors presented here and in other publications [100,104] may also support the

best use of this tool.

Fig 8. Linear regression of predicted on real range size for modeled species using Balance thresholds. Red lines

represent the linear regression of the data; blue line show the prediction of the relationship if the predicted range-size

were equal to the real range-size.

https://doi.org/10.1371/journal.pone.0202403.g008
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Variable choice is widely considered as key for successful SDM application [105]. Many

studies try carefully to describe these choices based on known ecology of focal species [106–

108]; others simply used all information available [86,102,109]. This dichotomy is explained

partly by constraints related to study objectives: studies dealing with a few species could

strength their results by careful choices based on available ecological information (if it exists).

Otherwise, no one expects that a single choice will cover the best possible option in studies

dealing with large sets of species [8,58,110,111]. It is almost impossible to expect that individ-

ual setting of variables and parameters could be done in those large dataset studies [8,42].

Moreover, Araujo & Peterson [112] showed that both omission and commission errors may

be affect by model misspecification, which is often caused by the absence of an important envi-

ronmental factor during model fit. Use of all environmental variables has been criticized based

on collinearity effects on model building. We showed that this is not a problem for modelling

techniques such as Maxent and SVM. Otherwise, we consider that the best practice is to

include all possibly relevant variables in the PCA and use a set of PCA-derived variables to pro-

vide surrogates for the ecological process that constrain species’ distribution. Nevertheless, our

results also show that the use of PCA-derived variables may increase Overprediction rates,

especially for narrow tolerance species. Obviously, these results are also dependent on the par-

ticular choice of threshold by the practitioner (please see Leroy et al. pre-print paper https://

www.biorxiv.org/content/early/2018/05/11/235770) Even if, the composite TSS measure sup-

port the general view of the advantage of the use of PCA-derived variables, we consider that its

use deserves special attention and study-purpose adjustments. Decoupling TSS in a more

detailed picture showing the difference in over- and under- prediction rates will help to the

user to avoid mis-interpretation and provide a much better description of the limits of its use.

We deliberately designed our virtual species to be heterogeneous and show substantial

between-species variation of the ecological niche, to allow evaluating how different species

characteristics affect prediction ability of algorithms. Our results support the view that the so

called “idiosyncrasy” in species responses plays an important role in SDM performance: for

example, we observed that some species always show lower prediction ability, regardless of

algorithm choice. This was true even after controlling the prevalence effects on the evaluation

metrics, which is especially important considering that prevalence was suggested as the hidden

causes of those variations [113]. Species with restricted distributions presented higher TSS val-

ues, but in some cases prediction ability of different algorithms varied substantially. Idiosyn-

cratic responses are especially important considering that many previous papers evaluating

algorithm performance used small number of species [35] or species with similar environmen-

tal requirements from just one taxonomic group [114,115], which are prone to such effects.

The above mentioned general patterns of “idiosyncratic” species responses could be pre-

dicted based on some individual species characteristics that are expected to affect SDM perfor-

mance. Thus, we refuse to maintain this as true idiosyncrasy. Our simulation design allows to

directly evaluate the most important issues named (i) prevalence (partially under the label of

tolerance in the environmental space), (ii) position in the ecological and geographical space

and (iii) sample-size. Additionally, we specially devise the (iv) shape of species responses to

environmental variables as an important issue. From these, the position in ecological/geo-

graphic space may be the more “idiosyncratic” in nature, but we may provide further insights

on how its effect could be predicted. We now go deeper in each of these points.

Sample prevalence was considered an important predictor for model performance [116].

Narrow distributed species are expected to provide better models [82,117], nevertheless this is

possibly a by-product of the overlooking of the spatial dependency of sample records [118].

The smallest is the range of the species, the farther are the mean distance between observed

presence and absences used to calculate common metrics derived from the confusion matrix,
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such as AUC and TSS [93,118]. Nevertheless, our approach is not subjected to this flaw

because we evaluate the models against to “real” virtual species distributions. We found only a

slightly better performance in models for specialist species. Two simple methodological expla-

nations could be devised. First, large ranges had also large borders. As previously observed,

our approach allows to source-sink process that are expected to occur at distribution borders.

The other explanation is simply the lack of discrimination due to environmental drivers for a

species that occur in larger areas. As showed by the variation observed in distribution of our

controlled virtual species (shown in Fig 3), range-size is not an obvious surrogate of species tol-

erance of environmental factors. In fact, a large variation among species with equal tolerances

is caused by differences in the availability of those preferred climatic-environments in the geo-

graphical space. Thus, range-size should be carefully analyzed in such cases.

Position in ecological/geographic space effects are also affected by this discrepancy between

tolerance in ecological space and range-size in geographical space. For example, a species with

its mean optimal conditions in the Pantanal wetlands in Brazil, will probably have very little

differences between broad- and narrow-tolerance in ecological space. This occurs because the

cells in this region exhibit a high environmental similarity among themselves. Thus, position

in the ecological/geographic space may indirectly determine species prevalence with conse-

quences as discussed earlier. This effect is best described as the pattern of spatial autocorrela-

tion of the different regions (in this case biomes in Brazil) and was also suggested as an

idiosyncrasy generator [24,119].

Species responses to environmental variables plays an important role in determine the effi-

ciency of SDM algorithms [69]. Our virtual species were built under only one response type,

named Gaussian response, which may be well suited for general ecological theory [120], but

will not answer for broad array of possibilities in real world. Previous studies show that some

response types [69] may be associated to poor predictions for GLM/GAM models. Maxent is

now viewed as more similar to a special kind of GLM methods, named Poisson regression

[121], but it has a high flexibility and probably can account for linear relations, as well as it did

for the non-linear relations in our study. Nevertheless, the case for different species responses

and its effects on model efficiency is still open; with the need of a better evaluation of realistic

cases were the same virtual species (same centroid and tolerance in environmental space)

respond with different forms to different environmental variables. From another point of

view, our choice to set occupancy thresholds at 10 and 90 percent reflects stable contiguous

niches, which produce similar stable contiguous distribution in the geographical space [122].

For example in mountainous areas some species are restricted to rare patches of suitable habi-

tat and so have extremely low occupancy [e.g. bee distribution in 123]. Nevertheless, our results

still apply for a large range of species, and the effect of the threshold may be small.

Finally, we show that even models with low accuracy to predict suitability of individual cells

may provide meaningful information on the estimation of range-size, a key species-trait for

macroecological studies. This result is important for, at least, two broad uses of SDM. First, is

to evaluate biogeographic or macroecological hypotheses build to explain broad patterns in

species richness, range-size/abundance relations, or evolutionary patterns [124,125]. Our

results suggest that most the algorithms may produce reliable information as surrogates for

species range-size. The other use is more controversial. Range-size is one of the more impor-

tant metrics determining the result of the evaluation of vulnerability according to IUCN meth-

odology [126] and are used world-wide as criteria to prioritization of conservation efforts.

SDM was considered as a possible surrogate for extent of occurrence (EOO), which could

inform species categorization under IUCN categories [85,127], but there are also claims to use

SDM to estimate area of occurrence (AOO) [128,129]. Our results support that all methods
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may provide accurate estimations of the absolute range-size and help inform species evaluation

under the IUCN framework.
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