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Abstract

Ovarian cancer is a heterogeneous disease displaying complex genomic alterations, and consequently, it has been difficult
to determine the most relevant copy number alterations with the scale of studies to date. We obtained genome-wide copy
number alteration (CNA) data from four different SNP array platforms, with a final data set of 398 ovarian tumours, mostly of
the serous histological subtype. Frequent CNA aberrations targeted many thousands of genes. However, high-level
amplicons and homozygous deletions enabled filtering of this list to the most relevant. The large data set enabled
refinement of minimal regions and identification of rare amplicons such as at 1p34 and 20q11. We performed a novel co-
occurrence analysis to assess cooperation and exclusivity of CNAs and analysed their relationship to patient outcome.
Positive associations were identified between gains on 19 and 20q, gain of 20q and loss of X, and between several regions
of loss, particularly 17q. We found weak correlations of CNA at genomic loci such as 19q12 with clinical outcome. We also
assessed genomic instability measures and found a correlation of the number of higher amplitude gains with poorer overall
survival. By assembling the largest collection of ovarian copy number data to date, we have been able to identify the most
frequent aberrations and their interactions.
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Introduction

Epithelial ovarian cancer (EOC) is one of the deadliest

malignancies, with high recurrence and poor survival rates [1].

The genetic aberrations observed in EOC are highly complex,

comprising frequent aneuploidy and multiply rearranged chro-

mosomes [2,3]. The heterogeneity of copy number alterations

(CNA) observed in EOC has made it difficult for small studies to

be able to accurately identify the true frequency of the less

common CNAs or to reproducibly identify CNAs that correlate

with clinical parameters. A small sample size also makes it difficult

to identify CNAs that co-exist or are mutually exclusive, which is a

prerequisite to identify any common pathways that may be

deregulated in EOC through alterations in gene copy number.

The paradigm for mutually exclusive aberrations targeting the

same pathway was set in colorectal tumours for APC and CTNNB1

mutations [4] and extended in other examples such as exclusivity

of BRAF and KRAS mutations [5]. Conversely, other genetic

aberrations are more frequently observed in the same tumour than

would have been expected by chance, suggesting a co-operative

effect, for example the significant association of 11q13 and 8p12

amplicons in breast cancer [6]. In ovarian cancer, associations

have been found between CCNE1 and 12p amplification [7], and

between MYC and 20q amplification [8] by fluorescence in situ

hybridisation. Few studies have examined co-operativity or

complementation of CNA on a genome-wide basis. Losses at 4q

and 18q were found to be associated in one study [9] but this was

not replicated in a recent analysis [10], which identified 7 CNA

associations and 6 anti-correlations.

The presence of high level gene amplifications in ovarian cancer

has been observed for some time, however most studies have been

underpowered in sample size [10] or genomic resolution [11,12] to

PLoS ONE | www.plosone.org 1 September 2010 | Volume 5 | Issue 9 | e11408



accurately detect the frequency and target of these events.

Similarly, few robust associations of CNA with clinical parameters

such as survival have been identified [13,14]. The detection of

these CNA is relevant not only to the identification of tumour

subgroups and the pathways affected in the tumours, but also to

the targeting of molecular therapies in ovarian cancer. In this

study we have brought together a large cohort of single nucleotide

polymorphism (SNP) mapping array data to robustly annotate

CNAs in serous and endometrioid ovarian cancers in order to

identify the genes targeted by these genetic events and how these

correlate with clinical parameters. In addition, we have assessed

the interaction of CNA by evaluating their associations and anti-

associations.

Materials and Methods

Peter MacCallum Cancer Centre (PMCC) data set: Tissue
samples and DNA extraction

All samples were collected with the patient’s informed consent

and the study was approved by all the participating hospital

Human Research Ethics Committees. Patients with ovarian

cancer were identified through four primary sources between

1992 and 2006: a) 53 at hospitals in Southampton, UK, b) 141

through the Australian Ovarian Cancer Study, including 20

from the Westmead Gynaecological Oncology Tissue Bank, c)

15 through the PMCC Tissue Bank (Melbourne, Australia) and

d) 41 from Jikei University (Tokyo, Japan). Pathology review

was conducted from either formalin fixed, paraffin embedded

tissue and/or fresh-frozen sections adjacent to the tissue from

which DNA was extracted (n = 141) or through examination of

the original diagnostic pathology reports (n = 109) (Table 1,

Table S1).

All tissue samples were collected as fresh frozen material. A

representative haematoxylin and eosin stained section was assessed

and samples with .80% epithelial cells were used directly for

DNA extraction from the whole tissue. For the remainder, needle

or laser dissection was performed using 10 mm sections to obtain

high percentage tumour epithelial cell component. DNA was

extracted as previously described [14,15]. Normal DNA extracted

from blood lymphocytes was available for 106 patients.

The Cancer Genome Atlas (TCGA) data set: Tissue
samples and DNA extraction

Samples were collected as fresh frozen material from hospitals in

the USA (n = 163). Tumour samples were assessed to be .80% of

epithelial cells prior to DNA extraction from the whole tissue, as

outlined [16]. Normal DNA extracted from blood lymphocytes was

available for 161 patients. The results published here are in part

based upon data generated by The Cancer Genome Atlas pilot

project established by the NCI and NHGRI. Information about

TCGA and the investigators and institutions who constitute the

TCGA research network can be found at http://cancergenome.

nih.gov.

Copy number arrays
Samples were processed as previously described for Affymetrix

Mapping arrays a) n = 108 50 K XbaI [14], GSE 13813 b) n = 27

250 K StyI arrays c) n = 32 500 K arrays (250 K StyI and 250 K

NspI, [17]) d) n = 83 SNP6.0 (1.8 M probe sets [15,18], GSE19539).

When available, matching normal DNA was also analysed on the

same array platform and in the same batch. TCGA SNP6.0 CEL

files for 163 samples were downloaded from the Data Portal (http://

tcga-data.nci.nih.gov/tcga/homepage.htm).

Data pre-processing and analysis
All SNP Mapping arrays were first normalized using methods

available in the R package ‘‘aroma.affymetrix’’ [19], including

techniques to remove systematic biases introduced due to allelic

cross talk, PCR fragment length bias and differences in GC

content. DNA copy number was estimated probe set-wise by

comparing the normalized signal from a tumour sample to data

from normal lymphocyte DNA from the same patient, if available.

On tumour samples for which matched normal tissue was not

available, the average signal from all the normals generated in the

same lab was used as reference. Quality control steps are described

in Methods S1. Only the included samples are summarised in

Table 1.

The circular binary segmentation method was used to segment

the copy normalized data [20,21]. Any probe sets within a CNA

that was present in .5% of normal samples were excluded from

the tumour analysis prior to segmentation to remove common

Table 1. Summary of clinico-pathologic features of samples in the final data set.

Grade2 Stage2

Data set1 Age (median) Subtype Total 1 2 3 I II III IV

50 K Australia 58 Serous 95 6 34 50 3 80 12

Endometrioid 9 1 4 2 1 1 5 1

Other 4 1 2

250 K Japan 54 Serous 12 2 2 1 6 2

Endometrioid 11 2 2 4 5

500 K Australia 64 Serous 17 1 5 11 1 6 9 1

Endometrioid 10 1 4 5 3 1 3 2

SNP6 Australia 61 Serous 65 3 21 39 2 7 49 1

Endometrioid 16 6 9 7 4 4 1

Other 2 2 1 1

SNP6 TCGA 60 Serous 157 7 145 2 4 118 30

1Unique, successful samples only.
2Only samples with known grade or stage shown.
doi:10.1371/journal.pone.0011408.t001
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copy number polymorphisms (CNP). Segments with fewer than 10

probe sets (SNP6) or 5 probe sets (500 K) were merged with the

adjacent segment of closest copy number as previous QPCR

analysis suggested that aberrations represented by few probes on

these platforms may not be reliable [17]. In addition, we used

Genomic Identification of Significant Targets in Cancer (GIS-

TIC), which is a method that aggregates data over different

tumours to try to differentiate between driver and passenger

aberrations, combining prevalence and amplitude [22]. This

technique was performed using a web-based interface (http://

genepattern.broadinstitute.org) with CNA thresholds of 60.3, a

minimum of 10 markers and a q-value threshold of 0.25.

For hierarchical clustering, all tumours were assessed for the

presence (‘‘1’’) or absence (‘‘0’’) of each GISTIC peak alteration

(n = 89), where any overlap was considered as presence. Hierar-

chical clustering using average Euclidean clustering of the samples

(n = 398) was performed using Partek Genomics Suite v.6.4 (Partek

Inc., St. Louis, MO).

Association between regions of aberrations
We undertook the analysis of association on the TCGA data set

(for which we re-ran GISTIC) and then on the remaining samples.

Two different methods were used to compute associations between

regions of gain and loss. GISTIC results were summarized as a

matrix X with tumours as rows and regions of aberrations as

columns. For each tumour (t) and focal region of aberration (i), the

measurement X[t,i] was 1 if the aberration was present for that

tumour and 0 otherwise. A Poisson log-linear model was fit to the

contingency table describing the aberration status. Statistical

significance of the association was computed using a score test that

yields a standard normal z-statistic [23]. This is equivalent to the

square-root of the usual Pearson test statistic for independence,

signed according to the direction of the association. The Benjamini

and Hochberg method was used to correct for multiple testing [24].

Association between regions of aberrations was also tested using

the Monte Carlo permutation test. Briefly, every column in matrix

X was permuted independently (maintaining the number of entries

in the columns to be the same). A score for association was

computed using the permuted matrix as described for the

parametric test above. The average rank obtained for every pair

of regions from a large number of permutations was used to

estimate the false discovery rate and the number of times a test

statistic greater than or above the original test statistic was used to

compute the p-value. Using a 5% false discovery rate the methods

selected .98% of the same pairs of regions. We chose to use the

first method described for region selection but both are reported.

Analysis of expression correlations between associated
copy number aberrations

We posited that the correlation between regions of aberrations

should result in correlation of mRNA levels of the genes within the

region. Affymetrix U133A array data was obtained for all samples from

TCGA. For all associated regions above, four Pearson correlation tests

were performed for the genes in the regions: a) correlation of copy

number between Gene X in Region A and Gene Y in Region B, b)

correlation between copy number and expression of Gene X in Region

A, c) correlation between copy number and expression of Gene Y in

Region B and d) correlation of expression between Gene X and Gene

Y. All four tests had to be significant at p,0.05.

Survival Associations
The Cox proportional hazard model was used to compute the

association between regions of aberration detected by GISTIC

and overall or progression free survival, correcting for multiple

testing using the Benjamini-Hochberg method. To compute the

survival association with pairs of regions, samples were classified

into four groups based on the aberration status of the pairs of

regions. Similarly, for the genomic measures, samples were binned

into one of four groups based on data quartiles for each measure.

Survival association with the groups thus identified was computed

using the Cox proportional hazard model.

Results

Integration of copy number alterations from 398 ovarian
carcinomas

We compiled high resolution copy number data from nearly

400 ovarian cancer samples representing two histological subtypes,

serous and endometrioid (Table 1), 270 of which had matching

normal lymphocyte DNA data. Data was compiled from multiple

sources: high quality Affymetrix SNP6.0 Mapping Array ‘‘CEL’’

files were sourced through The Cancer Genome Atlas (TCGA,

157 cases) or were obtained at the Peter MacCallum Cancer

Centre (83 cases [18]) SNP Mapping array data derived from

lower resolution Affymetrix platforms including 108 cases assayed

on 50 K XbaI arrays [14], 27 cases on 500 K arrays [15] and 23

cases on 250 K StyI arrays obtained from Japan, were also

included. Extensive quality control criteria were applied to all data

sets (see Methods S1). Following normalisation of each data set,

copy number alterations (CNA) were detected by circular binary

segmentation [21]. We evaluated a number of possibilities for

combining the datasets including cohort-specific thresholds (see

Methods S1), however this made little difference to the final CNA

pattern and a standard threshold of +/2 0.3 (log2) was applied

universally as previously described by us [17] and others [10].

Comparison between the five sources of data showed a

remarkable consistency of CNA across the genome, indicating a

high degree of non-randomness to the CNA and equally

importantly, an absence of significant array batch effects (Figure

S1). The exception was the Japanese data set, which appeared to

show a reduced number of alterations. However, a genome-wide

test was conducted to identify regions aberrant at different

frequencies between different platforms and could not identify

any statistically significant regions after multiple testing correction.

We assessed the possibility of molecular subgroups within the

combined cohort defined by copy number using hierarchical

clustering (Figure S1). Only a single group of samples was

distinguishable; these had few CNAs and tended to be low-grade

samples or the Japanese samples, for which grade information was

mostly not available. There were no other distinct clusters or

major groupings attributable to histological subtype or grade. In

particular, the high grade serous and high grade endometrioid

were evenly integrated, which is consistent with the previously

observed similarity of these subtypes as assessed using immuno-

histochemical markers [25] and gene expression profiles [26].

In order to identify the most relevant CNAs we performed a

number of complementary analyses as each method used has

strengths and weaknesses that may be complemented by the other.

Firstly, GISTIC was applied to all 240 SNP6 samples to identify

‘‘focal’’ and ‘‘broad’’ peaks (as defined in [22]) (Figure 1, Table S2).

However, GISTIC cannot readily integrate samples from different

platforms. We therefore elected to use a second complementary

method to GISTIC: an overall frequency approach that would

integrate segmented copy number data independent of platform for

analysing our entire 398 sample cohort. As expected, the most

significant regions of copy number gain predicted by both GISTIC

and overall frequency were located on 3q (63% of samples with CN

Ovarian Cancer Genomics
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gain) and 8q (62% samples with CN gain) (Figure 1). Other frequent

gains were observed on 20q (47%) and 12p (39%). The most frequent

regions of loss identified in this study (chromosomes X, 8p, 22q, 17,

4q, 19p and 16, .40%) are consistent with previous studies by us [15]

and others [10,27]. To select the most relevant genes, we firstly report

those in regions of gain and loss with at least 30% frequency or in

GISTIC peaks and then identified genes that were also targeted by

higher amplitude events even if this was at a lower frequency (Table

S2). Since there is no clear consensus on what constitutes a ‘‘high-

level’’ amplification, we report regions with frequent gains at log2

ratios of .0.6 (in 40 or more samples,10%+), .0.8 (5%+) and .1

(2.5%+). For losses, we considered homozygous deletions (log2 ratios

of ,21) present in at least 4 samples. The list of genes was prioritised

taking into account the frequency of high-amplitude CNA and the

overlap with GISTIC (Tables 2 and 3). Specific regions of gain are

shown in Figures S2, S3, S4, S5, S6, and S7.

In using this flexible approach we found that some regions were

only clearly identified by one or the other method. By including a

range of higher amplitude CN thresholds and the peaks predicted

by GISTIC, additional regions were identified such as gains on

chromosomes 1, 6p, 11q, 19 and losses on 5q, 6q26, 10q23, 13q and

18q22. In addition, on high resolution platforms such as the SNP6

array, GISTIC tended to identify very small regions, potentially

missing relevant genes. For example, on 3q26 there were two closely

spaced peaks of significance in the GISTIC profile (Figure S2). The

highest of these, by a very narrow margin (–log q value 93.88 vs.

93.43), does not intersect with any genes, while the other peak

overlaps with MECOM (MDS/EVI1); there is good evidence for this

gene being an oncogene in ovarian cancer [28]. Thus, relying on

GISTIC alone would annotate the 3q26 region as having no genes

of interest. In contrast, using a frequency approach, the maximum

frequency at all copy number thresholds encompasses MECOM.

Figure 1. CNA in ovarian cancer. Gains (A) and losses (D) in 240 samples on SNP6 arrays analysed by GISTIC. Gains (B) and losses (C) in 398
samples on various array platforms. Sample segments were overlapped in Partek Genomics Suite v 6.4, creating a data point for each segment
defined by copy number breakpoints, and then plotted by sample number.
doi:10.1371/journal.pone.0011408.g001
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Similarly, there were other regions for which using a frequency

approach missed genes or gave conflicting data. For example, on

19q12, each copy number threshold identified a slightly different

region of peak frequency, variously identifying CCNE1, C19ORF2

or no gene in the peak (Figure S3). In contrast, the ability of

GISTIC to integrate the amplitude of gain across all samples

clearly identified CCNE1 as the gene in the peak. There is good

evidence that CCNE1 is the correct call since Cyclin E is a key cell

cycle protein and its amplification and over expression has been

previously identified as a key driver of patient response to

chemotherapy in serous ovarian carcinoma [14]. Major conclu-

sions arising from our analysis of individual deletions and

amplicons, including insights into potential driver genes, are

provided in the Discussion.

Associations between CN alterations
The concept of cooperative and mutually exclusive genetic

alterations has rarely been examined at the level of CNAs or on a

genome-wide scale. We wished to know whether there are any

CNAs that cooperate in ovarian tumorigenesis, or that are

functionally redundant to each other, for example if they act in

the same pathway. To measure this we assessed if there were any

CNAs that were more or less likely to be associated with each other,

more than by chance, using a statistical analysis. Briefly, we counted

the number of samples positive for CNA (e.g. a gain) at region A

alone, region B alone, both regions and neither region, and

compared the findings to the expected co-occurrence based on the

total frequency of CNA at A multiplied by the frequency of B. For

example, for a frequency of gain at 20q11 of 68/183 (37%) and at

19q12 of 50/183 (33%), we would expect 12% of samples to have

both gains. However, we observe an actual frequency of samples

with both alterations that is significantly different from this, i.e. 35/

183 (19%, p,0.0001), indicating an increase in co-occurrence

above the level of chance and thus possibly cooperating CNAs. The

method can also be equally used to detect decreases in co-

occurrence. When applying this method genome-wide, we applied a

multiple testing correction with a FDR of ,5%.

We undertook this analysis first using the TCGA data, as it is

most homogenous for grade and subtype, and is high resolution. We

repeated GISTIC analysis on this data set alone to obtain 46 peaks

of copy number gain and 27 of loss (exclusive of regions of normal

copy number variation, or copy number polymorphisms (CNPs)).

Samples were identified as being positive or negative for each CNA

peak, with gain peaks scored as positive for gains only and loss peaks

scored as positive for losses only, and an analysis of association was

performed as described in the methods. At a false discovery rate of

5%, 305 pairs of regions of aberration were positively correlated and

18 pairs were negatively correlated (Table S3, Figure 2). Some co-

occurring GISTIC peaks were located within the same broad

GISTIC region and although the GISTIC analysis indicated that

these regions of copy number change were distinct, because they are

physically closely linked they may not be independent of each other.

As independence is necessary for the association test performed,

they were not analysed further. We also excluded those associations

Table 2. Selected genes in frequent regions of copy number loss.

Cytoband Genes HD1 Losses2 Region3
GISTIC
peak4

GISTIC
broad5

4q35 TRIML1, TRIML2, ZFP42 2 162 179.31* 190.08 189.08 189.50 55.26 191.26

5q11 GPBP1 4 119 56.85 57.99 56.5 56.59 49.48 133.51

5q14 EDIL3 0 154 58.26 94.77 84.07 84.13 49.48 133.51

6q26 PARK2 3 140 139.98 170.69 162.8 162.88 63.13 170.89

8p23 CSMD1 16 178 2.34 6.00 4.22 4.25 0 38.41

10q23 PTEN 8 47 NA NA 89.71 89.72 NA NA

13q RB1, LPAR6, RCBTB2 7 122 46.652 49.76 47.89 48.01 0 114.13

16q21 CDH8 4 176 58.13* 64.01 61.56 62.0 NA NA

16q23 WWOX 20 153 56.76 82.59 77.56 77.58 69.76 88.81

17p12 MAP2K4, mir-744 6 164 11.26* 12.11 11.9 12.0 0 56.04

17q12 NF1 5 137 24.86 36.68 28.83 28.83 0 56.04

17q12 ACCN 2 140 24.86 36.68 28.83 28.83 0 56.04

18q22 DOK6, CD226, RTTN, SOCS6, CBLN2,
NETO1, TMX3, CCDC102B

2–4 159 55.68 75.95 64.9 64.91 20.47 76.12

19p13 FAM148C, SHC2, mir-1302-2 2 141 0.34 4.84 0 0.26 NA NA

22q13.33 BRD1 5 184 43.77* 49.02 47.89 48.06 15.04 49.58

Xp22.31 NLGN4X, HDHD1A, STS, VCX3A 21–22 183 1.83* 42.77 5.63 5.66 0 154.91

Xp21.1 DMD, mir548f-5 23–26 187 1.83* 42.77 32.68 32.71 0 154.91

Xq21.31 KLHL4, mir-361, DACH2 14–16 160 86.64* 86.89 NA NA 0 154.91

Xq27.3 SLITRK2, CXorf1, mir-888, mir-890,
mir-891, mir-892

10 141 61.65 152.36 144.28 144.75 0 154.91

1HD, number of homozygous deletions affecting genes shown.
2Maximum number of losses affecting genes shown.
3Region (in Mb) with frequency of loss of at least 30% loss unless:
*, .40%, NA = not applicable, i.e. no region of frequency .30%.
4Nearest GISTIC peak if within 5 Mb (otherwise NA).
5GISTIC broad region containing gene(s), if none then NA.
doi:10.1371/journal.pone.0011408.t002
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in which either peak was a CNP, leaving 98 pairs of regions that

were positively correlated, all but 16 of which were located on

different chromosome arms (Table 4). 12 pairs of regions were

negatively correlated.

In order to validate the associations identified using TCGA

data, we repeated the association analysis using the same ‘‘TCGA

GISTIC-defined’’ regions as above on all other high grade serous

and endometrioid samples (n = 183). For this data set, 296 regions

were positively correlated and 5 were negatively correlated.

Overall, 29 positive associations and no negative were in common

between the two datasets (Figure 2). Of these, 14 were associations

between two gains, 11 of which were on the same chromosome,

and 14 associations were between two losses. None of the loss-loss

associations were intra-chromosomal, because all associations of

Table 3. Selected genes in frequent regions of copy number gain.

Cytoband Genes .11 .0.81 .0.61 .0.31
Amp
Region2

Gain
region3

GISTIC
peak4

GISTIC
broad5

1p34.2 BMP8A HEYL LOC728448
MACF1 PABPC4 SNORA55

12 18 32 92 39.22 43.95 NA 39.71 39.89 NA

1q21.1 ACP6 BCL9 GJA5 10 18 32 146 145.54 145.82 143.95 156.56 145.42 145.67 142.72 247.19

1q21.2 CTSS GOLPH3L HORMAD1 6 12 29 154 NA 143.95 156.56 148.93 148.97 142.72 247.19

3q26.2 MECOM 19 50 105 251 169.39 171.81 167.80 188.04{ 170.89 170.92 90.59 199.34

3q29 DLG1 FYTTD1 KIAA0226 5 22 62 192 NA 146.87 198.55* 198.96 198.98 90.59 199.34

5p15.33 EXOC3 CEP72 4 11 34 128 NA 0.26 1.84 0.58 0.67 0 45.87

6p22.3 MBOAT1 ID4 6 12 39 129 NA 17.47 22.19 20.23 20.46 0.32 50.22

6p21.1 PGC TFEB CCND3 10 12 27 85 42.01 42.01 NA 41.78 41.82 0.32 50.22

8q13.2 CSPP1 ARFGEF1 CPA6
PREX2 C8orf34

7 15 42 141 NA 59.81 76.77 69.78 69.88 36.59 146.27

8q22.3 NACAP1 GRHL2 NCALD 4 22 71 180 NA 96.50 143.9* 102.35 102.55 36.59 146.27

8q24.2 MYC PVT1 mir1208 30 73 127 244 125.29 135.41* 117.02 143.9{ 129.71 129.75 36.59 146.27

8q24.3 C8orf33 C8orf77 9 25 67 143 NA 84.58 146.27 146.2 146.27 36.59 146.27

11q13.5 C11orf30/EMSY 13 15 33 108 75.46 78.53 NA 77.45 77.57 NA

11q14.1 RSF1 INTS4 KCTD14 THRSP
NDUFC2 ALG8 KCTD21
USP35 GAB2 NARS2

13 20 40 120 75.46 78.53 77.64 77.8 77.45 77.57 NA

12p13.33-
p13.32

ERC1 CACNA1C TSPAN9
EFCAB4B

14 25 51 157 0.73 3.89 0.09 16.41 1.33 1.47 0 36.14

12p12.1 CASC1 KRAS LYRM5 17 26 46 129 15.08 29.45 21.71 27.77 25.21 25.27 0 36.14

19p13.13 STX10 IER2 mir27a
CACNA1A CCDC130
ZSWIM4 mir24-2 NANOS3
mir23a RFX1 MRI1
CC2D1A PODNL1
mir181c DCAF15 mir181d

14 27 44 101 12.78 15.27 NA 15.24 15.28 7.45 46.03

19p13.12 EMR3 ZNF333 BRD4 EMR2
SYDE1 ILVBL NOTCH3
EPHX3

12 27 46 114 12.78 15.27 NA 15.24 15.28 7.45 46.03

19q12 CCNE1 C19orf2 36 47 65 126 34.40 35.93* 34.58 35.45 34.997 35.00 7.45 46.03

19q13.2 GMFG LRFN1 PAK4 MED29
PAF1 PLEKHG2 SAMD4B
ZFP36 IL29 NCCRP1 SYCN
IL28B IL28A

11 20 33 82 44.31 44.81 NA 44.482 44.61 7.45 46.03

20p13 DEFB127 DEFB128 DEFB129 5 20 40 132 NA 0.096 3.53 0.09 0.10 0 62.39

20q11.21 DUSP15 BCL2L1 FOXS1
MYLK2 TPX2

7 23 47 142 NA 29.310 35.02 29.86 29.92 0 62.39

20q13.2 ZNF217 SUMO1P1
BCAS1CYP24A1 PFDN4

9 22 54 172 NA 49.999 62.34* 52.14 52.24 0 62.39

20q13.33 PTK6 GMEB2 EEF1A2 4 17 59 187 NA 49.999 62.34* 61.72 61.82 0 62.39

1Maximum number of samples with gains of amplitude indicated (log2 ratio) at genes shown; not all genes shown will be gained at the maximum frequency.
2Region (in Mb) with frequency of at least 2.5% high amplitude (.1 log2 ratio) gain unless:
*, 5%; NA = not applicable, i.e. no region of frequency .2.5%.
3Region with frequency of at least 30% gain (log2 ratio .0.3) unless:
*, .40%;
{, .50%; NA = not applicable, i.e. no region of frequency .30%.
4Nearest GISTIC peak if within 5 Mb (otherwise NA).
5GISTIC broad region containing gene(s), if none then NA.
doi:10.1371/journal.pone.0011408.t003
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Figure 2. Analysis of association between copy number aberrations. (A) Process for identifying associated aberrations (more detail in
Methods S1). (B) Summary of significant associations in each data set and those significant in both. As the table progresses, certain associations are
filtered out, with the numbers remaining those that pass the filter. Firstly, associated loci that are within the same broad GISTIC intra-chromosomal
region are removed and secondly regions that overlap with a CNP are removed. (C) Circos plot. Outer ring indicates the chromosome position of each
aberration (coloured bars). The internal purple lines show the significant inter-chromosomal associations (exclusive of those involving a CNP) that
have been validated in the second data set.
doi:10.1371/journal.pone.0011408.g002
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this type were excluded either for being located in the same broad

GISTIC region or for being a CNP; indeed, more of the GISTIC

peak losses were CNPs (n = 35) compared to the gains (n = 15)

likely due to the unmasking effect loss of heterozygosity has on

CNP detection in the tumour [29]. There was a single association

between a gain and a loss, between an amplicon on 20q11 and loss

of Xq. The strongest positive association between gains on

different chromosomes was for amplifications on chromosome

19q12 (most likely targeting CCNE1) and at 20q11 (five genes). For

losses, the strongest common association was between chromo-

some 4q and chromosome 17. 17q12 loss was the most

promiscuous interactor, with 8 common positive associations.

We identified the genes located in or near positively associated

peaks and used gene expression data to evaluate whether any of

the genes showed correlation between copy number and

expression, and if there were correlation at the level of gene

Table 4. List of positively associated CN regions.

RegionA RegionB

Chr Start1 End Type Genes2 Chr Start End Type Genes

1 145.42 145.43 Gain ACP6 BCL9 1 148.94 148.95 Gain CTSS GOLPH3L HORMAD1

1 145.42 145.43 Gain ACP6 BCL9 1 151.61 151.62 Gain S100A12 (S100A8 S100A9)

1 145.42 145.43 Gain ACP6 BCL9 1 181.84 181.86 Gain APOBEC4 ARPC5 RGL1

1 145.42 145.43 Gain ACP6 BCL9 1 233.41 233.45 Gain ARID4B GGPS1

3 109.186 109.19 Gain None 19 35.15 35.17 Gain C19orf2

4 190.1 190.23 Loss None 16 61.56 61.58 Loss None

4 190.1 190.23 Loss None 17 28.829 28.834 Loss ACCN1

5 84.07 84.13 Loss None 17 28.829 28.834 Loss ACCN1

6 20.325 20.42 Gain MBOAT1 6 41.78 41.81 Gain PGC TFEB

6 163.4 163.45 Loss PACRG 17 11.85 11.88 Loss DNAH9 MAP2K4 ZNF18 mir744

6 163.4 163.45 Loss PACRG 17 28.829 28.834 Loss ACCN1

7 104.33 104.38 Gain LHFPL3 LOC723809 7 130.22 130.23 Gain FLJ43663 mir29a mir29b

7 104.33 104.38 Gain LHFPL3 LOC723809 7 158.17 158.17 Gain NCAPG2

8 11.07 11.09 Loss C8orf74 MSRA PINX1 RP1L1 SOX7
UNQ9391 XKR6 mir1322 mir598

17 28.829 28.834 Loss ACCN1

11 134.43 134.43 Loss None 19 0 0.303 Loss mir1302-2 FAM138A FAM138C FAM138F
FLJ45445 KIR2DL2 KIR2DL4 KIR2DL5A
KIR2DL5B KIR2DS1 THEG KIR2DS2 MIER2
KIR2DS3 KIR2DS5 KIR3DP1 KIR3DS1
OR4F17 PPAP2C

12 25.22 25.24 Gain CASC1 KRAS LYRM5 12 68.16 68.19 Gain FRS2

12 53.08 53.15 Gain GTSF1 ITGA5 NCKAP1L ZNF385A 12 68.16 68.19 Gain FRS2

14 67.37 67.38 Loss RAD51L1 ZFYVE26 17 28.829 28.834 Loss ACCN1

16 3.73 3.81 Loss BTBD12 CLUAP1 CREBBP DNASE1
NLRC3 TRAP1

22 48.58 48.62 Loss BRD1 C22orf34 LOC90834 (ZBED4)

16 61.56 61.58 Loss None 17 28.829 28.834 Loss ACCN1

17 11.85 11.88 Loss DNAH9 MAP2K4 ZNF18 mir744 22 48.58 48.62 Loss BRD1 C22orf34 LOC90834 (ZBED4)

17 28.829 28.834 Loss ACCN1 22 15.88 16.19 Loss CECR1 CECR4 CECR5 CECR6 CECR7
GAB4 IL17RA

17 28.829 28.834 Loss ACCN1 22 48.58 48.62 Loss BRD1 C22orf34 LOC90834 (ZBED4)

19 0 0.303 Loss mir1302-2 FAM138A FAM138C
FAM138F THEG FLJ45445 KIR2DL2
KIR2DL4 KIR2DL5A KIR2DL5B KIR2DS1
KIR2DS2 KIR2DS3 KIR2DS5 KIR3DP1
KIR3DS1 MIER2 OR4F17 PPAP2C

22 48.58 48.62 Loss BRD1 C22orf34 LOC90834 (ZBED4)

19 14.81 14.85 Gain OR7A10 OR7A17 (OR7A5) 19 35.146 35.17 Gain C19orf2

19 18.98 19.13 Gain ARMC6 LOC729991 MEF2B SFRS14
SLC25A42 TMEM161A

19 35.146 35.17 Gain C19orf2

19 18.98 19.13 Gain ARMC6 LOC729991 MEF2B SFRS14
SLC25A42 TMEM161A

20 29.86 29.91 Gain DUSP15 FOXS1 MYLK2 (TTLL9 TPX2)

19 35.15 35.17 Gain C19orf2 20 29.86 29.91 Gain DUSP15 FOXS1 MYLK2 (TTLL9 TPX2)

20 29.86 29.91 Gain DUSP15 FOXS1 MYLK2 (TTLL9 TPX2) X 144.32 144.38 Loss CXorf1 SLITRK2 (mir890mir888
mir892a mir892b mir891b)

1Start and End positions of minimal GISTIC peak in Mbp, hg18.
2Genes from UCSC RefFlat, hg18, Sept 2009 within wider limits of GISTIC peak. Genes in brackets are within 10 kb of these limits.
doi:10.1371/journal.pone.0011408.t004
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expression across regions (Table S4). We found that the strongest

associations across regions involved genes gained on 19q12 or

19p13.11, and genes gained on 20q11. Other positive gene

expression associations included CD47 (gained on 3q13.12) with

UQCRFS1 or POP4 (both gained on 19q12). CD47 was first

identified as an ovarian tumour antigen [30], however there is no

known functional association with either 19q12 partner.

Correlation with clinical parameters and outcome
We used the TCGA clinical data to assess the relationship of

copy number and patient outcome using a univariate Cox

proportional hazards analysis on the GISTIC peaks (Table S5).

Gain on 3q29 was associated with overall survival, however, this

correlation was not significant after multiple testing correction.

Positive CN associations of 17q12/22q losses and 3q13/19q12

gains were each correlated with overall survival but not

progression free survival (Table S5).

Specific patterns of copy number change and genetic instability

that correlate with patient outcome, including simplex, sawtooth

and firestorm, have been described in breast cancer [31]. The

patterns of chromosome aberration in ovarian cancer are difficult

to categorise into the groups described by Hicks et al. as most are a

combination of sawtooth and firestorm. Therefore, we defined a

number of different measures of genome instability and analysed

their correlation with patient outcome using the TCGA data set

(Table S5). These measures included: the number of copy number

changes i.e. gains, losses, higher level gains (.0.6 log2 amplitude)

and total number of segments; the percentage of the genome

targeted by copy number change (gain, loss and high level gain);

and a ‘‘Hicks index’’ as described [31] for gains, losses and both.

The samples were divided into quartiles based on each of these

indices and tested for association with clinical outcome using a

univariate Cox proportional hazards analysis. Of these measures,

only the number of higher amplitude gains (p = 0.019) showed a

correlation with progression free survival but not overall survival

(Figure S8). The percentage of the genome encompassed in higher

level gains was not significant (p = 0.88), suggesting that it is not

the proportion of DNA amplified but the number of amplification

events that is most important.

Discussion

Aneuploidy and cytogenetic aberrations have long been

recognised as cancer hallmarks. In epithelial cancers, copy number

alterations have been shown to be drivers of the cancer phenotype

through amplification and over expression of oncogenes like

ERBB2 and loss of tumour suppressors such as CDKN2A. Ovarian

cancer is both heterogeneous and cytogenetically complex making

it difficult to decipher the key genomic regions affected by CNA.

Previous studies have generally been underpowered with respect to

resolution and/or sample number, at most comprising around 100

cases [10,11,12]. This study brings together a large collection of

ovarian carcinomas profiled for copy number, which we have

analysed using both GISTIC and frequency approaches to provide

a definitive annotation of driver alterations. Key regions are

summarised in Tables 2 and 3 while a more comprehensive

catalogue, encompassing the union of both methods is given in

Table S2. Because of the large numbers of genes and regions

involved, it is not possible to address all in detail, however the

regions mentioned below illustrate some of the insights derived

from working with this large data set.

We elected to use complementary analytical approaches as each

technique has its own strengths and weaknesses: a frequency

approach for regions such as 3q26 was better able to identify the

likely driver gene, MECOM, whereas for 19q12 the ability of

GISTIC to integrate the magnitude of copy number gain for each

sample identified CCNE1. Using a tiered frequency approach in

concert with GISTIC provided a greater depth of understanding

in complex regions for which there is no clear driver. Previous

studies have identified an amplification on chromosome 11 in 18%

of ovarian cancers, and have proposed that the target gene of this

event is EMSY (C11ORF30) [32]. In other cancer types, such as

breast cancer, the peak amplification in this region may be

different, targeting EMSY and/or CCND1 [33,34]. In the data

presented here, the main amplicon does not appear to be targeting

CCND1, which is .5 Mb outside the peak region (Figure S4).

GISTIC identifies a peak encompassing four genes (THRSP,

NDUFC2, ALG8 and KCTD21), amplification of which have been

shown in breast cancer to correlate with over-expression and poor

survival [35]. The most frequently targeted gene by low-level gain

is GAB2 (30%). At higher amplitude levels, the amplicon stretches

from RSF1 to NARS2, encompassing 11 genes, not including EMSY

or PAK1. However, EMSY appears to be targeted in a small

proportion of samples (n = 13) by very high level amplification

(log2.1), including in two samples that are not highly amplified at

the more distal site. Similarly, there are two samples that target

CCND1 with very high level amplification that do not cover either

more distal region, however the overall frequency of CCND1 high

level amplification is very small (n = 6 with log2 .1, 1.5%). The

analysis undertaken here has thus found that this apparently

simple amplification is in fact more complex, with 3 potentially

overlapping targets.

There are some regions for which neither approach was able to

identify the ‘‘obvious’’ oncogene. Surprisingly, on 8q24 both the

GISTIC and frequency peaks were located ,500 kb distally to the

two previously implicated oncogenes in ovarian cancer within this

locus, MYC and PVT1 [36] (Figure S5). This region is distinct from

the locus proximal to MYC on 8q24 that holds alleles conferring an

increased predisposition to cancer [37]. There are no genes in the

distal peak region, so the reason for its high frequency of

amplification is unclear. From UCSC genome information, this

region does appear to contain many repeat and structural

variation elements, which could potentially explain the peak shift

as an artefact of the array measurement [29,38]. It is also possible

that this region may harbour a long range enhancer for MYC and/

or PVT1 or there may be an uncharacterised genetic element in

this region that has an additional independent oncogenic effect to

that of MYC or PVT1. This peak feature has not been previously

appreciated in the somatic genetics of ovarian cancer, and its

detection is a consequence of having a large number of samples at

high resolution copy number coverage. Recent sequencing

analysis of cancer cell lines has found that amplicons can have a

highly complex structure at the base-pair level [39]. It is possible

that apparently distinct amplicons may have a common origin

with subsequent deletion and rearrangement of internal material.

The strength of this study in having a large number of samples

provides numerous additional insights to copy number features of

ovarian cancer. Firstly, a number of studies in other cancer types

have found that low frequency events present in only a few percent

of cases may still be very important for the genesis of the case in

which they are found, whether these are point mutations [40] or

copy number changes [41]. These types of events are difficult to

detect without a large number of samples. Lower frequency but

high-amplitude events that may be of relevance to ovarian cancer

were readily detected here. The most notable of these as having

the highest proportion of high-level amplicons (34/126 of samples

with a gain had a log2 value of .1) was on 19q12, targeting

CCNE1. The next highest was also on chromosome 19, at 19p13.1,
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with two apparent peaks (Figure S3). The peak identified by

GISTIC contained the gene BRD4 and was the highest by low-

level gain frequency. BRD4 appears a likely target, as it is involved

in an oncogenic translocation in midline carcinoma [42].

However, at higher amplitude gains, the frequency peak shifts

more distal, for example the gene CACNA1A was targeted by the

most number of very highly amplified samples on 19p (n = 14 at

log2 .1). Again this illustrates why using a single method of gene

prioritisation may miss potential oncogenes. GISTIC alone would

have missed the second peak that may be important for a low

frequency of high-amplitude gain, whereas a peak frequency

approach using a single cut-off would also miss potentially

important genes. Of course, neither method can unequivocally

prove a role for any of the identified genes in ovarian cancer but

do provide a rational basis on which to undertake comprehensive

functional or nucleotide level mutation analysis.

With a large number of samples we were able to refine regions

of gain on other chromosomes. For example, 20q has long been

recognised as having a high frequency of gain, yet the proposed

target gene(s) vary from study to study. This variability may be a

stochastic consequence of low sample numbers in each study, or

additionally because there are multiple genes each involved in only

a sub-set of cancers or each with a mild oncogenic effect. Our data

would support the view that there are multiple drivers at 20q. The

most reproducible of the peaks observed between different

thresholds and analyses were at approximately 29–30 Mb

(20q11.21), 52 Mb (20q13.2) and 62 Mb (20q13.33) (Figure S6).

Many samples (166/398) co-amplified more than one region,

however, 5.3–6.5% of samples amplified only one of each of the

above three regions. The 20q regions encompass previously noted

genes including TPX2, BCAS1, ZNF217 and PTK6. Interestingly,

some previously characterised oncogenes such as AURKA [43]

were not in peak regions or frequently amplified at a high level.

On chromosome 12p, both GISTIC and the peak frequency of

high level amplification clearly identified KRAS as the target for

some samples (Figure S6). Interestingly, although activating point

mutations in KRAS in ovarian cancer are observed predominantly

in low grade serous subtype and rarely in high grade cases, of the

25 samples with an amplification at KRAS of at least 0.8 (log2) in

amplitude, all but one were high-grade serous, suggesting an

alternative mechanism for activation of this pathway in a subset of

high grade serous carcinomas. Elsewhere on 12p, the main

frequency peak for low-level gain was located at the distal end, for

which oncogenes have not been previously characterised but may

include ERC1, EFCAB4B and TSPAN9. ERC1 is a translocation

partner of RET in AML [44].

Chromosome 1 appears to be targeted by several amplifications

(Figure S7). There are two amplicons within 5 Mb of each other

on 1q, which appear quite distinct, and yet share 85% of samples

at a .0.3 (log2) level and 100% at an amplitude threshold of log2

ratio.1. It is possible that the apparent gap between these

amplicons may be artefactual and a consequence of poor genome

mapping and highly repetitive sequence in this region close to the

centromere. There are several interesting genes within the

amplicons, including BCL9 (B-cell CLL/lymphoma 9), which has

recently been characterised as an oncogene in colon carcinoma

and multiple myeloma, with a role in the Wnt pathway [45].

Chromosome 1p is particularly interesting, as the amplicon in this

region has not been previously noted in ovarian cancer, most likely

because it is a highly focal, low frequency event (3% at log2 .1,

23% at log2 .0.3) that would likely only be detected with a large

dataset of high-resolution arrays. Genes within this region include

HEYL, BMP8B and MYCL1. HEYL, (Hairy/enhancer of split related

with YRPN motif-like protein) is one of a group of transcription factors

that act to inhibit gene expression and are thought to be involved

in mediating Notch signalling, possibly with a role in epithelial-to-

mesenchymal transition [46]. HEYL was found to have increased

expression associated with amplification in small cell lung cancer

[47]. BMP8B encodes a bone morphogenic protein, which are

signalling peptides in the TGF-beta family [48]. MYCL1 is a MYC

oncogene homolog also identified as being amplified and

overexpressed in small cell lung cancer [49].

The large data set collected here also enabled us to confirm

previous observations that homozygous deletions are common in

the genes CSMD1, DMD, NF1, RB1 and PTEN [15,50].

Interestingly, frequently co-deleted with DMD is the microRNA

hsa-mir-548f-5, a member of a large family of microRNAs

predicted to have regulatory functions relevant to cancer [51].

We also note a high frequency of HDs in WWOX, and at several

regions on chromosome X, including the novel targets STS (Steroid

sulfatase, involved in estrogen synthesis), KLHL4 (Kelch-like 4, with

actin binding homology) and SLITRK2 (SLIT and NTRK-like family,

member 2, an integral membrane protein). Co-deleted with

SLITRK2 were a group of 6 microRNA genes including hsa-mir-

888 and hsa-mir-890 among others. None of these microRNAs

have been characterised with validated targets.

Although the insights obtained from this data set are highly

informative in helping to determine key regions and their likely

drivers, the interpretation of biological relevance is restricted to

individual gene information, which is often of limited value since it

is possible to construe a cancer-related function for most genes.

More direct relevance to cancer development may be ascertained

through detailed functional analysis in model systems. However,

rather than considering genes in isolation, what would be most

interesting is to identify the genes that co-operate during

tumorigenesis. One way of doing this is to undertake a pathway

analysis to link the genes in various copy number aberrations.

However, this analysis is generally ‘‘noisy’’ and likely to identify

multiple interactions between the many genes affected by copy

number change without necessarily picking the key pathways. An

alternative method is to locate those CNAs that interact

genetically. We first attempted to dissect this using unsupervised

hierarchical clustering of copy number data, but were unable to

identify separate genetic subgroups or interacting regions, apart

from a group with few genetic changes that was biased towards

low-grade serous and low-grade endometrioid samples. We

undertook a different type of analysis by a novel bioinformatic

method that identifies genomic regions that are more or less likely

to be associated with each other than would be expected by

chance, given their base frequency (Table 4). The method relies on

having a large number of samples available, and with a data set as

large as assembled here, we were able to perform the analysis on a

test set (TCGA SNP6 data) and also a validation set (all other high

grade serous and endometrioid samples). This highly stringent

analysis identified a number of common positive associations, for

example between amplification of CCNE1 and genes on 20q or 3q.

A recent study performed a similar analysis in glioblastoma

looking for positive associations only, and identified 21 validated

inter-chromosomal interactions with aberration frequencies of

.10% [52]. In contrast we identified 29 interactions (18 inter-

chromosomal). None of the interactions were in common,

however, this is unsurprising given the very different genetic

landscapes of the two tumour types, in particular the increased

genetic complexity of ovarian carcinomas compared to glioblas-

tomas. In comparison to previous ovarian cancer studies, we did

not find previous associations such as 19q/12p gains [7], or any of

13 inter-chromosomal associations in [10]. However, this is also

not surprising as the first analysis used low-resolution 10 K SNP
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array data followed by fluorescence in situ hybridisation of selected

loci, while the second performed the analysis on somewhat

different GISTIC peaks in many fewer samples and used a

Pearson correlation with a low-stringency FDR (0.25).

It is notable that there were many more positive associations

identified compared with negative associations. A similar study in

breast cancer failed to find any significant negative associations

[53]. Positive associations are assumed to identify genes whose

activity may be in different but complementary pathways.

Negative associations are thought to be redundant aberrations in

the same pathway (e.g. BRAF and KRAS mutations). The

differences in these association types may influence the process

of their selection. To be selected for together above the level of

chance, positive associations will act positively together in synergy.

Thus, for one to be selected for there is a strong reliance on the

other also being present, as each alone will provide little selective

advantage, making their detection straightforward. In addition, for

some associated CNAs, they may in fact be physically linked

through chromosome translocation events and perforce selected

together. In contrast, negative associations are acted on individ-

ually by selection – each provides a selective advantage when

present first of all in the cell, but the eventuality of the second

event occurring subsequently will not provide a selective

disadvantage, and may be carried along as a passenger event. In

the case of point mutations such as in BRAF and KRAS, the

probability of one mutation occurring subsequent to the other is

extremely small, so they are seldom seen together. However, for

large-scale copy number alterations, the cytogenetic instability of

ovarian cancer means it may be inevitable that a second event will

occur by chance in some cases and be carried along as a passenger.

Thus the power to detect negative associations in the current

analysis may be low.

Finally, we used the clinical annotations available with the

TCGA data to assess the correlation of various copy number

features with survival. We identified a number of correlations,

including of the number of higher amplitude gains with worse

overall survival, however these were generally weak and did not

pass multiple testing. It was somewhat concerning that no CNAs

were strongly associated with survival, given that several recent

studies have identified associations with poor outcome for

amplification at genes such as CCNE1 [13,14]. One explanation

could be that the TCGA sample set is not selected in order to

target specific clinical questions compared with other studies.

Another possibility is that within this generally high grade serous

ovarian cancer cohort, the overall consistency of the common

aberrations may mean that there is little ‘‘dynamic range’’ to

detect differences associated with copy number, and that

variance in outcome may have more to do with constitutive

factors specific to the individual such as their immune system or

pharmacogenomics.

Conclusion
In this study we have brought together a very large cohort of

ovarian cancer cases profiled using high-resolution SNP Mapping

arrays to identify the genome-wide frequency of copy number

aberrations and their interactions. In addition to the well known

frequent events, using this large data set has developed our view of

the rare but recurrent events contributing to ovarian cancer,

consistent with the ‘‘mountains and hills’’ analogy proposed for

other epithelial cancer types [54]. We identified a number of co-

occurring aberrations that may co-operate in ovarian tumourigen-

esis, such as gain of 19q with 20q or 3q, gain of 20q with X loss

and loss of 17q with multiple partners. The significance of these

aberrations and the validation of the genes underlying the copy

number changes remains to be assessed through comprehensive

functional and nucleotide level sequence analysis.

Supporting Information

Figure S1 Comparison of samples run on different array

platforms. A. Overall frequency plot of gains and losses for

SNP6 TCGA (n = 157), SNP6 PMCC (n = 83), 500 K PMCC

(n = 27), 250 K Japanese (n = 23) and 50 K PMCC (n = 108). All

platforms used the same log2 threshold of 6 0.3. B. Hierarchical

clustering of samples. Samples were scored as positive (red) or

negative (blue) for gains and losses identified in all SNP6 samples

by GISTIC. Sample source, histological subtype and grade are

indicated in colour at the top. There is no apparent grouping by

array source that would suggest a batch effect of the arrays, apart

from the Japanese 250 K samples (grade unknown), which tend to

have few alterations and cluster with the low-grade endometrioid

samples at the left-hand side of the dendrogram.

Found at: doi:10.1371/journal.pone.0011408.s001 (0.06 MB

PDF)

Figure S2 Gain on 3q. A. Frequency of gain on 3q is shown at

various amplitude thresholds. Note the different scales for each

threshold. The GISTIC -log q value is plotted above, as is the

extent of the broad GISTIC region identified (red bar). GISTIC

peaks are indicated by arrows. B. Zoomed in view of 3q26. Each of

the minimal peak frequency regions for each CN amplitude is

shown by a coloured box. The GISTIC peak is indicated by the

red box. Below are shown the genes from the UCSC genome

browser.

Found at: doi:10.1371/journal.pone.0011408.s002 (0.05 MB

PDF)

Figure S3 Gain on chr19. Frequency of gain on chr19 is shown

at various amplitude thresholds. Note the different scales for each

threshold. The GISTIC -log q value is plotted above, as is the

extent of the broad GISTIC region identified (red bar). GISTIC

peaks are indicated by arrows. Zoomed in views of 19p13 (B) and

19q12 (C) Each of the minimal peak frequency regions for each

CN amplitude is shown by a coloured box. The GISTIC peak is

indicated by the red box. Below are shown the genes from the

UCSC genome browser.

Found at: doi:10.1371/journal.pone.0011408.s003 (0.07 MB

PDF)

Figure S4 Gain on 11q. A. Frequency of gain on 11q is shown at

various amplitude thresholds. Note the different scales for each

threshold. The GISTIC -log q value is plotted above; GISTIC

peaks are indicated by arrows. Asterisks show 3 possible amplicons

B. Zoomed in view of 11q13–14. Each of the minimal peak

frequency regions for each CN amplitude is shown by a coloured

box. The GISTIC peak is indicated by the red box. Below are

shown the genes from the UCSC genome browser.

Found at: doi:10.1371/journal.pone.0011408.s004 (0.05 MB

PDF)

Figure S5 Gain on 8q. A. Frequency of gain on 8q is shown at

various amplitude thresholds. Note the different scales for each

threshold. The GISTIC -log q value is plotted above, as is the

extent of the broad GISTIC region identified (red bar). GISTIC

peaks are indicated by arrows. B. Zoomed in view of 8q24. Each of

the minimal peak frequency regions for each CN amplitude is

shown by a coloured box. The GISTIC peak is indicated by the

red box. Below are shown the genes from the UCSC genome

browser.

Found at: doi:10.1371/journal.pone.0011408.s005 (0.05 MB

PDF)
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Figure S6 Gains on chr20 and chr12. A. Frequency of gain on

chr20 is shown at various amplitude thresholds. Note the different

scales for each threshold. The GISTIC -log q value is plotted

above, as is the extent of the broad GISTIC region identified (red

bar). GISTIC peaks are indicated by arrows. Zoomed in views of

20q11 (B), 20q13.2 (C) and 20q13.33 (D). Each of the minimal

peak frequency regions for each CN amplitude is shown by a

coloured box. The GISTIC peak is indicated by the red box.

Below are shown the genes from the UCSC genome browser. E.

Gain on 12p. Frequency of gain on chr12 is shown at various

amplitude thresholds. Note the different scales for each threshold.

The GISTIC -log q value is plotted above, as is the extent of the

broad GISTIC region identified (red bar). GISTIC peaks are

indicated by arrows. F. Zoomed in view of 12p, with various genes

indicated.

Found at: doi:10.1371/journal.pone.0011408.s006 (0.10 MB

PDF)

Figure S7 Gain on chr1. A. Frequency of gain on chr1 is shown

at various amplitude thresholds. Note the different scales for each

threshold. The GISTIC -log q value is plotted above, as is the

extent of the broad GISTIC region identified (red bar). GISTIC

peaks are indicated by arrows. Zoomed in views of 1p34 (B) and

1q21 (C). Each of the minimal peak frequency regions for each CN

amplitude is shown by a coloured box. The GISTIC peak is

indicated by the red box. Below are shown the genes from the

UCSC genome browser.

Found at: doi:10.1371/journal.pone.0011408.s007 (0.07 MB

PDF)

Figure S8 Survival analysis. A. Kaplan Meier plot of overall

survival with samples divided into quartiles based on the number

of gains .0.6 (log2). P = 0.045 after a Cox proportional hazard

model analysis. 1, 0–18 segments; 2, 19–36 segments; 3, 37–60

segments; 4, .60 segments. B. Kaplan Meier plot of overall

survival with residual macroscopic disease as a factor.

Found at: doi:10.1371/journal.pone.0011408.s008 (0.08 MB

PDF)

Methods S1 Supplementary methods.

Found at: doi:10.1371/journal.pone.0011408.s009 (0.06 MB

DOC)

Table S1 Full list of samples.

Found at: doi:10.1371/journal.pone.0011408.s010 (0.18 MB

XLS)

Table S2 Full list of frequent aberrations and genes.

Found at: doi:10.1371/journal.pone.0011408.s011 (0.71 MB

XLS)

Table S3 Full list of associated aberrations.

Found at: doi:10.1371/journal.pone.0011408.s012 (2.82 MB

XLS)

Table S4 Expression of genes within associated aberrations.

Found at: doi:10.1371/journal.pone.0011408.s013 (0.04 MB

XLS)

Table S5 Clinical correlations of aberrations.

Found at: doi:10.1371/journal.pone.0011408.s014 (0.05 MB

XLS)
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