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Objectives:We aimed to develop radiology-based models for the preoperative prediction
of the initial treatment response to transarterial chemoembolization (TACE) in patients with
hepatocellular carcinoma (HCC) since the integration of radiomics and deep learning (DL)
has not been reported for TACE.

Methods: Three hundred and ten intermediate-stage HCC patients who underwent
TACE were recruited from three independent medical centers. Based on computed
tomography (CT) images, recursive feature elimination (RFE) was used to select the most
useful radiomics features. Five radiomics conventional machine learning (cML) models and
a DL model were used for training and validation. Mutual correlations between each model
were analyzed. The accuracies of integrating clinical variables, cML, and DL models were
then evaluated.

Results:Good predictive accuracies were showed across the two cohorts in the five cML
models, especially the random forest algorithm (AUC = 0.967 and 0.964, respectively). DL
showed high accuracies in the training and validation cohorts (AUC = 0.981 and 0.972,
respectively). Significant mutual correlations were revealed between tumor size and the
five cML models and DL model (each P < 0.001). The highest accuracies were achieved
by integrating DL and the random forest algorithm in the training and validation cohorts
(AUC = 0.995 and 0.994, respectively).

Conclusion: The radiomics cML models and DL model showed notable accuracy for
predicting the initial response to TACE treatment. Moreover, the integrated model could
serve as a novel and accurate method for prediction in intermediate-stage HCC.
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INTRODUCTION

Hepatocellular carcinoma (HCC) is a major cause of cancer-
related deaths worldwide (1). Although liver transplantation,
surgical resection, and local ablation are radical curative
operations in early-stage HCC, some patients in intermediate
or advanced stages are ineligible for curative surgery (2–4). Apart
from surgery, particularly for intermediate-stage patients,
transarterial chemoembolization (TACE) is still the standard
treatment modality following the National Comprehensive
Cancer Network (NCCN) clinical practice guidelines (5–7).

Recent studies have reported that the initial treatment response
is an indicator of a favorable clinical prognosis, such as better
progression-free survival and overall survival (8–11). However, the
developmentof a precisemodel for predicting the initial response to
TACE therapy is desired, and radiomics is a promisingmethod that
involves the extraction of several quantitative features from
radiology images, which could be feasibly used (12, 13). Previous
studies have shown that conventional machine learning (cML)
based on radiomics could be used to significantly predict clinical
outcomes in cancers (14–18). In our previous studies, radiomics
models could effectively predict microvascular invasion and
progression-free survival before hepatectomy (19).

Deep learning (DL), including convolutional neural networks,
as an emerging method for image classification, has been
receiving increasing attention (20, 21). In HCC studies, these
DL models can be trained and used for tumor detection, staging,
and prognosis using radiology images (22–25). Similarly, a DL
model based on computed tomography (CT) images could be
used to predict prognosis to TACE (26–28). However, the
integration of radiomics and DL models has not been reported
for TACE, and its accuracy is unclear.

In our study, we extracted several radiomics features from
radiology images and used five cML methods to predict the initial
treatment response to TACE in HCC patients and created a DL
model to train these CT images. Correlations between the five cML
models, tumor size, and the DL model were further analyzed. By
integrating tumor size, radiomics cML, and DL, precise ensemble
models were developed and tested. This work has implications
regarding the clinical use of artificial intelligence because it can be
used repeatedly, non-invasively, and at a low cost.
MATERIALS AND METHODS

Study Design and Patients
This was a retrospective study of 310 patients with Barcelona
Clinic Liver Cancer stage B HCC who underwent conventional
TACE between February 2015 and December 2020. The patients
were recruited from Nanfang Hospital (n=139), Sun Yat-sen
University Cancer Center (n=130), and the Second Affiliated
Hospital of Guizhou Medical University (n=41). The inclusion
criteria were radiologically or pathologically confirmed HCC,
initial TACE treatment, and hepatic-arterial CT imaging
availability within 7 days before treatment and 30 days after
treatment. Patients who underwent locoregional or whole-body
therapy were excluded. This study was approved by the
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Institutional Review Boards of the Second Affiliated Hospital of
Guizhou Medical University, Nanfang Hospital and Sun Yat-sen
University Cancer Center. All informed consents were signed
and we conducted in accordance with the Declaration of Helsinki
in the whole process.

TACE Procedure and Response Evaluation
TACE was performed under local anesthesia using the traditional
femoral approach. Our method is consistent with a previously
reported practical standardmethod forAsian countries (29). TACE
was performed under the guidance of digital subtraction
angiography (Allura Xper FD 20, Philips) through the left and
right hepatic arteries directly through the arteries supplying blood
to the tumor when technically feasible. Hepatic arteriography,
performed using a 5 Fr (RH or Yashiro) catheter, was first used to
assess the location, number, size, and blood supply of the target
tumor. The embolic emulsion agent, including epirubicin (30–60
mg), lobaplatin (30–50 mg), and lipiodol (10–30 mL), was injected
into the artery supplying the tumor through a 2.7/2.8 Fr
microcatheter. Thirty days after treatment, according to the
modified Response Evaluation Criteria in Solid Tumors (ver. 1.1),
the initial response to TACE was classified as complete response
(CR), partial response (PR), stable disease (SD), or progressive
disease (PD). Initial treatment response and non-response were
strictly defined as CR + PR and SD + PD after the first course of
TACE therapy.

Manual Segmentation of the
Regions of Interest
Contrast-enhanced CT (CECT) scans were performed as described
in the Supplementary Material. The CECT images were
downloaded using the Picture Archiving and Communication
System (PACS). ITK-SNAP (version 3.6, https://sourceforge.net/
projects/itksnapx64/) could only import medical image-related
formats, such as DICOM and NITFI formats. We selected the
tool from the main toolbar to annotate along the three axes. The
tumor area was confirmed by hepatic-arterial, portal venous, and
delayed-phase CT images. Two senior radiologists who were
blinded to the treatment results manually segmented the three-
dimensional (3D) regions of interest (ROIs) of HCC using ITK-
SNAP. After completing the annotation of each layer, we could
update the ROI and see the labeled 3D image in the bottom
left window.

Extracting Radiomics Features and
Reproducibility Analysis
MATLAB 2014b (https://ww2.mathworks.cn/) was used to
standardize and reconstruct the segmented 3D ROI image. The
thickness of the layer was 1 mm. Python 3.6 (https://www.python.
org/downloads/release/python-360/) was used to install the package
and extract the radiomics features in 3D images (https://github.com/
Radiomics/pyradiomics) (30). These values included the texture,
shape, size, and wavelet transform of the CT images. The interclass
correlation coefficients (ICCs) between the two observers were used
to evaluate the repeatability of extracting radiomic features from 50
CT images in the training cohort. ICCs greater than 0.75 indicated
favorable consistency in the radiomics extraction.
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Recursive Feature Elimination and
Building the cML Models
Recursive feature elimination (RFE) selects features by
recursively reducing the size of the examined feature set
(Figure 1). First, the prediction model is trained on the
original features, and each feature is assigned a weight.
Features that have the minimum absolute weight are then
recursively removed from the feature set until the number of
remaining features reaches the desired number of features.
Random forest function and 5-fold cross-validation sampling
were used in the RFE. RFE was performed with the “caret” R
package. Five cML algorithms including linear, logistic, support
vector machine (SVM), gradient boosting machine (GBM), and
random forest (RF) were employed. Based on the 14 selected
radiomics features, five radiomics models were then built by R
packages (“C50,” “randomForest,” “caret,” and “e1071”).

Data Preprocessing for Deep Learning
The intensity values of the CT images were mapped to [0, 1] for
preparing the data for training deep learning. We defined the
classified labels as CR + PR and SD + PD. A CT image and mask
of the ROI manually segmented from the largest tumor layer in
all patients was output. Based on an in-house algorithm, we
extracted one largest patch with a size of 224 × 224 × 3 from
every patient in the two cohorts. To avoid potential bias because
for the unbalanced database, we used augmentation techniques
to enlarge the CT image numbers, and new big data could be
Frontiers in Oncology | www.frontiersin.org 3
acquired for DL. The training patches were randomly distributed
across the two classes by CT image augmentation, including level
and vertical flip, vertical flip, level flip, and −90° and 90° rotation.
Using this method, “new” training CT images were generated;
this augmentation was not used in the other validation database.

Deep Learning
Our DL framework is described as follows (Figure 1): the input
layer was a CT image with a size of 224×224, and the C1 layer was a
convolution layer. The S2 layer was a sampling layer, the feature
map of each C1 layer was changed into a feature map with a size of
64×64, and the size of each samplingwindowwas 2×2. TheC3 layer
was a convolution layer, and 24 feature maps with a size of 48×48
were obtained. Each feature map was the accumulation of the
convolution of four feature maps in the S2 layer, the size of each
convolution kernel was 5×5, and the convolution cores were 24×4.
The S4 layer was a sampling layer. Each feature map of the C3 layer
was sampled, 24 feature maps with a size of 16×16 were obtained,
and the size of each sampling window was 22. The F5 layer
transformed the 12 feature maps of the S4 layer into a vector
containing 24×16×16 neurons, which were then converted into 12
feature maps when the back propagation calculation was
performed. The output layer was a vector consisting of two
neurons corresponding to the output of the two characters. The
F5 and output layers formed a softmax classifier. The Adam
optimizer was selected, with a learning rate of 0.001 and batch
size of 16. All the layers were standardized, and the penalty factor of
FIGURE 1 | Flowchart for the integration of the machine learning and deep learning models. (i) The radiologists manually segmented the 3D ROIs of HCC using ITK-SNAP.
Thereafter, 1167 features were extracted from the hepatic arterial CT images based on the “pyradiomics” package of python. Redundant radiomics features were then
eliminated by ICCs. Using RFE and 5-fold cross-validation, the final features were selected and the five radiomics models were built using different machine learning
algorithms. (ii) A CT image and mask of ROI manually segmented from the largest tumor layer was resized and output as 224 × 224 ×3 from each patient in the two cohorts.
Augmentation techniques were used to enlarge the training CT image dataset, and “new” big data were generated. The deep learning framework included two convolutions,
two max-poolings, and one dense layer. The final output layer was a softmax classifier. The optimizer was Adam, with a learning rate of 0.001 and batch size of 16. All the
layers were standardized and the L2 regularization was set to 0.000001. The activation function of RELU was set as alpha = 0.1. (iii Each of the five machine learning models
(linear, logistic, GBM, SVM, and RF) was integrated with the deep learning model to predict the initial treatment response to TACE. CT, computed tomography; GBM,
gradient boosting machine; HCC, hepatocellular carcinoma; ICC, intraclass correlation coefficient; RELU, reconstructed linear units; RF, random forest; RFE, recursive feature
elimination; ROI, region of interest; SVM, support vector machine; TACE, transarterial chemoembolization.
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L2 regularizationwas set to 0.000001. The activation function of the
reconstructed linear units was used, and its alpha was 0.1. The code
was implemented as the GitHub dataset (https://github.com/
Ashing00/Tensorflow_Lenet5). The training process was based
on Tensorflow 2.0, and parameter tuning was performed in a
Windows environment with a 2.6 GHz Intel Xeon Processor E5-
2640V3 CPU, NVIDIA Pascal Titan X GPU, and 128 GB of RAM.
Statistical Analysis
All statistical analyses were performed using R (version 3.5.0; R
Core Team, 2018). c²test was used to analyze the difference
between clinical variables in training and validation cohorts. The
performance of each radiomics model was evaluated in the
training and validation cohorts using receiver operating
characteristic (ROC) analysis. The optimal cutoff value for
predicting treatment response was defined using the Youden
index. The “pROC” package was used to plot the ROC curves. A
95% confidence interval (CI) for the area under the ROC curve
(AUC) was calculated for all cohorts. The correlations between
tumor size, each cML, and DL were analyzed by the “corrplot”
package. Two-sided P-values < 0.05 were considered significant.
RESULTS

Patient Characteristics and the
Association With Treatment Response
In total, 139 and 171 patients were finally recruited in the training
andvalidationcohorts, respectively (SupplementalFigure S1). The
baseline patient characteristics are shown in Supplemental Table
S1. A total of 121 (87.05%) and 152 (88.89%)patients in the training
and validation cohort, respectively, weremale. Further, 98 (70.50%)
and116(67.83%)patients, respectively,were aged less than60years.
Most patients (82.73% and 83.04%) had Child-Pugh A liver
function. In the training vs validation cohorts, 66 (47.48%) vs 86
(50.29%) patients had high alpha-fetoprotein (AFP > 20 ng/mL)
levels. Patients with large tumor size (> 5 cm) accounted for 83.45%
and89.47%of the population in the training andvalidation cohorts,
respectively.Most patients had a low number of tumors (≤ 3) in the
two groups (87.77% vs 80.70%). Eighty-three (59.71%) vs 104
(60.82%) patients in the two cohorts achieved CR + PR. There
was no significant difference in treatment response rates between
the two groups (each P > 0.05).

The CT images showed the initial CR status after the first
TACE treatment in a HCC patient (Figure 2A). The associations
between clinical factors and treatment responses were further
analyzed. Sex, age, Child-Pugh classification, AFP, and tumor
numbers were not significant predictors of initial treatment
response to TACE in intermediate-stage HCC in the training
cohort (P = 0.601, 0.885, 0.691, 0.170 and 0.96, respectively) and
validation cohort (P = 0.696, 0.667, 0.529, 0.552 and 0.511,
respectively) (Figures 2B, C). The tumor size showed
significant predictive value in the training and validation
cohorts (AUC = 0.771, 95% CI: 0.693–0.850, P < 0.001 vs AUC
= 0.709, 95% CI: 0.630–0.789, P < 0.001).
Frontiers in Oncology | www.frontiersin.org 4
Five Radiomics cML Models and the DL
Model for Predicting Treatment Response
A total of 1167 features were extracted from the hepatic-arterial
3D-CT images. A total of 457 pyradiomics features were
eliminated in the ICC analysis. To acquire robust features, the
remaining 710 features were subjected to feature selection using
the RFE algorithm. Based on 5-fold cross-validation, 14
radiomics features were finally selected and used to build the
five cML models (Supplemental Table S2). All machine learning
models had significantly high prediction in the training and
validation cohorts (each P < 0.001) (Supplemental Table S3).
The simple linear model showed the lowest accuracy in the two
cohorts (AUC = 0.784; 95% CI: 0.707–0.860, P < 0.001 vs AUC =
0.763, 95% CI: 0.693–0.833, P < 0.001). The logistic model was
superior to the linear model in the training and validation groups
(AUC = 0.801 vs 0.784 and 0.781 vs 0.763, respectively). For the
three nonlinear models, RF showed better predictive accuracy
than SVM and GBM in the two cohorts (AUC = 0.967 vs 0.841
and 0.839; and 0.964 vs 0.765 and 0.810, respectively)
(Figures 3A, B). The three nonlinear models (SVM, GBM, and
RF) had better predictive ability than the two linear models
(linear and logistic). In the above engineered features analysis,
the DL model demonstrated high accuracy in the training and
validation cohorts (AUC = 0.981, 95% CI: 0.964–998, P < 0.001
vs AUC = 0.972, 95% CI: 0.951–0.993, P < 0.001) (Figures 3C, D).
The five radiomics models and the DL model also showed high
sensitivity and specificity in the two cohorts (Supplemental
Table S3).

Correlations Between Tumor Size,
cML Models, and DL Model
To evaluate the mutual correlation of tumor size, cML, and DL, we
analyzed the predictive outcome of each model and found that
tumor size, the cML models, and the DL model had significant
correlationswithoneother (eachP<0.001) (Figures4A,B).Tumor
size was negatively associated with the other models in the two
cohorts (each P < 0.001). We found that the linear model was most
significantly correlated with the logistic model across the training
and validation cohorts (r = 0.945, P < 0.001; r = 0.955, P < 0.001,
respectively). In the nonlinear models, RF was most significantly
correlatedwithGBMacross the twocohorts (r= 0.887,P<0.001; r =
0.871, P < 0.001, respectively). We also found that DL was most
significantly associated with RF in the training and validation
cohorts (r = 0.732, P < 0.001; r = 0.662, P < 0.001, respectively).
There was a lower correlation between DL and the linear models
than between DL and the nonlinear models in the training and
validation cohorts (each P < 0.001) (Figures 4A, B).

Evaluating Classifiable Accuracy
Using the Integration Model
Toassess the predictive ability of combiningDLwith clinical factors
or each model, we performed an integrative analysis of tumor size,
cML, andDL.We found thatDL combinedwith tumor size showed
significantly high accuracy in the two cohorts (AUC = 0.983, 95%
CI: 0.968–0.998, P < 0.001; AUC = 0.972, 95% CI: 0.951–0.993, P <
0.001) (Supplemental Table S4). The combination of DL and the
October 2021 | Volume 11 | Article 730282
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simple linearmodel showed similar accuracy as the combination of
DL and the logistic model in the training (AUC = 0.982 vs 0.984)
and validation (AUC = 0.987 vs 0.986) cohorts. A combination of
RFandDLshowed thehighest accuracy among the combinationsof
cML or tumor size with DL in the two cohorts (AUC = 0.995, 95%
CI: 0.990–1.000,P<0.001 vsAUC=0.994, 95%CI: 0.987–1.000,P<
0.001) (Figures 5A, B).
DISCUSSION

In our study, the 14 most useful features based on RFE method
were selected to develop the models. Additionally, the DL model
was able to automatically extract many natural features from
tumor ROI images. Using two distinct methods, we developed
five radiomics cML models and a DL model to precisely predict
the initial treatment response to TACE in the training and
validation cohorts. Significant mutual correlations between the
five cML models and the DL model were clearly elaborated in the
Frontiers in Oncology | www.frontiersin.org 5
two datasets. The combination of cML and DL can help to
improve the prediction of treatment response compared to a
single model, indicating that this method could act as a novel and
useful tool for management of intermediate-stage HCC.

Regarding clinical factors, we found that tumor size, but not
AFP, was significantly associated with the initial treatment
response, which was consistent with a previous study (31). The
high baseline levels of AFP (> 20 ng/mL) may not be related to
the initial therapy response, but several studies have reported
that the AFP decline was associated with treatment response and
significantly improved median survival in intermediate-stage
HCC after TACE therapy (32–34). Tumor number is an
uncertain predictive biomarker of treatment response in
different centers, and the outcome needs more studies for
confirmation (35, 36). In addition to clinical variables, the
predictive performance of the radiomics model in the study
was similar to that of our linear and logistic models but was lower
than that of the SVM, RF, and GBM models, which revealed that
the optimal feature selection is important for building a
precise model.
A

B C

FIGURE 2 | Associations between the clinical factors and initial treatment response to TACE. (A) The CT images from a patient acquiring CR after one course of
TACE treatment were presented. Clinical factors predicting response (CR + PR) in the training (B) and validation cohorts (C). CR, complete response; PR, partial
response; TACE, transarterial chemoembolization.
October 2021 | Volume 11 | Article 730282
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Unlike the engineered features model, the DL model as a
novel method for image classification has been widely used in
liver cancers (37–39). A DL model based on CT and gadoxetic
acid-enhanced magnetic resonance imaging (EOB-MRI) seemed
efficient for predicting microvascular invasion in HCC (40). A
recent study established a DL model based on contrast-enhanced
ultrasound (CEUS) to predict the initial treatment response of
HCC patients to TACE using quantitative analysis (41). Our DL
model from CT images has higher accuracies than CEUS models,
indicating that CT images may be more useful than CEUS images
in medical artificial intelligence. The predictive accuracy of our
DL model was high, and this method could also be widely used in
other HCC studies.

The potential relationships between radiomics cML and DL
models were found significant mutual correlations between
them. Moreover, the combination of cML and DL is an
Frontiers in Oncology | www.frontiersin.org 6
interesting topic and could most effectively use invisible
radiology information. By integrating DL and radiomics
analysis, pattern classification was able to achieve a high
prediction in the benign and malignant pathology of
gastrointestinal stromal tumors (42). Combining radiomics and
DL signatures can be used to accurately predict lymph node
metastasis in lung adenocarcinoma (43). However, the ensemble
performances of five different cML models (such as SVM, GBM,
and RF) in combination with DL have never been reported, and
our study is the first to evaluate these performances in HCC
patients receiving TACE therapy. The RF + DL model had the
best predictive accuracy for the initial treatment response in
HCC patients, indicating that optimal model integration could
further improve the classification ability.

Our study has several limitations. First, our radiomics data
were extracted from three medical centers, and the CT scanners
A B

C D

FIGURE 3 | Five radiomics cML models and the DL model could precisely predict initial treatment response to TACE. ROC curves showing the predictive
performance of the five cML models for estimating treatment response in the training (A) and validation cohorts (B). ROC curves showing the predictive performance
of the DL model for predicting treatment response in the training (C) and validation (D) cohorts. cML, conventional machine learning; DL, deep learning; ROC,
receiver operating characteristic; TACE, transarterial chemoembolization.
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in these centers were not the same and did not have similar
parameters. Thus, the reproducibility of radiomics may have
affected the robustness of the predictive model. Therefore, all CT
images were standardized and reconstructed as 1-mm slices.
Second, although the multicenter model analysis showed robust
predictive performance, the study was conducted retrospectively,
and the combined models need to be validated in a prospective
study. Third, delineating the tumor ROI mostly depended on the
interpreter’s experience of radiology, and manual methods
Frontiers in Oncology | www.frontiersin.org 7
required a lot of time. Future studies could develop an
automatic segmentation model for liver tumors and minimize
the discrepancies in radiomics features and DL training images.
Finally, it is difficult to build a model with several lines of codes,
particularly with regard to deep learning. Thus, it would be
beneficial to identify an easy-to-use software that is free for
clinical use.

In conclusion, the integration of five radiomics cML models
and a DL model based on CT images is a noninvasive and low-
A B

FIGURE 4 | Correlation between tumor size, cML, and DL. Evaluating the mutual correlation between tumor size, the five radiomics cML models, and the DL model
via correlation heatmaps in the training (A) and validation (B) cohorts. cML, conventional machine learning; DL, deep learning.
A B

FIGURE 5 | Integrating tumor size, cML models, and DL model to predict initial treatment response. Predictive performances of the ensemble model, including
tumor size and the cML and DL models, are shown as ROC curves for the training (A) and validation (B) cohorts. cML, conventional machine learning; DL, deep
learning; ROC, receiver operating characteristic.
October 2021 | Volume 11 | Article 730282
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cost but highly accurate model for predicting the initial
treatment response to TACE in patients with intermediate-
stage HCC. This integrating method could serve as a novel
strategy to improve precise clinical decision-making in other
malignant tumors.
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