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SIGNIFICANCE
Autoinflammatory diseases are rare disabling disorders 
characterized by excessive inflammation of the skin and 
inner organs. Many autoinflammatory diseases are caused 
by genetic defects, which subsequently result in disturbed 
immune signalling. In the skin, wheals, pustules and ul-
cerative lesions dominate. As autoinflammatory diseases 
are associated with a high burden and limited awareness, 
knowledge of their clinical presentation is crucial for esta-
blishing the diagnosis and guiding appropriate treatment.

Autoinflammatory diseases comprise a group of chro-
nic disabling entities characterized by inflammation 
without the presence of infectious agents, auto-anti-
bodies or antigen-specific T-cells. Many autoinflamma-
tory diseases are caused by monogenic defects, which 
lead to disturbed immune signalling with release of 
proinflammatory mediators. In addition to interleukin-
1β and interleukin-18, interferons play a key role in 
the pathophysiology of these disorders. Patients with 
autoinflammatory diseases show a broad variety of 
clinical symptoms, including skin involvement. Wheals, 
pustules and ulcerative lesions are the most common 
cutaneous findings observed. Knowledge of the clinical 
presentation of autoinflammatory diseases is crucial 
for establishing the diagnosis and guiding appropriate 
treatment. This review focuses on the dermatological 
findings in selected autoinflammatory disorders based 
on their distinct pathomechanisms.
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Autoinflammatory diseases are a group of chronic 
disabling entities characterized by self-directed 

inflammation, which is mediated via disturbances in 
innate immune signalling pathways. The term “autoin-
flammatory” was established in the late 1990s to classify 
systemic diseases that lack high-titre autoantibodies and 
autoreactive T cells as known from autoimmune diseases 
(1). Within the last 2 decades, the spectrum of autoin-
flammatory diseases has grown rapidly. In addition to 
rare monogenic entities, it comprises a variety of multi-
factorial diseases with variable onset. Even for common 
disorders, such as gout, cardiovascular, metabolic and 
neurodegenerative diseases, autoinflammatory disease 
mechanisms have been claimed (2–5). Furthermore, the 
coexistence of both autoinflammatory and autoimmune 
features in several inflammatory disorders demonstrates 

the close link between the innate and adaptive immune 
signalling cascades (6).

As a joint disease pathomechanism, excessive cytokine 
secretion from innate immune cells (e.g. macrophages, 
monocytes) drives the inflammation in various organs. 
In particular, the accumulation of interleukin (IL)-
1-associated cytokines, including IL-1β and IL-18, plays 
a crucial role in many diseases. In addition, increased 
amounts of interferons (IFN) have been recognized as 
the main inflammatory mediators in other conditions (7).

The clinical presentation of autoinflammatory diseases 
comprises recurrent fever attacks, musculoskeletal, gast-
rointestinal and neurological involvement. Also, the skin 
is affected in many of these disorders. Typical symptoms 
include urticarial, pustular and ulcerative lesions. This 
review focuses on the dermatological findings in selec-
ted autoinflammatory disorders based on their distinct 
pathomechanisms.

INTERLEUKIN-1 AND INTERLEUKIN-1-RELATED 
DISORDERS

In 1984, the nucleotide sequence of IL-1 was identified, 
and decades of research revealed its importance as a cen-
tral mediator of innate immunity and inflammation (8). 
The human IL-1 family consists of a total of 11 members 
with distinct biological functions (9). Among them, the 
proinflammatory cytokine IL-1 is the best-characterized 
member, composed of 2 individual forms, IL-1α and IL-
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1β. IL-1β is the predominant circulating isoform of IL-1 
and initiates a cascade of activities in almost every tissue 
during host defence against pathogens and injuries. IL-1α 
and IL-1β exert their action through binding to a single 
ubiquitously expressed membrane-spanning receptor, 
known as IL-1 receptor type 1 (IL-1R1) (10). The binding 
of IL-1 to IL-1R1 mediates a conformational change 
that allows the co-receptor IL-1R accessory protein to 
bind. Hence, the trimeric complex triggers a signalling 
cascade, leading to the activation of NFκB. The naturally 
occurring IL-1 receptor antagonist (IL-1RA) competes 
with free IL-1, whereby interaction with its receptor is 
prevented (11).

Inflammasomes are multimeric protein complexes 
and play a crucial role in the cleavage of pro-IL-1β. 
Cryopyrin, encoded by the NLRP3 gene, is a member 
of the NOD-like receptor family and is expressed by 
monocytes, granulocytes, T cells, chondrocytes, kerati-
nocytes and mast cells (12). It is a protein that consists 
of 3 domains: an amino-terminal pyrin domain (PYD), 
a central nucleotide-binding and oligomerization do-
main (NACHT) and a C-terminal leucine-rich repeat 
(LRR) domain. The PYD is crucial for the assembly of 
the nucleotide-binding domain like receptor protein 3 
(NLRP3) inflammasome, an intracellular macromole-
cular structure responsible for recognition of dangerous 
signals and important for host immune defence against 
pathogens (13, 14). In detail, the PYD of the cryopyrin 
interacts with the PYD of an adapter molecule, known 
as apoptosis-associated speck-like protein containing 
a caspase-recruitment domain (ASC), and leads to 
the activation of the precursor protein pro-caspase-1. 
The activated caspase-1 contains a processing activity, 
whereby pro-IL-1β is cleaved to the mature active form 
(IL-1β). The synthesis of biologically inactive pro-IL-1β 

is mediated by NF-κB binding to the consensus binding 
site to transcribe the IL-1β gene (15, 16).

Cryopyrin-associated periodic syndrome
Cryopyrin-associated periodic syndrome (CAPS) is the 
prototype hereditary inflammasomopathy, with over 
200 different underlying heterozygous gain-of-function 
mutations within the NLRP3 gene (INFEVERS database; 
https://infevers.umai-montpellier.fr/web/index.php, ac-
cessed November 2019).

These NLRP3 mutations, mainly concentrated in exon 
3, constitutively activate cryopyrin, leading to increased 
conversion of pro-IL-1β into its active form with sub-
sequent IL-1β hypersecretion (Fig. 1) (17, 18). CAPS 
consists of a group of 3 phenotypes: familial cold auto-
inflammatory syndrome (FCAS) as the mildest subform, 
Muckle-Wells syndrome (MWS) as the intermediate 
variant, and neonatal-onset multisystem inflammatory 
disease (NOMID) as the most severe phenotype (19, 
20). Patients with FCAS present with cold-induced skin 
symptoms and musculoskeletal complaints. Patients with 
MWS show additional neurosensory hearing loss and 
may develop amyloidosis, whereas patients with NOMID 
have bone malformations and can develop severe neuro-
logical defects caused by aseptic meningitis (Table I). 
The physical complaints mainly start in early childhood 
or adolescence, but can also occur later in life due to rare 
cases of somatic mutations. The symptoms in CAPS are 
often accompanied by recurrent fever episodes and ele-
vated levels of inflammatory markers, such as C-reactive 
protein (CRP), leukocytosis, serum amyloid (SAA) and 
S100 A8/9 or A12 (21). The crucial role of IL-1β in the 
pathogenesis of CAPS was proven by increased IL-1β 
secretion from leukocytes of patients with CAPS and 
highly effective anti-IL-1 treatment (22–26). 

Fig. 1. Schematic representation of 
innate immune pathways and related 
pathomechanisms of the described 
autoinflammatory diseases.  Red 
squares highlight the position of mutations 
associated with PLCG2-associated antibody 
deficiency and immune dysregulation 
(PLCγ2), autoinflammation and PLCG2-
associated antibody deficiency and immune 
dysregulation (PLCγ2), cryopyrin-associated 
periodic syndrome (NLRP3), familial 
Mediterranean fever (Pyrin), nucleotide 
oligomerization domain (NOD)-like receptor 
family CARD domain-containing protein 
4-inflammasomopathy (NLRC4), deficiency 
of interleukin-36 receptor antagonist (IL-
36RA), deficiency of interleukin-1 receptor 
antagonist (IL-1RA), Blau syndrome (NOD2), 
STING-associated vasculopathy with onset in 
infancy (STING-complex), and chronic atypical 
neutrophilic dermatosis with lipodystrophy and 
elevated temperature/proteasome-associated 
autoinflammatory syndrome (Proteasome).
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Patients with CAPS present with an urticarial or 
maculo-papular rash, which is often symmetrically 
distributed on the trunk and/or extremities (Fig. 2). Skin 
lesions usually occur on a daily basis, last for up to 24 h 
and aggravate during the course of the day, with a peak 
in the evening (27). In patients with FCAS and those 
with MWS, the urticarial rash and systemic symptoms 
are triggered and exacerbated by cold air or evaporative 
cooling of the skin. In contrast, direct cold exposure does 
not induce the skin symptoms (27, 28). The skin lesions 
are rarely itchy, but can be accompanied by burning 
sensations and pain (27).

Based on its rarity, there is only limited data on the cha-
racteristics of skin inflammation in patients with CAPS. 
Skin histopathology is characterized by a neutrophil-rich 
dermal infiltrate (29–31). Accumulation of IL-1β and 
IL-6 after cold provocation testing was shown in lesional 
skin of patients with FCAS and dermal mast cells were 
identified as main producers of IL-1β (23, 32). In addi-
tion, IL-17-positive cells were observed in FCAS skin. 
These are believed to be stimulated by IL-1β, resulting 
in neutrophil recruitment and further production of IL-
17 (33). The urticarial rash is thought to be mediated by 
NLRP3 inflammasome activation and consecutive IL-1β 
production of skin mast cells. IL-1β leads to vascular 
leakage und neutrophil accumulation as the pathological 
hallmark in neutrophilic urticaria.

Familial Mediterranean fever
Familial Mediterranean fever (FMF) is mostly an auto-
somal recessive disease caused by mutations within 
the MEFV gene, encoding a 781-amino acid pyrin/
marenostrin protein (34, 35). Pyrin has a PYD and 

an N-terminal homotypic interaction domain, expres-
sed by monocytes, granulocytes, dendritic cells and 
synovial fibroblasts (36, 37). To date, around 300 dif-
ferent mutations of the MEFV gene have been reported 
(INFEVERS database, accessed November 2019). The 
inflammation of FMF is mediated by ASC-dependent, 
NLRP3-independent production of IL-1β due to gain-
of-function pyrin mutations (Fig. 1) (38). 

The main clinical findings in patients with FMF com-
prise recurrent self-limiting attacks of fever and serositis 
as well as peritonitis, synovitis and pleuritis (Table I) 
(39). There is considerable inter-individual variability in 
the intensity and frequency of attacks. Between attacks, 
most patients with FMF are asymptomatic. In general, 
onset occurs within the first 2 decades and the disease 
becomes more severe during the course of life (40, 41). 
In untreated patients, amyloidosis can develop, with 
subsequent kidney failure (42, 43). Laboratory indicators 
are elevated acute-phase reactants, similar to those in 
patients with CAPS (see above) (44). 

In up to 40% of patients with FMF, erysipelas-like 
skin lesions are reported. Those non-infectious lesions 
mostly affect the lower extremities and present as erythe-
matous, painful infiltrated oedema (40, 45). Erysipelas-
like lesions resolve spontaneously within several days 
and can be accompanied by fever and/or arthralgia (Fig. 
3) (41). These skin lesions are typical for patients with 
FMF and do not occur in the context of other autoinflam-
matory disorders. Histopathologically, erysipelas-like 
lesions show dermal oedema and sparse perivascular 
infiltration of lymphocytes and neutrophils. Direct im-
munofluorescence revealed deposition of C3 in the small 
vessel wall of the superficial vascular plexus (46). Also, 
a strong association of FMF with polyarteriitis nodosa 
and Henoch-Schönlein purpura was reported (47–49). 
Less frequently, patients with FMF can present with 
other skin symptoms, such as purpuric exanthema and 
urticarial rash, diffuse palmoplantar erythema, Raynaud-
like phenomena and erythema nodosum (50, 51). As a 

Fig. 3. Patient with familial Mediterranean fever with erysipelas-
like lesion of the left lower leg and accompanying arthritis of the 
left ankle joint.

Fig. 2. Urticarial rash on the right arm in a 77-year-old woman with 
cryopyrin-associated periodic syndrome.
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hypothesis, the co-occurrence of numerous immune-
mediated disorders may be linked with inappropriately 
polarized T-cell responses in FMF, which enhances the 
occurrence of Th1- and Th17-driven diseases (52, 53). 

Deficiency of interleukin-1 receptor antagonist
Deficiency of IL-1 receptor antagonist (DIRA) is an 
auto somal recessive autoinflammatory disorder caused 
by a homozygous mutation in IL1RN, a gene that encodes 
IL-1RA, which inhibits the pro-inflammatory cytokines 
IL-1α and IL-1β (Fig. 1) (54). Several disease-causing 
mutations have been reported, including missense mu-
tations, nonsense mutations and deletions (54–59). Due 
to these mutations, IL-1 signalling is increased leading 
to uncontrolled systemic inflammation.

Onset of symptoms occurs at birth or at the age of 
few weeks. Patients with DIRA present with multifocal 
osteomyelitis accompanied by severe bone inflamma-
tion and consecutive osteolytic changes and osteopenia, 
periostitis and pustulosis (Table I) (55). The disease is 
characterized by premature birth and failure to thrive, as 
well as respiratory distress. Abnormal laboratory findings 
include leukocytosis with elevated inflammatory markers 
and anaemia despite the absence of fever (54, 55).

Cutaneous findings range from the occurrence of dis-
seminated small pustules to severe generalized pustu-
losis and may be accompanied by ichthyosis. They are 
mainly located on the trunk and the extremities (54, 55). 
In most patients with DIRA, the pustular dermatitis is 
associated with nail dystrophy, such as onychomadesis 
(60). As the nail matrix is integrated in the enthesis of 
the extensor tendons, bone inflammation may merge into 
enthesitis and nail involvement. Histopathologically, 
DIRA is characterized by epidermal acanthosis and hy-
perkeratosis (55). The lesional epidermis and dermis is 
infiltrated by extensive amounts of neutrophils that form 
subcorneal pustules (54, 55). The exact mechanisms of 
pustule formation in patients with DIRA is not known. 
Activation of proinflammatory cytokines including IL-8 
may mediate the expansion of IL-17-producing T cells, 

leading to consequent cutaneous neutrophilic influx 
and pustule formation. In line with this, IL-17 expres-
sion is upregulated in DIRA compared with controls 
(54). In contrast to urticarial neutrophilic dermatoses, 
autoinflammatory pustular disorders are characterized 
by epidermal involvement contributing to skin inflam-
mation. Further investigations are necessary to clarify 
the role of keratinocytes and antimicrobial peptides, 
such as LL-37/cathelicidin, to better distinguish disease 
pathomechanisms.

Deficiency of interleukin-36 receptor antagonist
Analogously to DIRA, deficiency of IL-36 receptor anta-
gonist (DITRA) is caused by a recessive homozygous or 
compound heterozygous mutation in the IL-36RA gene, 
resulting in deficiency of the IL-36 receptor antagonist 
(Fig. 1) (61). Consequently, pro-inflammatory cellular 
signals via IL-36 are enhanced, leading to systemic 
inflammation and generalized pustulosis. Patients with 
DITRA present with attacks of fever, elevated inflam-
matory marker CRP and leukocytosis with neutrophilia. 
In contrast to DIRA, there is no bone inflammation or 
involvement of inner organs in patients with DITRA (Ta-
ble I). This can be explained by the fact that IL-36RA is 
physiologically mainly expressed in the skin and absent 
in bones or solid organs. Hallmarks of skin symptoms are 
flares of generalized pustulosis, as observed in patients 
with DIRA (61) (Fig. 4). Mutations in the IL36RA gene 
can also cause acrodermatitis continua of Hallopeau, 
a sterile pustular eruption, mainly acrally located with 
subsequent affection of the nails (62). DITRA is often 
named as a monogenic form of pustular psoriasis. In 
addition to IL36RA, mutations in CARD14 and AP1S3 
have been identified in patients with generalized pustular 
psoriasis. All these mutations lead to enhanced IL-36 sig-
nalling with subsequent systemic and skin inflammation 
(63–65). However, in many patients with pustular psoria-
sis no underlying mutations are detectable. Furthermore, 
there is no association of DITRA with the occurrence 
of plaque psoriasis, and it is important to differentiate 

Fig. 4. (A and B) Front and back of a female patient with acute flare of generalized pustular psoriasis presenting with erythroderma, 
pustules, pustular lakes and erosions.
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between DITRA and other types of pustular psoriasis, 
such as palmoplantar psoriasis. Histopathology revealed 
massive neutrophilic infiltration of epidermis and dermis 
(61). Immunohistochemistry showed IL-36γ in epidermal 
keratinocytes and absence of IL36RA in lesional skin of 
patients with DITRA (61, 66). Interestingly, biological 
inhibition of TNF-alpha, IL-12/23 and IL-17 seems to be 
more effective than anti-IL-1 treatment in patients with 
DITRA (67). Also, a monoclonal antibody against the 
IL-36 receptor (Spesolimab, BI 655130) has been shown 
to be efficacious in patients with generalized pustular 
psoriasis regardless of their mutation status (68). 

INTERFERON AND INTERFERONOPATHIES

Microbial molecules from viruses, bacteria or parasites 
are recognized by pattern recognition receptors and drive 
the expression of IFN via activation of downstream 
signalling (69). IFNs are a family of signal proteins that 
are released in an autocrine or paracrine manner by host 
cells to regulate and activate immune response. They 
are classified into 3 groups, type I IFN, type II IFN and 
type III IFN, and are differently produced (70). Type I 
IFN, represented by 13 subtypes of IFN-α and a single 
IFN-β, is ubiquitously produced, while type II IFN is 
produced by T cells and type III IFN by epithelial cells. 
In addition, type I IFN plays a crucial role in antiviral 
immunity and has been part of the standard treatment 
of hepatitis C and hepatitis B infections in recent years. 
Upon releasing, IFNs bind to different kinds of surface 
receptors, resulting in the activation of the JAK-STAT 
signalling pathway. Hence, activated STAT complexes 
act as intracellular transcription factors and regulate the 
expression of interferon-stimulated genes which are in-
volved in cellular immunity, proliferation, differentiation 
and apoptosis (71). 

Interferonopathies are a group of monogenic disor-
ders defined by impaired interferon-mediated immune 
responses and upregulated interferon gene expression.

Stimulator of interferon genes-associated vasculopathy 
with onset in infancy (SAVI)
Stimulator of interferon genes (STING), encoded by the 
TMEM173 gene, is an endoplasmatic reticulum trans-
membrane protein that exists as a homodimer (72). It 
functions as an adapter that is essential for interferon-β 
(IFN-β) induction. Binding to its ligands, cyclic dinu-
cleotides, triggers conformational changes leading to 
phosphorylation of TANK-binding kinase 1 and inter-
feron regulatory factor 3 (IRF-3). Then, phosphorylated 
IRF-3 translocates into the nucleus and mediates the 
expression of IFNB1 (interferon-β) (Fig. 1) (73). Gain-
of-function mutations within TMEM173 causes STING-
associated vasculopathy with onset in infancy (SAVI) by 
constitutive STING activation, resulting in an increase 

and chronic hypersecretion of IFN-β (74). SAVI presents 
with recurrent fevers, interstitial lung disease, failure to 
thrive and systemic inflammation (Table I). However, 
the main clinical finding is vasculopathy (72). 

Regarding the skin, patients with SAVI initially present 
with teleangiectatic, blistering and/or pustular rashes, 
mainly distributed on the fingers, toes, soles, cheeks and 
nose. Cutaneous symptoms start in the first weeks or 
months after birth, worsen by cold exposition, and can 
progress to severe ulcerative lesions due to peripheral 
vascular inflammation. Chronic involvement of the 
skin can manifest as acral violaceous plaques or nodu-
les, and includes nail dystrophy, distal gangrenes and 
nasal septum perforations. These symptoms result from 
further vascular and tissue damage (72). Histological 
examination of lesional skin samples shows small vessel 
vasculitis. IgM, C3 and fibrin deposition was observed 
in lesional skin of single SAVI patients, indicative of an 
immune-complex-mediated mechanism (72). Given the 
pathogenic mechanisms in SAVI, inhibition of Janus 
kinase with blockade of type 1 IFN signalling is a pro-
mising treatment option. Both baricitinib and tofacitinib 
had favourable effects on skin and systemic symptoms 
in patients with SAVI (75, 76). 

Chronic atypical neutrophilic dermatosis with 
lipodystrophy and elevated temperature/proteasome-
associated autoinflammatory syndrome
Chronic atypical neutrophilic dermatosis with lipodys-
trophy and elevated temperature (CANDLE), also known 
as proteasome-associated autoinflammatory syndrome 
(PRAAS), is an autosomal recessive genetic disorder 
that affects the skin and subcutaneous tissue and presents 
with systemic inflammation. It is caused by mutations 
in proteasome or immunoproteasome subunit genes 
(PSMB3, PSMB4, PSMB8, PSMB9, POMP) (77–81). 

CANDLE is not a primary interferonopathy, but is 
characterized by a proteasome – immunoproteasome dys-
function, leading to constitutional hypersecretion of type 
1 IFNs (82). The proteasome and immunoproteasome are 
responsible for the degradation of impaired ubiquitina-
ted cellular proteins by proteolysis (Fig. 1). In patients 
with CANDLE, proteasome and immunoproteasome 
dysfunction leads to an intracellular accumulation of 
ubiquitinated protein. The resulting cellular stress indu-
ces type I IFN genes to enhance IFN signalling and IFN 
synthesis. IFNs modulate the release and production of 
pro-inflammatory cytokines and cell recruitment, which 
culminates in further organ inflammation. Infections or 
cold exposure are potent trigger factors that can aggravate 
proteasome and immunoproteasome dysfunction.

Systemic symptoms in patients with CANDLE include 
growth delay, musculoskeletal symptoms and hepa-
tosplenomegaly. Skin symptoms accompanied by fever 
are often the initial clinical manifestations of CANDLE, 
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with onset in early infancy (Table I) (83). Mostly, they 
are located on the fingers, toes, ears and nose, and may 
be cold-triggered as reported for patients with SAVI. Ini-
tially, they present with periodic erythematous to purplish 
oedematous plaques that resemble perniotic lesions and 
can be accompanied by localized swelling (Fig. 5). The 
skin symptoms change over the course of the disease. 
With increasing age, transient annular, purpuric plaques 
with raised borders become the more common finding. 
In contrast to SAVI, tissue destruction with ulceration, 
perforation and development of gangrene is uncommon. 
Furthermore, a persisting violaceous periorbital and pe-
rioral oedema occurs (84, p. 438). Later on, progressive 
lipodystrophy is a main characteristic of patients with 
CANDLE. It starts in the face and progresses to involve 
the trunk and the extremities (77, 83). 

Lesional skin biopsies revealed dense mixed infiltra-
tes of mononuclear cells with irregular nuclei, atypical 
myeloid cells, but also some mature lymphocytes, 
neutrophils and eosinophils in the dermis. It has been 
postulated that the atypical myeloid cells are recruited by 
increased release of IFN from the bone marrow, and that 
they further infiltrate peripheral organs (85). Immunohis-
tochemistry demonstrated dermal myeloperoxidase- and 
CD68-positive myeloid cell infiltrates in patients with 
CANDLE (77, 85, 86). In addition, CD163-positive 
histiocytes, as well as CD123-positive plasmacytoid 
dendritic cells, were observed (85).

In line with SAVI, patients with CANDLE benefit 
from inhibition of Janus kinase. This underlines the 
pathophysiological role of type 1 IFN signalling (75). 

NF-κB AND NF-κB-RELATED DISORDERS

The NOD2 pathway is involved in the innate immune 
defence against invading pathogens. NOD2 is a mem-
ber of a family of pattern recognition molecules and 
is mainly expressed by antigen-presenting cells and 
intestinal Paneth cells (87, 88). It contains 2 N-terminal 
CARD domains for downstream signalling through 

CARD-CARD interaction, a NOD/NACHT domain with 
ATPase activity and a C-terminal domain comprised 
of 10 LRR motifs (89). In addition, the LRR domain 
provides a binding-site for its natural ligand muramyl 
dipeptide (MDP), a degradation product of ubiquitous 
peptidoglycan (90). Without a stimulus, NOD2 is silen-
ced via auto-inhibition. The engagement of NOD2 and 
MDP induces a conformational change and oligomerizes 
the exposed NOD/NACHT domain. This leads to NOD2 
activation and recruitment of the serine/threonine kinase 
receptor-interacting protein kinase 2 (RIP2) (91). The 
CARD-CARD interaction between NOD2 and RIP2 
promotes the activation of NF-κB and mitogen-activated 
protein kinase, resulting in production of inflammatory 
cytokines, chemokines and adhesion molecules (Fig. 
1) (92).

Blau syndrome
Blau syndrome is a NOD2-associated granulomatous 
inflammatory disease with an autosomal dominant inhe-
ritance that usually starts between infancy and the age of 
5 years (93). Several NOD2 gain-of-function mutations 
were described to cause Blau syndrome, most of them 
were reported in the NOD/NACHT domain (93–96). The 
main clinical characteristics are arthritis, skin inflamma-
tion and uveitis (Table I; Fig. 6) (97).

In infancy, patients with Blau syndrome show a mo-
nomorphic micropapular erythematous rash with fine 
desquamation as the initial symptom (84, p. 373–374). 

Fig. 6. Blau syndrome. A) A 12-year-old boy with disseminated small scaly 
solid papules with onset at age 6 months. These asymptomatic eruptions 
improve spontaneously, but relapse again without specific events. (B) A 
4-year-old boy showing joint involvement with cystic swelling of the dorsal 
sides of the left hand.

Fig. 5. Skin symptoms in an infant with chronic atypical neutrophilic 
dermatosis with lipodystrophy and elevated temperature. (A) 
Erythematous papules and plaques on the right foot and right lower leg. 
(B) Purplish oedematous plaques on the fingers that resemble perniotic 
lesions with accompanying swelling of the hand.
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The rash often starts on the dorsal trunk and further 
affects face and extremities. Over time, the initially 
erythematous rash becomes brownish and scaly. Further-
more, patients can develop subcutaneous nodules on the 
lower extremities, mimicking erythema nodosum (98). 
In single cases, skin affection, such as erysipelas-like 
lesions, urticarial rash, livedoid lesions and vasculitis, 
have been observed (99–101). Histologically, the skin 
lesions are characterized by naked sarcoidal granuloma 
formation (100). 

INTERLEUKIN-18

Nucleotide oligomerization domain (NOD)-like receptor 
family CARD domain-containing protein 4 (NLRC4) and 
NLCR4 inflammasomopathies
The NLRC4 inflammasome is activated by at least 2 
compounds of Gram-negative bacteria, flagellin and 
type 3 secretion protein (T3SS) (102–104). However, 
the interaction between ligand and NLRC4 does not 
occur directly. Instead, the sensor protein NLR family 
of apoptosis inhibitory protein (NAIP) physically binds 
flagellin or T3SS and co-assembles with NLRC4, leading 
to its activation through conformational change (105). 
Furthermore, studies have shown that phosphorylation 
by the kinase Pkcδ is required for the complete NLCR4 
activation (106). Once activated, NAIP-NLRC4 forms 
a multimeric complex, known as inflammasome, which 
recruits and activates caspase-1 (CASP-1) (107). CASP-
1 is involved in anti-bacterial responses by triggering 
pyroptosis, a form of inflammatory cell death (108). In 
addition, it mediates the processing and release of IL-1β 
and IL-18 (Fig. 1) (109, 110). 

Gain-of-function mutations within the NLCR4 gene 
are linked to NLCR4 inflammasomopathies (111, 112). 
These autosomal dominantly-inherited mutations pro-
mote the spontaneous formation of the NLCR4, inflam-
matory cell death and production of IL-1β and IL-18 
(113). The clinical spectrum is manifested by a variety 
of symptoms, and can range between mild CAPS-like 
phenotypes with urticarial rash and little inflammation 
as well as severe conditions of macrophage activation 
syndrome and enterocolitis with onset in infancy (Table I) 
(111, 112). Macrophage activation syndrome comprises 
a life-threatening condition of fever, hyperferritinaemia, 
hepatobiliary dysfunction and haemophagocytosis. Dis-
seminated intravascular coagulation and acute respiratory 
distress syndrome may occur (111). 

With respect to the skin, patients present with erythe-
matous or urticarial rashes. In contrast to patients with 
CAPS, the lesional skin of NLRC4 inflammasomopa-
thies patients is characterized by a lymphohistiocytic 
infiltrate (114). As serum IL-18 levels are markedly 
increased in NLRC4 inflammasomopathies compared 
with patients with CAPS, it could be speculated that IL-

18 may mediate cutaneous recruitment of lymphocytes 
and macrophages (112).

MONOGENIC AUTOINFLAMMATORY SKIN 
DISORDERS OVERLAPPING INNATE AND 
ADAPTIVE IMMUNE-SIGNALLING PATHWAYS

PLCG2-associated antibody deficiency and immune 
dysregulation and autoinflammation and PLCG2-
associated antibody deficiency and immune dysregulation
Phospholipase C-gamma 2 (PLCγ2)-associated antibody 
deficiency and immune dysregulation (PLAID) and auto-
inflammation and PLCγ2-associated antibody deficiency 
and immune dysregulation (APLAID) are autosomal 
dominant syndromes, which are based on mutations in 
PLCG2 (115, 116). In-frame deletions of exon 19 and 
exons 20–22 are known for PLAID (115). APLAID is 
induced by the S707Y mutation in PLCG2 (116).

PLCγ2 is a transmembrane phospholipase enzyme 
that catalyses the hydrolysis of phosphatidylinositol 
bisphosphate (PIP2) to diacylglycerol (DAG) and inosi-
toltriphosphate (IP3). IP3 modulates the calcium release 
as a second messenger from the endoplasmic reticulum 
and thereby mediates cellular signal transduction. PLCγ2 
regulates various cellular functions, such as protein 
transport, apoptosis/cell survival, migration and immune 
responses (Fig. 1). It is expressed mainly in lymphoid 
and myeloid cells. In patients with PLAID, PLCG2 
deletions alter the carboxyl-terminal Src homology 2 
domain (SH2), which is critical for PLCγ2-autoinhibtion. 
As a result, PLCγ2 is constitutively activated, but with 
reduced intracellular signalling at physiological tempe-
ratures (115). In APLAID, the S707Y substitution within 
the autoinhibitory SH2 domain leads to hyperactivation 
of the PLCγ2 enzyme and exhibits exactly the opposite 
effects, with increased cellular signalling at physiological 
temperatures (115, 116). Interestingly, it has been shown 
that this PLCγ2 hyperactivation results in enhanced 
NLRP3 inflammasome activity via intracellular Ca2+ 
signalling (117).

PLAID and APLAID comprise a wide spectrum of 
clinical and laboratory findings. Both present with an 
increased susceptibility to recurrent infections and va-
riable atopic features and/or autoimmune phenomena. 

Regarding the skin, patients with PLAID present with 
pruritic wheals or erythematous patches since birth. Skin 
lesions are provoked by cold air or evaporative cooling 
of the skin and last from minutes to hours (115). In some 
cases, oesophageal burning sensations after consumption 
of cold/frozen foods were reported (115, 118). Further-
more, syncopal episodes were described, when comple-
tely exposed to cold water (118). The urticarial lesions 
are based on cold-induced mast cell activation with 
consecutive degranulation (115). In addition, PLAID 
can present with neonatal-onset acral ulcerative granu-
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lomatous skin lesions (fingers, nose and ears), which 
may or may not disappear during childhood. Ulcers are 
often haemorrhagic and can affect the subjacent tissue, 
such as erosion of the nasal cartilage. The granulomas 
are characterized by CD68+ histiocytic infiltrates with 
multinucleated giant cells, a mild CD4/CD8 lymphocytic 
infiltrate and scattered eosinophils (118). 

In contrast to PLAID, patients with APLAID do not 
show any cold-induced symptoms, but present with 
epidermolysis bullosa-like eruptions in early childhood. 
Over time, patients with APLAID develop recurrent 
erythematous plaques and vesiculopustular skin lesions, 
which worsen after heat, sun exposure and pressure (116). 
The underlying pathophysiological mechanisms remain 
to be elucidated.

CONCLUSION

All autoinflammatory skin diseases have in common 
that they occur in flares of systemic inflammation with 
elevated acute phase reactants and characteristic clinical 
symptoms. Many are caused by gene mutations that im-
pact critical immune responses resulting in autoinflam-
mation, but also autoimmunity and immunodeficiency. 
The identification of various genetic variants has broade-
ned our understanding of host defence mechanisms and 
their interactions. Still, the recognition of dermatological 
phenotypes and clinical presentation of patients with 
autoinflammatory diseases are crucial for diagnosis and 
treatment. The occurrence of skin lesions as the only 
symptom is exceptional and associated complaints and 
symptoms should always be assessed. In most conditions, 
inflammatory markers, such as CRP, ESR, SAA and S100 
proteins, are elevated. Although these are non-specific 
findings, they may prompt further investigations towards 
autoinflammatory disorders, such as genetic analyses in 
early-onset and/or familial cases.

Targeted inhibition of cytokines is effective in many 
of these disorders and has significantly improved the 
health-related quality of life of patients. Based on a better 
pathomechanistic understanding, novel small molecules 
(e.g. inflammasome inhibitors) are currently being deve-
loped (119) and may enable even more precise therapies. 
In addition, novel technologies such as CRISPR/Cas 
may enable targeted gene therapy in autoinflammatory 
diseases. 
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