
Review

Yuzhuo Wang, Meng Zhu, Hongxia Ma and Hongbing Shen*

Polygenic risk scores: the future of cancer risk
prediction, screening, and precision prevention

https://doi.org/10.1515/mr-2021-0025
Received September 16, 2021; accepted December 13, 2021;
published online February 14, 2022

Abstract: Genome-wide association studies (GWASs) have
shown that the genetic architecture of cancers are highly
polygenic and enabled researchers to identify genetic risk
loci for cancers. The genetic variants associated with a
cancer can be combined into a polygenic risk score (PRS),
which captures part of an individual’s genetic suscepti-
bility to cancer. Recently, PRSs have been widely used in
cancer risk prediction and are shown to be capable of
identifying groups of individuals who could benefit from
the knowledge of their probabilistic susceptibility to can-
cer, which leads to an increased interest in understanding
the potential utility of PRSs that might further refine
the assessment and management of cancer risk. In this
context, we provide an overview of the major discoveries

from cancer GWASs. We then review the methodologies
used for PRS construction, and describe steps for the
development and evaluation of risk prediction models that
include PRS and/or conventional risk factors. Potential
utility of PRSs in cancer risk prediction, screening, and
precision prevention are illustrated. Challenges and prac-
tical considerations relevant to the implementation of PRSs
in health care settings are discussed.

Keywords: cancer screening; genome-wide association
study (GWAS); polygenic risk score (PRS); precision pre-
vention; risk prediction model.

Introduction

Cancer ranks as a leading cause of death and a most
important barrier to increasing life expectancy in the
world [1]. There were an estimated 19.3 million cases and
10 million cancer deaths worldwide in 2020 [2]. Conse-
quently, the development of public health strategies for
cancer prevention is critically important. Using risk pre-
diction models to estimate the probability or risk of
developing cancer for an individual can help make clinical
decisions about whether the individual warrants an inter-
vention, such as early detection and prevention of the
cancer [3, 4]. Moreover, when communicated and under-
stood properly, it can be used to guide at-risk individuals
on personal health management by adopting healthier
lifestyle or behavior [4].

Classical risk prediction models for common cancers
often incorporate basic demographic characteristics (e.g.,
age and sex), lifestyle factors or environmental exposures
(e.g., smoking status, alcohol consumption, body mass
index), clinical risk factors (e.g., medication history,
laboratory-based biomarkers, and imaging features),
inherited mutations leading to a moderate-to-high risk of
cancer (e.g., BRCA1/BRCA2 for breast and ovarian cancer),
and family history [5–7]. Most of them do not include
risk associated with common susceptibility variants.
As genetic susceptibility variants are the earliest measur-
able contributor to the heritable risk of common cancers,
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genetic profiling could be considered useful for improving
the assessment and management of cancer risk [3, 4, 8].

Indeed, large-scale genome-wide association studies
(GWASs) have identified hundreds of single-nucleotide
polymorphisms (SNPs) associated with susceptibility to
common cancers [9]. For any given cancer, single genetic
variant exhibits only modest effect on the disease risk.
However, the impact of their cumulative effect across the
genome is considerable for many cancers [10–14]. Poly-
genic risk scores (PRSs)measuring this cumulative effect of
genetic risk have recently been shown to be consistently
associated with cancer risk and are capable of identifying a
larger fraction of the populationwith risk equivalent to rare
monogenic mutations, leading to an increased interest in
understanding the potential clinical and public health
utility of polygenic risk prediction that might further refine
the assessment of cancer risk, thereby improving cancer
prevention and early detection [15, 16].

In this review, we begin with an overview of the major
discoveries from cancer GWASs. We then describe meth-
odologies of leveraging genetic risk factors for PRS con-
struction and review the steps for the development and
evaluation of risk prediction models that include PRS and/
or conventional risk factors.We also illustrate the potential
utility of PRS in cancer risk prediction, screening, and
precision prevention. Some of the challenges and practical
considerations relevant to the implementation of PRSs in
clinical or public health settings are discussed.

Genetic inheritance of cancer

Epidemiological studies provide strong evidence that
inherited genetic factors play an important role in the
etiology of cancer [17–19]. Almost all common cancers
show somedegree of familial aggregation, with first-degree
relatives of patients having two- to four-fold increased risk
for developing the same cancer [20]. Indeed, family-based
linkage studies have identified many rare high-penetrant
mutations in cancer susceptibility genes (CSGs), including
BRCA1 and BRCA2 for breast and ovarian cancers [21, 22],
APC and AXIN2 for colorectal cancer (CRC) [23–27], and
EGFR for non-small cell lung cancer [28]. To date, more
than a hundred CSGs with high-penetrant mutations (at
least 5% of mutation carriers develop cancer) that confer
greater than two-fold relative risks of cancer have been
identified [29].

Although family-based linkage studies have been
successful inmapping genes associated with susceptibility

to many cancers, the findings of this approach are mainly
limited to genes with highly penetrant variations [30].
These variations are rare in the population and they ac-
count for a small fraction of the familial risk of the
respective cancer [31–35]. Together with the observation of
familial cancer patients without highly penetrant varia-
tions in CSGs [36], and the fact that the majority of cancer
cases do not occur in highly affected families, it is believed
that a large fraction of genetic susceptibility to cancer
results from the combined effects of many common genetic
variants with small effect sizes [30]. Genetic-association
studies provide an efficient approach for identifying com-
mon genetic variants that confer modest disease risks [30].
These studies are generally based on the “commondisease,
common variant” hypothesis [37]. Early association studies
usually used candidate gene approach, which tested the
association between genetic variants of genes that may be
involved in carcinogenesis (i.e., candidate genes) and the
cancer itself. However, candidate gene approach is limited
by its reliance on existing knowledge for the biology of
the disease being investigated [30]. Additionally, the
numerous examples of associations that cannot be repli-
cated have also led to skepticism about this approach [38].

The advent of genome-wide association
study

In the past two decades, the completion of the Human
GenomeProject [39], the deposition ofmillions of SNPs into
public databases (e.g., through the International HapMap
Project [40] and the 1000 Genomes Project [41]) [42], and
the rapid developments in high-throughput genotyping
technologies [43] have enabled population-based GWASs
with increasing sample sizes. Through testing hundreds of
thousands to millions of genetic variants across the ge-
nomes of many unrelated individuals, GWAS compare the
frequency of genetic variations in a large sample of cancer
patients and those in matched controls to identify genetic
variants associated with susceptibility to cancer [44].
Genotyping can be performed using genome-wide SNP
arrays combined with imputation or whole-genome
sequencing (WGS) [45].

As GWAS test millions of genetic variants, it is impor-
tant to account for the multiple testing issues to reduce
false-positive associations. The most commonly used
threshold to declare statistical evidence of association in
GWAS is p<5.0 × 10−8. This value corresponds to the Bon-
ferroni correction of 0.05 divided by approximately one
million independent tests [46].
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Cancer risk loci identified by GWAS

GWAS have been very successful in identifying risk loci for
a vast number of common cancers, including lung, breast,
ovarian, prostate, colorectal, gastric, renal, and bladder
cancers. GWAS have also been reported for several hema-
tological malignancies such as chronic lymphocytic leu-
kemia, Hodgkin lymphoma, chronic myeloid leukemia,
and diffuse large B cell lymphoma. Additionally, GWAS
have identified common susceptibility variants for several
pediatric solid cancers, including Wilms tumor and neu-
roblastoma. As of April 2021, more than 2,820 associations
between genetic variants and cancer risk with genome-
wide significance (p<5.0 × 10−8) have been reported
by GWASs (see Supplementary Table 1, Supplementary
Figure 1) [9]. Although, for many of these cancers, the
number and scale of GWAS in Europeans far exceed those
in non-European populations, risk loci specific to other
ethnicities, such as Asian, Hispanic, and African Amer-
ican, have also been identified [9]. Performing GWAS in
diverse populations can reveal novel ancestry-specific loci
associated with cancer susceptibility [47].

Data from GWASs demonstrated that, for almost all
cancers that have been investigated, the genetic un-
derpinnings are highly polygenic, with SNPs in many
genes contributing to the heritable risk in the population.
Most of the cancer susceptibility loci identified to date are
associated with modest increases in risk, with per allele
odds ratios (ORs) generally less than 1.5, which means
that the average proportion of variance explained by each
variant is small [44]. However, as the susceptibility loci
identified by GWAS have to pass a very stringent
threshold of statistical significance, there are likely many
more SNPs (e.g., with weaker effect sizes and/or with
smaller allele frequencies) that do not meet this
criteria but still contribute to the heritable risk of a given
cancer [44]. Quantifying the heritability explained by
both known and potential susceptibility SNPs is therefore
informative with respective to the genetic architecture of
cancers.

Heritability explained in a population

Heritability refers to the proportion of phenotypic variation
in a population that is attributed to genetic factors. In
particular, narrow-sense heritability is the proportion of
phenotypic variation due to additive genetic factors,
whereas broad-sense heritability is the phenotypic varia-
tion due to all genetic factors (e.g., dominance and

epistasis) [48]. Historically, family-based studies have long
been used to estimate the heritability of cancer [18].

GWASs have facilitated estimation of howmuch of the
total phenotypic variation in a population that is due to
additive genetic factors tagged by genotyped and imputed
SNPs. This quantification of “SNP heritability” can provide
general insights into the genetic architecture of cancers.
Statistical modeling of heritability is an active area of
method development and is beyond the scope of this re-
view; we refer readers to the emerging literatures [49–53].
Popular methods such as genome-wide complex trait
analysis (GCTA) [54] have recently been used to analyze
GWAS data and have shown that common genetic varia-
tions explain a substantial fraction of the heritable risk for
many cancers, with estimates of 10% for breast cancer, 11%
for prostate cancer, 15% for lung cancer, 20% for gastric
cancer, and 16% for CRC in Chinese populations [55].
Heritability analysis based on GWASs of European pop-
ulations yielded similar results, with estimates of 10%
for estrogen receptor-negative breast cancer [56], 38% for
prostate cancer [56], 21% for lung cancer [56], 25% for
gastric cancer [56], and 17% for CRC [57]. The available
evidence suggests that a considerable fraction of the heri-
table risk for many cancers is mediated by numerous
common genetic variants distributed throughout the
genome, most of which can be captured by genome-wide
genotyping and/or imputation.

Application of GWAS findings in human
genome epidemiology

An important objective of cancer genetics is to translate
research findings into clinical and public health practice.
Despite the immense amount of time required [58],
emerging evidence highlights diverse areas that GWAS
findings can have clinical applications, including (but not
limited to) predicting risk of cancer, facilitating disease
classification and subtyping, informing drug development
and drug toxicity, guiding clinicians on cancer prognosis,
and treatment-related complications [44, 45]. This review
mainly focuses on the application of GWAS findings to
cancer risk prediction and precision prevention. Although
most of the genetic variants identified by GWAS have small
effects on cancer risk and each individual variant is inca-
pable of effectively predicting disease risk, their combined
effect, in the form of PRS, has the potential to identify a
substantial fraction of the population who are at high risk
of a certain cancer, thereby improving health outcomes
through early detection, prevention, or treatment [45].
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Polygenic risk scores

Information from large-scale GWAS provides us with an
opportunity to develop risk prediction models that incor-
porate risk SNPs. With accurate risk prediction models, we
can better advise individuals on appropriate screening and
prevention. A commonly used approach towards this aim is
the development of PRS, which provides a quantitative
measure of the genetic risk burden of the disease over a set
of genetic variants. PRS has shown the potential to improve
the efficiency of existing cancer screening programs [4, 44].
The use of PRS can also help stratify individuals into
groups with significantly different risks of cancer to inform
strategies to prevent or delay the onset of cancer (e.g.,
chemoprevention and lifestyle modifications) [3, 4]. In this
section, we begin with an overview of current methodolo-
gies for PRS construction, followed by steps for the devel-
opment and evaluation of risk prediction models that
include PRS and/or conventional risk factors (Figure 1,
Table 1).

Calculation of PRS

PRS is calculated by summing the risk alleles corre-
sponding to a phenotype of interest for each individual,
weighted by the effect size estimate from an independent
GWAS on the phenotype [3]. Determining which SNPs to
include (“SNP selection”) and the disease-associated
weights to assign to the selected SNPs (“weight calcula-
tion”) are two critical methodological aspects of PRS
construction. Imprecision in any of these aspects can lead
to a decrease in prediction accuracy [3, 59].

SNP selection

SNP selection is critical because they constitute the
building blocks of PRS. GWAS for most of the common
cancers provide direct evidence of polygenic suscepti-
bility [44], which means that the heritable risk could be
mediated by numerous common genetic variants each
with small effects. Under such polygenic architecture,
selecting the true set of susceptibility variants for PRS
construction is particularly challenging [3]. The simplest
and most commonly used approach is to select SNPs
based on the predefined criteria (e.g., those passing a p-
value threshold in a given GWAS), and then weight the
SNPs according to the corresponding estimated regres-
sion coefficients (e.g., log OR parameters from logistic

regression model). Many studies have investigated the
risk prediction ability of the PRS that is constructed from
independent SNPs reaching genome-wide significant
threshold [60–62]. These studies, however, may omit a
vast amount of true susceptibility SNPs with smaller ef-
fect sizes [3, 59]. The predictive power of PRS may be
improved by including additional SNPs that are below
the genome-wide significant threshold. This allows the
inclusion of signals from more susceptibility SNPs with
smaller effects at the cost of adding noise from false-
positive associations [3, 59]. Practically, the optimal
threshold can be determined based on the performance of
the PRS in an independent study population, or using
cross-validation techniques [3].

Another challenge for SNP selection is the presence of
linkage disequilibrium (LD). In the presence of LD, both
disease susceptibility SNPs and their correlated neighbors
can satisfy the p-value threshold criteria for selection.
Inclusion of SNPs in LD would decrease the predictive
accuracy of PRS [63]. This problem can be addressed by the
“clumping/pruning and thresholding” approach, which is
implemented in two popular software packages, namely
PLINK and PRSice [64, 65]. The clumping step sorts SNPs
based on the strength of association statistics, and removes
the SNPs that are correlated with the strongest signal within
LD blocks. The thresholding step eliminates SNPs with
association p-values larger than a predefined threshold.
Typically, a stringent LD threshold (e.g., r2<0.05) is needed
in the clumping step to eliminate redundant effects caused
by correlated SNPs [3]. However, stringent LD pruning can
also exclude susceptibility variants that are in LD but
contain independent association signals, thereby reducing
the predictive accuracy of PRS.

Stepwise regression, which is usually implemented
after the inclusion of a set of variants that satisfied a pre-
defined p-value threshold, can also be used for SNP
selection [16, 66]. Stepwise regression retains SNPs in a
semi-automated manner by successively adding or
removing variants based solely on the test statistics of their
estimated coefficients. This approach has the disadvantage
of ignoring prior knowledge of LD structure [59].

Weight calculation

Another critical aspect for PRS construction is the calcu-
lation of SNP weights. The commonly used weight for each
SNP is the log OR derived from an independent GWAS. An
extension of this approach is polygenic hazard score (PHS),
which is also calculated as a weighted sum of risk alleles
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but in this case the weight for each variant is its log haz-
ard ratio (HR) estimated from survival models [66–69].
Recently, a variety of Bayesian methods and Frequentist
approaches have been proposed to optimize PRS perfor-
mance by adjusting SNP weights [59].

LDpred uses Bayesian framework to adjust SNP
weights from GWAS summary statistics by assuming a
prior for the genetic architecture and using LD information
from an external reference panel [70]. When applied to
simulation data, LDpred outperforms the traditional

Figure 1: Development and validation of polygenic risk prediction models. The recommended steps for PRS construction, risk model
development and validation are displayed. During PRS construction, genetic variants associated with an outcome of interest in a GWAS
dataset are combined as a weighted sum of risk allele counts. Commonly used methods for “SNP selection” and “SNP-weight calculation”
during the PRS construction procedure are shown. Performance of PRSs are evaluated in the training sample to select the optimal PRS. This
optimal PRS is then added to a risk predictionmodel andmay be combinedwith demographics (e.g., age, sex, and ancestry) and conventional
risk factors (e.g., lifestyle factors or environmental exposures, clinical risk factors, inherited mutations leading to a moderate-to-high risk of
cancer, and family history) to predict the outcome of interest. After model building procedure to select the best risk prediction model, this
model is validated in an independent sample. For the evaluation of risk prediction model, the distribution of the PRS, the proportion of
variance explained (R2) and effect size estimates (e.g., ORs, HRs) of the PRS and/or risk models should be described. Performance of the risk
prediction model in terms of discrimination, calibration, risk stratification, and NRI should also be assessed. Results from risk model
evaluation should be reported for both the training and validation samples for comparison. PRS, polygenic risk score; GWAS, genome-wide
association study; OR, odds ratio; HR, hazard ratio; R2, the proportion of variance explained; AUC, area under the receiver operating
characteristic curve; NRI, net reclassification index.
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approach of “clumping/pruning and thresholding”,
particularly at large sample sizes [70]. AnnoPred improved
LDpred by leveraging various types of genomic and epi-
genomic functional annotations to up-weight SNPs with
higher likelihood of functionality [71]. Compared with
LDpred, AnnoPred achieved higher prediction accuracy
and better risk stratification ability [71].

Frequentist approaches, including linear mixedmodel
(LMM) and penalized regression, have been utilized for
PRS calculation [59]. Genetic Risk Scores Inference (GeRSI)
is a method that utilizes LMM for PRS calculation. It in-
cludes SNPs below a certain p-value threshold as fixed
effects and treats the rest of the SNPs as random effects
within the framework of the widely used liability-threshold
model [72]. The use of random effects in GeRSI is most
beneficial for diseases that are known to be highly poly-
genic [72]. Lassosum is an example that estimates SNP
effects using summary statistics and LD information from a

reference panel in a penalized regression framework.
Despite the need for parameter tuning, it has been shown to
be computationally efficient and more accurate than the
“clumping/pruning and thresholding” approach and
LDpred [73].

LMM and Bayesian method make very different as-
sumptions about the distribution of genetic effects and are
expected to perform well in different situations. However,
for a given disease, we typically do not know which as-
sumptions will be more accurate. Motivated by this, hybrid
methods such as SBayesR and PRS-CS were developed that
combine the LMM and Bayesian method [74–77]. SBayesR
performs Bayesian posterior inference of SNP weights
through the combination of a likelihood that connects the
multiple regression coefficients with summary statistics
from GWAS and a finite mixture of normal distributions
prior on the marker effects [75]. PRS-CS utilizes a high-
dimensional Bayesian regression framework to infer

Table : Recommended steps for evaluating the performance of polygenic risk prediction models.

Recommended steps Description

PRS distribution Distribution of the PRS (e.g., histogram or density plot of PRS distribution, mean, median, standard deviation,
IQR, range, etc.).

Predictive ability Proportion of variance explained (R) and effect size estimates (e.g., ORs or hazards ratios from regression
models) used to evaluate the PRS and/or risk models.

Discrimination Discrimination is a measure of how well the risk prediction model can separate those who will develop the
disease in the future and those who will not. The discrimination ability is commonly quantified by AUC or the
c-statistic. The AUC (or c-statistic) ranges from % to %. The greater the AUC (or c-statistic), the better the
risk discriminatory ability of the model.

Calibration Calibration reflects the ability of a risk prediction model to correctly estimate the risk for subjects with different
risk factor profiles in the underlying population. Calibration of a risk prediction model can be evaluated through
graphical representation of the relationship between predicted and observed risk, or by using statistical tests
(e.g., the Hosmer–Lemeshow test).

Risk stratification Risk stratification refers to the ability of the risk prediction model to separate the subjects into categories with
sufficient distinct degrees of absolute risk to drive clinical or personal decisions. The risk stratification ability of a
model can be quantified by (i) the proportions of individuals who are allocated into clinically relevant risk
categories; and (ii) the proportion of patients who will develop a disease in the future that may be identified as
being at high risk.

NRI The NRI is commonly used to quantify whether new risk factors provides clinically relevant improvements in risk
prediction. The widely recommendedmethod is to calculate the category-based NRI, with the formulas shown as
follows:
Event NRI= P (up|event) − P (down|event) = (number of persons with the event classified up − number of persons
with the event classified down)/total number of persons with the event
(The net percentage of personswith the event correctly reclassified upward. It can be interpreted as a percentage
with a range from − to %.)
Nonevent NRI = P (down|nonevent) − P (up|nonevent) = (number of persons without the event classified
down − number of persons without the event classified up)/total number of persons without the event
(The net percentage of persons without the event correctly reclassified downward. It can be interpreted as a
percentage with a range from − to %.)
Overall NRI = event NRI + nonevent NRI
(The sum of the net percentages of correctly reclassified persons with and without the event of interest. This
statistic does not represent a percentage. Overall NRI can range from − to .)

PRS, polygenic risk score; IQR, interquartile range; ORs, odds ratios; NRI, net reclassification index; AUC, area under the curve.
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posterior effect sizes of SNPs and places the continuous
shrinkage (CS) priors on SNP effect sizes, which can
accommodate varying genetic architectures, provide sub-
stantial computational advantages, and enables multi-
variate modeling of local LD patterns [74]. When applied to
predict common complex diseases, both of SBayesR and
PRS-CS achieved improvement in prediction accuracy over
LDpred and “clumping/pruning and thresholding”
approach [74, 75].

In summary, development of optimal PRSs based on
given GWAS data requires careful consideration of the
threshold for SNP selection,weight assignment for selected
SNPs, LD, and external knowledge (e.g., functional anno-
tation and pleiotropic information). Practically, the
optimal threshold, parameter, and statistical method that
will be used for the construction of PRS can be determined
based on the performance of the PRS in the study sample,
or by using cross-validation techniques.

Development of polygenic risk prediction
models

Once the optimal PRS has been built, the next step is to
develop a risk prediction model that incorporates the joint
effects of the PRS and other established risk factors for a
given cancer, including (but not limited to) lifestyle fac-
tors, environmental exposures, clinical characteristics,
family history, and pathogenic mutations. Since estab-
lished risk factors have substantial impact on cancer risk,
and, more importantly, some of them can be potentially
modifiable through lifestyle modifications or preventive
interventions, the clinical utility of PRS should be fully
evaluated along with non-genetic risk factors.

Detailed methodologies and considerations for the
development of risk prediction models have been fully
described in an in-depth review by Chatterjee N. et al. [3].
Briefly, common types of models include logistic regres-
sion model for case-control study and Cox proportional
hazards model for cohort study. The development of
models for the joint effect of PRS and other established
risk factors requires characterization of the risk associ-
ated with individual risk factor, exploration of possible
interactions between these factors, and assessment of the
goodness-of-fit of the selected models. When amodel has
been built, it is important to produce absolute risk of
developing the cancer for each individual [3].

Development of models for absolute risk involves
the incorporation of data from various sources, including

(but not limited to) epidemiological case-control and
cohort studies, population-based disease and death reg-
istries, and national health surveys [3]. Fortunately, the
establishment of large-scale cohorts and biobanks with
deep phenotypes, such as the China Kadoorie Biobank
(CKB), UK Biobank, All of Us Research Program, Biobank
Japan, and Nordic efforts (e.g., in Danish, Estonian,
Finnish, and other integrated biobanks), has largely facil-
itated the development of polygenic risk prediction
models.

After the model development procedure to select the
best risk prediction model, this model need to be validated
in a representative sample (the validation sample) that is
independent of the study population contributing to the
model development procedure (the training sample)
(Figure 1). Results from risk model evaluation should be
reported for both the training sample and the validation
sample for comparison [78, 79]. Ideally, prospective cohort
studies are needed. Nested case-control studies, in which
the cases emerge from a well-defined cohort and the con-
trols are sampled from that same population, can also be
used for the development and validation of risk prediction
model [3, 80].

Evaluation of polygenic risk prediction
models

The utility of a risk prediction model is often evaluated by
determining whether this model, which usually in-
corporates the joint effects of PRS and other risk factors for
a disease, accurately stratifies the population into cate-
gories with sufficient distinct degrees of absolute risk to
guide clinical or personal decision-making, such as pre-
ventive interventions or disease screening for populations
at high risk. For binary diseases, it is conventional to report
the distribution of the PRS, as well as the proportion of
variance explained (R2) and effect size estimates (e.g., odds
ratios or hazards ratios from regression models) of the PRS
and/or risk models [78, 79]. Subsequent steps for evalua-
tion of a risk predictionmodel include judging howwell the
model differentiates those who will develop the disease in
the future from those who will not (discrimination), and
how similar the predicted risk is to the observed risk for
individuals indifferent risk strata orwithdifferent risk factor
profiles in the underlying population (calibration) [81].
Then the utility of a risk predictionmodel should further be
evaluated for its risk stratification capacity, such as the
proportions in which the population is stratified into

Wang et al.: Polygenic risk score and cancer prevention 135



clinically relevant risk categories [82]. It is also important to
keep models up to date when new information about
risk factors and incidence rates of disease becomes avail-
able [3]. The added value of new risk factors incorporated
into a model has been increasingly common to be assessed
by net reclassification index (NRI) [81]. Recommended
steps for evaluating the performance of polygenic risk
prediction models are summarized in Table 1.

Discrimination

Discrimination is a measure of how well the model can
separate those who will develop the disease in the future
and those who will not, which is of most interest when the
primary purpose is the separation of diseased from non-
diseased individuals, such as in diagnostic or screening
testing [83]. The discrimination ability of a risk prediction
model is commonly quantified by calculating the area
under the receiver operating characteristic (ROC) curve or
the concordance-statistic (c-statistic), which is defined as
the probability that the predicted risk is higher for a
randomly selected individual with a disease than a
randomly selected individual without the disease [84]. The
area under the receiver operating characteristic curve
(AUC), or c-statistic, ranges from 50% to 100%. The greater
the AUC, the better the risk discriminatory ability of the
model. An AUC of 100% corresponds to perfect discrimi-
nation, which will be achieved if the predicted risks or
scores for patients with a disease are always higher
compared with those without the disease [3, 81, 83, 85].
There are several scales for the interpretation of AUC or
c-statistic. A generally accepted scale suggests that an AUC
or c-statistic of less than 0.60 means poor discrimination;
0.60–0.75 means possibly helpful discrimination; and
above 0.75 means clearly useful discrimination [81].

Although discrimination is an important characteristic
in the evaluation of model performance, sole reliance on
the ROC curves would seem inappropriate. ROC curves
provides no information regarding the accuracy of the
absolute risks that the model predicts [82]. Sometimes, a
risk prediction model can have a high AUC or c-statistic,
but still providemisleading absolute risks [86]. In addition,
the ROC curve and the c-statistic can be insensitive to
important changes in absolute risk estimates [87]. For
instance, the addition of a new risk factor may contribute
important prediction power to a model that is clinically
meaningful. However, the AUC may not increase sub-
stantially, particularly in circumstances where the initial
AUC is already high [87]. Therefore, discrimination ability

should be used in combination with other measures to
evaluate the performance of risk prediction models.

Calibration

Calibration is often considered as the most important
property of a risk prediction model, particularly in those
used to estimate population disease burden and to plan
population-based interventions. Calibration reflects the
ability of a model to correctly estimate the risk for subjects
with different risk factor profiles in the underlying popu-
lation (i.e., if model-predicted risk of a disease agrees with
the observed risk) [81, 82]. Subjects can be classified into
strata based on their predicted risks or combinations of
predictors. Then calibration can be assessed by comparing
predicted and observed risk within these different
strata [88]. Graphical representation of the relationship
between predicted and observed risk is the best way to
evaluate model calibration [81]. An alternative is to use
statistical tests to determine whether the difference be-
tween the predicted and the observed risk of disease can be
explained by chance. The Hosmer–Lemeshow test is a
commonly used statistical test of model calibration. A sta-
tistically significant result (e.g., p-value <0.05) suggests that
the difference between observed and predicted risks cannot
be explained by chance, implying poor calibration [82].
However, there are limitations with the Hosmer–Lemeshow
test. A statistically significant result providesno indication of
the magnitude of the difference or whether it varies among
individuals with low vs. high risk. The Hosmer–Lemeshow
test may also be confounded by sample size. When the
sample size is large, a clinically trivial difference could lead
to a statistically significant result [81].

As risk prediction is likely to bemost clinically relevant
for individuals at extremely high or low risk, evaluating the
adequacy of models at extreme level of risk requires
particular attention for clinical application [89]. Some-
times, calibration can be good in some individuals, but not
as good in others. For instance, a model can be accurate at
estimating risk for individuals in the 0–20% of the risk
score distribution, but overestimates risks in individuals
with higher risk score. Consequences of such poor cali-
bration among individuals at higher risk depend on the
thresholds of clinically relevant risk categories: if the
threshold for clinical intervention is below 20%, for
example, this model would still have clinically utility
because overestimation among individuals with risk
greater than 20% would be irrelevant [81, 90].
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Risk stratification

Having established that a model is well-calibrated in the
underlying population, it needs to be further assessed for
its utility in clinical or public health applications. As noted
earlier, the utility of a risk prediction model generally de-
pends on its risk stratification ability to divide the popu-
lation into distinct categories of absolute risk on which
clinical or personal decision-making can be based [3, 4, 82].
The risk stratification ability of a model depends on how
much variation in estimated risk it can provide in an un-
derlying population. Consider, for example, a model that
includes age as the only predictor for lung cancer risk. The
risk of a person at a given age may be estimated by the
average risk of lung cancer for the whole population at his
age, potentially using data from population-based regis-
tries. As more risk factors are identified (e.g., smoking and
genetic risk factors) and included in the model, estimated
risks will be more variable between individuals and a
larger proportion of individuals could be stratified into
more extreme risk categories [3, 82], so that individuals at
high risk can be offered targeted screening and in-
terventions to address their risks of developing the cancer,
and individuals at low risk can avoid unnecessary
screening and interventions.

The risk stratification capacity of a model can be quan-
tified by the proportions of individuals who are allocated
into clinically relevant risk categories. For screening or other
interventions targeted to the high risk population, we may
also evaluate the proportion of patients who will develop a
disease in the future that may be identified as being at high
risk [91, 92].An idealmodelwouldbe capable of identifying a
small fraction of the whole population that will give rise to
the majority of future diseases. However, as a substantial
proportion of future diseases can still arise outside the
groups identified as exceeding a certain risk threshold, the
more realistic goal is to identify a subset of individuals at
elevated risk of disease [93]. The absolute risk thresholds to
determine how individuals should be assigned to distinct
risk categories will depend on the benefits and harms of an
intervention strategy in the underlying population [3]. The
medical community has already defined the recommended
risk threshold that justifies certain medical interventions for
several cancers: the more risky the intervention, the higher
the level of absolute risk threshold [4].

Net reclassification index

The NRI is commonly used to quantify whether new risk
factors provide clinically relevant improvements in risk

prediction. Net reclassification involves classifying in-
dividuals into risk strata and quantifying the degree to
which the new model can provide more accurate classifi-
cation compared with a previous model, that is, shift in-
dividuals who have or will have an event to higher risk
categories and individuals who do not have or will not
have the event to lower risk categories [94, 95]. Several
methods of calculating the NRI have been proposed. The
widely recommended method is to calculate the category-
based NRI, with the formulas shown in Table 1 [81, 96–98].

When clinical guidelines have recommended risk
threshold for a given intervention, such as an initiation of
chemoprevention or screening, it is strongly recommended
that the risk categories be defined using clinically mean-
ingful threshold. As these thresholds are supported by
cost-effectiveness analyses, the NRI captures the change in
a person’s predicted risk that crosses one of such thresh-
olds and thus translates into a meaningful change in
clinical decisions [96].

The overall NRI implicitly weights for the event rate,
with one/event rate and one/(one – event rate) serving as
costs for false-negative results (persons with the event
classified downward) and false-positive results (persons
without the event classified upward), respectively [95, 99].
However, a different weighting of false-positive and false-
negative results is often more clinically appropriate [100].
This can be incorporated in a weighted version of the NRI if
the event NRI and nonevent NRI are presented separately
or when a reclassification table is provided [94, 101]. If the
misclassification of persons with the event leads to more
serious consequences than the misclassification of those
without the event, more weight might be assigned to the
classification of individuals with the event, and less weight
assigned to the classification of individuals without the
event [102].

Polygenic risk scores for cancer risk
prediction

Development and evaluation of PRS is an area of active
research with the potential to improve disease risk
assessment and guide clinical decision-making about
selecting appropriate interventions tomanage disease risk.
In this section, we discuss the research progress in the risk
prediction of common cancers by using PRS, and illustrate
several studies that performed cross-cancer evaluation of
PRS. Since current PRSs are primarily developed and
evaluated in European populations, unless otherwise
stated, study participants are of European ancestries.
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Lung cancer

To date, GWASs have collectively identified 51 suscepti-
bility loci for lung cancer [103, 104]. These GWASs were
conducted in European and Asian populations, which
revealed both shared and population specific genetic eti-
ology of lung cancer. To evaluate the utility of PRS in
identifying high risk populations of lung cancer for
prevention, Dai et al. built a PRS specific for Chinese
populations using a set of 19 SNPs (PRS19) and evaluated its
performance at predicting lung cancer incidence in an in-
dependent prospective cohort of 95,408 individuals
randomly selected from CKB [103]. They reported that in-
dividuals in the top 10% of PRS19 distribution had 1.96-fold
increased risk for developing lung cancer compared with
those in the lowest 10% [103]. When using the top 5%,
5–95%, and bottom 5%of PRS to define high, intermediate,
and low genetic risk populations, consistently separate
curves of lung cancer events were observed in the CKB
cohort during follow-up, with a relative risk of lung cancer
being 137% higher among participants at high genetic risk
than those at low genetic risk [103].

Another study constructed the European ancestry-
based PRS using 128 SNPs (PRS-128) and evaluated the PRS
in an independent cohort from UK Biobank [105]. It was
reported that, in the UK Biobank, individuals in the top
10% of the PRS distribution had 2.39-fold greater risk for
lung cancer comparedwith those in the bottom 10%.When
incorporating the PRS into the PLCOall2014 model [106] for
predicting the risk of lung cancer, an improvement in the
discriminatory ability was observed, with the AUC
increased from 0.828 to 0.832 [105]. An assessment of risk
trajectory showed that PRS distribution can affect when the
individuals reach the absolute risk threshold for the
low-dose computed tomography (LDCT) screening. For
instance, assuming a 1.5% five year risk threshold for the
LDCT screening, individuals who smoked but without
family history reach the threshold at age 61, whereas those
who are at the top 1% of PRS distribution would reach the
threshold at age 53. Among those who smoked and with
positive family history of lung cancer, the average age to
reach the 1.5% five year risk threshold would be 56, but
those who are at top 5% of PRS distribution would reach
the threshold at age 52 [105, 107].

Current studies for lung cancer demonstrated the
ability of PRS in optimizing the definition of high risk
populations beyond smoking and other known risk factors,
which has potential utility in informing the optimal lung
cancer LDCT screening strategy. Further refinement of the
algorithm for PRS construction is needed as studies with

larger sample sizes are continuing to discover novel sus-
ceptibility loci and other risk factors for lung cancer.

Breast cancer

In the field of breast cancer, large-scale studies and
reproducible methods have facilitated the development
and validation of polygenic risk prediction models in
European populations. Studies that examined the effect of
PRS have consistently reported positive associations be-
tween PRS and breast cancer risk [16, 108–114]. Although
several PRSs have been developed, one of the current best
performing PRS incorporates information from 313 SNPs
(PRS313) [16]: compared with women in the middle quintile
(40th–60th percentile at population average risk), those in
the highest 1% of the PRS313 distribution had approxi-
mately four-fold greater risk for breast cancer [16]. PRS313
had moderate discriminatory ability (AUC=0.630, 95%
confidence interval: 0.628–0.651) and was well-calibrated,
which predicts breast cancer risk accurately in the tails of
the distribution. The estimated lifetime absolute risk for
breast cancer by age 80 years ranged from approximately
2.5% for women in the lowest centile of the PRS313 to 32.6%
for those in the highest centile [16]. Recent studies have
used new statistical methods, such as LDpred and PRS-CS,
for the development of PRS with the goal of improving risk
prediction [109, 115]. Nevertheless, further research is
needed to evaluate the performance of these PRSs and to
determine the optimal PRS for breast cancer.

The risks conferred by PRS differ between breast cancer
subtypes, with risk stratification of ER-positive disease being
more effective than ER-negative disease [16, 116–120]. For
example, the estimated lifetime absolute risk by age 80 years
ranged from 2% for women in the lowest centile of the PRS313
distribution to 31% for those in the highest centile for
ER-positive disease, while the absolute risks ranged from
0.55% to 4% for ER-negative disease [16]. As findings from
GWASs highlight heterogeneity across breast cancer sub-
types [10, 121], it is necessary to build subtype-specific PRS to
improve its prediction accuracy [16].

Several studies have shown a potential role of PRS in
refining risk estimates for carriers of high-to-moderate
penetrant mutations in breast cancer risk genes, with the
PRS predicting substantial absolute risk differences for
women at extremes of PRS distribution [122–125]. The effect
of PRS on breast cancer risk is, to some extent, independent
of family history. Although observed risk associated with
PRS was attenuated in women with a family history of
breast cancer, this association was observed for both
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womenwith andwithout a family history [16, 114, 126–129].
PRSs have also been shown to be independent of other
established risk factors for breast cancer, including
mammographic density [111], lifestyle behaviors (diet,
physical activity, smoking, alcohol consumption, BMI,
waist circumference) [108, 117, 130], reproductive factors
(age at menarche, parity, number of children, age at first
full-term pregnancy, and breastfeeding) [108, 117], and
exogenous hormonal factors (use of oral contraceptives
and use of postmenopausal hormone replacement
therapy) [108, 117]. Thesefindings suggest that the PRSs are
needed to be considered along with pathogenic mutations,
family history, and other established risk factors to build
an optimal risk prediction model for breast cancer.

Researchers have recently incorporated the PRS into
existing risk prediction models for breast cancer, such as
the Breast Cancer Risk Assessment Tool (BCRAT, also
known as the Gail model) [119, 131–134], Breast and
Ovarian Analysis of Disease Incidence and Carrier Esti-
mation Algorithm (BOADICEA) [135, 136], International
Breast Cancer Intervention Study model (IBIS, also
known as the Tyrer–Cuzick model) [111, 116, 118, 119],
BRCAPRO [119], and Breast Cancer Surveillance Con-
sortium (BCSC) [113, 137]. Currently, all studies have re-
ported improved discrimination for predicting breast
cancer when PRS is added to the model. A study in high
risk women found that adding a panel of 88 susceptibility
SNPs (PRS88) to the IBIS model resulted in a substantial
improvement in the predictive power, with the c-statistic
increased from 0.55 to 0.60 [118]. When reweighted to the
original population, the percentage of women with
10 year predicted risk above 8% was 18% for IBIS
model and increased to 21% if recalibrated PRS88 was
added [118]. BOADICEA uses information on family
history, high-to-moderate pathogenic variants in breast
cancer genes, tumor pathology, and basic demographic
factors (such as age and ethnicity) to estimate the future
risks of developing breast or ovarian cancer [138]. Lee
et al. recently extended the BOADICEA model for
breast cancer (BOADICEA v5 model) to incorporate the
PRS313 [16], mammographic density, and other risk
factors [136]. They demonstrated that the PRS313 provides
greater level of risk stratification in the population than
epidemiological risk factors alone, and that the greatest
breast cancer risk stratification is achieved by using the
combined effects of PRS313 and epidemiological risk
factors in the BOADICEA v5 model [136]. Lakeman et al.
further validated this model in a Dutch population: the
best discrimination was achieved again when PRS313 and
epidemiological risk factors were considered jointly, with
the largest contribution deriving from the PRS313 [135].

These findings highlight the potential of PRSs for
improving discrimination ability of current breast can-
cer risk prediction models, although even the best
models described to date leave room for continued
improvement [139]. It should be noted that several
studies reported calibration issues in polygenic risk
prediction models [118, 135]. For example, when applied
to a Dutch population, the BOADICEA v5 model for breast
cancer underestimated the observed risks, especially in
the higher categories of risk [118, 135]. Therefore, appli-
cation to target population would require recalibration of
the model for accurate risk assessment.

Colorectal cancer

CRC is the thirdmost commoncancer and the second leading
cause of cancer-related death worldwide [2], yet it is more
suitable for screening and prevention than any other ma-
lignancy because CRC screening is effective for detecting
cancer at an earlier stage and for reducing cancer risk by
removing premalignant lesions [140]. PRSs that aggregate
the increasing number of known genetic susceptibility vari-
ants identified by GWASs have been developed and evalu-
ated for the prediction of CRC risk to inform screening and
other prevention strategies [12, 57, 60, 141–147]. The
discriminatory ability has been improved as more suscepti-
bility variants are included. Currently, one of the best per-
forming model is an LDpred-derived PRS including nearly
1.2 million genetic variants (AUC=0.654) [60]. Individuals in
the top 1% of this LDpred-derived PRS distribution had
2.68-fold increased CRC risk compared with the remaining
99% of the individuals [60].

Associations between PRSs and CRC risk has been
shown to be independent of lifestyle factors [148–151] and
colonoscopy status [146, 147]. A combination of these fac-
tors allows for tailored recommendation for the starting
age of screening [60, 141, 147]. For example, to inform the
optimal age to begin screening, Jeon et al. developed a risk
prediction model based on family history, 19 lifestyle and
environmental factors (E-score), aswell as 63 susceptibility
SNPs of CRC (G-score) [141]. Risk assessment based on this
model may help to personalize the age of the onset of
screening: in individuals with no family history of CRC, the
starting ages calculated based on combined E-score and
G-score differed by 12 years for men and 14 for women, for
individuals with the highest vs. the lowest 10%of risk [141].
In addition to informing the starting age of screening, PRS
can also help to determine the length of screening interval
after negative findings from colonoscopies [145]. For
instance, Guo et al. evaluated CRC risk based on a 90-SNP
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PRS and time since last negative colonoscopy. Theyutilized
tertiles of PRSs among controls to classify individuals into
low,medium, or high genetic risk. For individualswho had a
negative finding from colonoscopy, a 42–85% lower risk of
CRC was observed within 10 years compared to individuals
without colonoscopy and with low genetic risk. Beyond
10 years after a negative finding from colonoscopy, signifi-
cantly lower risk only persisted for individuals with low and
medium genetic risk, but not for thosewith high genetic risk.
The authors concluded that the recommended 10 year
screening interval for colonoscopy may not need to be
shortened among people with high genetic risk, but could
potentially be prolonged for people with low and medium
genetic risk [145]. Finally, calculation of detailed absolute
risk of CRC, based on PRS and other risk factors, is needed to
facilitate risk communication and to better inform the public
about the potentials and limits of cancer prevention [146].

There is evidence that the PRS risk gradient for CRC
has a negative dependency on age. For instance, Arch-
ambault and colleagues [152] reported that a 95-SNP PRS
was more strongly associated with early-onset than late-
onset CRC. The OR per standard deviation went from 1.75
to 1.44 as age increased from the 40s to 70s and that this
trend was highly significant (p=3.44 × 10−10) [152]. On the
log (OR) scale, these risk gradients are from 0.56 to 0.37,
which is an almost linear decline of approximately 0.06
per decade [152–154]. These observations suggest that the
PRS, along with other risk factors, might identify younger
individuals who would benefit from tailored prevention
strategies. On the other hand, however, using a PRS
with an age-dependent risk gradient would lead to un-
derestimates of the risk at younger ages and over-
estimates at older ages, which could compromise the
calibration and therefore the value of the PRS for guiding
screening [152–154].

Gastric cancer

Gastric cancer remains one of the most common cancers
worldwide, ranking fifth for incidence and fourth for
mortality globally [2]. Incidence rates of gastric cancer are
highest in Eastern Asia; more than 40% of new cases and
deaths of gastric cancer occur in China [155]. Jin et al.,
developed a PRS derived from 112 SNPs for gastric can-
cer and evaluated its utility and effectiveness in an inde-
pendent cohort of Chinese individuals (i.e., the CKB
cohort) [156]. When using the top 20%, 20–80%, and bot-
tom 20% of PRS to define high, intermediate, and low
genetic risk categories, the PRS could identify subjects who
are at a high risk of incident gastric cancer independent of

lifestyle factors in the CKB cohort: individuals with a high
genetic risk had a two-fold increased risk of gastric cancer
compared to those with a low genetic risk. Among in-
dividuals with a high genetic risk, those with a favorable
lifestyle had a 47% lower risk of gastric cancer compared
with those with an unfavorable lifestyle, with the 10 year
absolute risk reduced from 1.62% to 0.49%. The 112
SNP-based PRS appears to be a practical and reliable ge-
netic predictor for stratifying the risk of gastric cancer in
Chinese populations. In addition, an increased genetic risk
can be offset by adhering to a healthy lifestyle [156].

Cross-cancer evaluation of PRS

Systematically assessing the added value of genetic infor-
mation and examining how it affects lifetime risk trajec-
tories are important to realize the promise of PRS in cancer
risk assessment [157–160]. A recent study quantified the
added value of integrating cancer-specific PRS with family
history and modifiable risk factors for 16 cancers [160].
Incorporating PRS improves discrimination ability for all 16
cancers examined, but the magnitude of this improvement
varies substantially. The largest increase in the c-indexwas
observed for testicular, thyroid, prostate, breast, and CRCs.
However, modeling the PRS in addition to conventional
risk factors yielded marginal improvements in discrimi-
nation for cancers of the lung, endometrium, bladder, oral
cavity/pharynx, and kidney. These cancers have strong
environmental risk factors, such as smoking, alcohol
consumption, obesity, and human papillomavirus (HPV)
infection. The improvement in discrimination ability also
translated into a refinement of risk stratification after ac-
counting for conventional risk factors, as illustrated by
more divergent five year risk trajectories. For certain can-
cers, such as melanoma, breast, colorectal, and pancreatic
cancers, PRS was the primary determinant of risk stratifi-
cation. For others, such as lung and bladder cancers,
modifiable risk factors had a stronger impact on five year
risk trajectories [160].

Another important question remains about how far we
can improve the predictive performance using genome-
wide genetic data. To this end, Zhang et al. showed that the
theoretical maximal AUC with the best achievable PRS,
based on genome-wide data of common variants, varies
from 64% (endometrial and ovarian cancer) to 88%
(testicular cancer) and in the range of 70–80% for most
cancers [161]. The theoretical maximal relative risk for
subjects at the 99th risk percentile of the best achievable
PRS, compared to average risk, ranges from 12 for testicular
to 2.5 for ovarian cancer. Across cancer types, PRSs show
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varying levels of risk stratification. For common cancers,
such as breast, colorectal, and prostate, a PRS with even
modest discriminatory power can provide substantial risk
stratification in the population. In contrast, for testicular
cancer, even though its PRS could yield a higher AUC (e.g.,
in the range 80–90%), the degree of risk stratification will
bemodest because of the low incidence of this cancer [161].

Taken together, incorporating PRS with established
risk factors can improve risk prediction for common can-
cers. The prediction power could be further improved by
refining prediction models, using larger number of genetic
variants, or larger sample sizes. Current GWAS-based PRS
does not include rare variants. As DNA sequencing tech-
nologies will facilitate the discovery of cancer-associated
rare variants [162], it can be expected that, in the future,
incorporation of rare variants can further improve the
predictive performance of polygenic prediction models.

The utility of polygenic risk scores
in cancer screening and precision
prevention

Future application of PRS in public health and clinical
practice holds significant promise. In this section, we will
illustrate the utility of PRS in cancer prevention, including
quantitating disease risk in various subpopulations to take
strategies to prevent or delay the onset of disease (primary
prevention), and identifying high risk individuals who are
eligible for cancer screening (secondary prevention). The
clinical utility of PRS depends not only on its risk stratifi-
cation ability but also on the availability of appropriate
risk-reducing interventions as well as the complex inter-
play between disease-specific and intervention-specific
risks and benefits [3, 4, 8].

Cancer screening

PRS has the potential to identify a larger fraction of the
population who might benefit from the population-based
screening programs for the early detection of cancer. Most
recently, one study of CRC evaluated the risk stratification
ability of an LDpred-derived PRS including nearly
1.2 million genetic variants [60]. This PRS was able to
identify the top 30% of the study population as having risk
for CRC similar to those with an affected first-degree rela-
tive, for whom some guidelines recommend initiation of
screening with colonoscopy at an earlier age. It should be
noted that 89.5% of these individuals who were in the top

30% risk based on the LDpred-derived PRS have no family
history of CRC and would have been classified as average
risk under current screening guidelines, but might benefit
from earlier screening [60].

Findings have also demonstrated the utility of PRS in
tailored recommendation of cancer screening, rather than
simply defining a high risk group that is itself heteroge-
neous. A recent study evaluated the impact of PRS313 on the
starting age of screening for breast cancer [16]. For
instance, women in the United Kingdom will become
eligible to enter the mammographic screening program
when they turn 47 years old. The average 10 year absolute
risk of breast cancer for woman at this age is 2.6% in the
general population. The study found that women in the top
1%of genetic risk, according to the PRS313, would reach this
risk threshold in their early 30s, whereas women in the
bottom 20% of the PRS313 distribution would remain below
this threshold up until age 80 years [16]. Similar results
have been shown in CRC [141], in which a 63-SNP PRS, in
conjunction with lifestyle and environmental factors, can
have a substantial impact on the starting age of colonos-
copy screening. For individuals with no family history, the
recommended age to initiate screening is approximately
12 years earlier for individuals at the top 10% of the risk
score (44 for men and 50 for women) than those at
the bottom 10% of the risk score (56 for men and 64 for
women) [141].

Precision prevention

Individualized management of disease is essential for
precision medicine, with genetic information often used to
facilitate personalized healthcare [163]. The potential util-
ity of PRSs in prioritizing chemoprevention is illustrated by
a recent study relating breast cancer PRSs to the use of risk-
lowering therapies [164]. Randomized controlled trials
(RCTs) evaluating anti-estrogens in primary prevention of
breast cancer have consistently reported a reduced inci-
dence in hormone receptor-positive subtypes of the dis-
ease [165]. Accordingly, the US Preventive Services Task
Force recommend the initiation of risk-reducing medica-
tions (such as tamoxifen, raloxifene, or aromatase in-
hibitors) in asymptomatic women aged ≥35 years at
increased risk for breast cancer and low risk for adverse
medication effects [166]. Although there is no single cutoff
for defining increased risk for all women, those with a five
year absolute risk for breast cancer above 3% are likely to
obtain more benefit than harm from risk-reducing medi-
cations and should be offered preventive medications if
their risk of harms is low [166, 167]. Hurson et al. performed
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risk prediction for breast cancer using a combination of the
PRS313 and classical risk factors. They showed that addition
of the PRS313 resulted in the reclassification of 9.2% of US
women moving from below the 3% five year risk threshold
to above, translating into a stronger recommendation for
risk-reducingmedications [165]. Therefore PRSs are useful,
independent of classical risk factors, for the identification
of individuals at elevated risk who could receive greater
benefit from targeted risk-reducing strategies under cur-
rent clinical guidelines.

Another area where PRS might be useful is for
communicating benefits to individuals regarding targeted
lifestyle interventions. Avoiding certain risk factors (e.g.,
hormone replacement therapy for breast cancer), as well as
adopting healthier lifestyle patterns (e.g., smoking cessa-
tion, alcohol intake reduction, exercise, and maintaining a
healthy weight), can have long-term cancer-preventive ef-
fects [2]. In support of this, Kachuri et al. quantified the
predictive value of integrating cancer-specific PRS with
family history and modifiable risk factors for 16 cancers,
which indicated that individuals at highest levels of genetic
risk may also experience larger decreases in risk from
shifting to a healthier lifestyle [160]. Dai et al. evaluated a
PRS composed of 19 GWAS-identified risk SNPs of lung
cancer in the CKB cohort and showed that heavy smokers
within the highest 5%of genetic risk can offsetmuch of their
risk by not smoking throughout their lifetime, leading to a
reduction of their lung cancer risk by 62% in the study
population [103]. For breast cancer, if healthy lifestyle
choices were employed, those in the top tertile of the PRS313
distribution would have 27% and 32% reductions in their
risk of invasive breast cancer for premenopausal and post-
menopausal women, respectively [130]. Promisingly, when
genetic risk of complex disease is returned to high risk
individuals, potentially positive behavioral changes have
been observed [168]. However, we still lack experience of
how to use PRS to motivate behavior change [169].

Challenges and future perspectives

PRS and environment interaction

Nearly all the common cancers have both genetic and envi-
ronmental risk factors. Identifying polygenic interactions
with environmental factors becomes an attractive research
area. The existence of PRS-environment interactions implies
different effect of the PRS on disease risk in individuals with
different environmental exposures [170]. With a positive
interaction, the effect of high PRS would be amplified in the
presence of an environmental risk factor (or a combination of

environmental risk factors), putting this subgroup of the
population at particularly high risk of disease [169]. These
individuals, identified by PRS and environmental factors,
could form a specific target group for cancer screening or
other prevention strategies [169]. Modeling and testing
PRS-environment interactions are essential for an accurate
estimate of disease risk based on PRS, the environment, and
their joint effect [171].

Numerous studies have assessed the interaction be-
tween PRS and environmental factors, providing mixed ev-
idence of their interactive effect [16, 108, 117, 130, 149–151].
For instance, one study of breast cancer tested the null
hypothesis of multiplicative joint associations for a 77-SNP
PRS and environmental risk factors, reporting evidence of
PRS-environment interactions for alcohol consumption,
adult height and use of menopausal hormone therapy in
ER-positive breast cancer [117]. However, more recently, a
study evaluating the PRS313 for breast cancer reported null
interactions [108].

Most previous studies used themultiplicative model to
evaluate PRS-environment interactions, with additive in-
teractions being rarely assessed. Additive interaction could
provide more intuitive information for disease prevention,
because it can help to identify groups of individuals
who are more likely to benefit from interventions by
directly quantifying the absolute risk reduction [169, 172].
Exploratory studies have reported additive interaction be-
tween polygenic risk and lifestyle factors in breast and
CRC [130, 149, 173]. It should be noted that testing for
PRS-environment interactions may not reach statistical
significance because of insufficient power. Although
model misspecification owing to the omission of in-
teractions is unlikely to have a major impact on discrimi-
natory ability, it can affect the calibration of models [174].
Therefore, goodness-of-fit tests should be performed when
assessing the adequacy of models.

Applicability of PRS across ethnic groups

One of the major challenges surrounding clinical imple-
mentation of PRS is to ensure that they are equally appli-
cable to individuals across ethnic groups to avoid
exacerbating health disparities [175]. Since the majority of
GWAS and imputation reference panels have currently
been in European populations, PRSs are primarily devel-
oped and evaluated in individuals of European descent,
which usually leads to a decrease in predictive accuracy
when applied to non-European ancestries [176, 177]. This
lack of transferability is thought to be attributed to various
reasons: (a) differences in SNP allele frequencies (GWAS
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favor the discovery of genetic variants that are common in
the study population) and LD patterns between ancestries;
(b) confounding due to population stratification in
the GWAS; and (c) differences in the true genetic
architectures of disease, including gene-environment
interactions [175–177].

Studies have begun to assess whether PRS generated
from one ethnic group may be predictive of the same dis-
ease in another. Indeed, for breast cancer, studies assess-
ing European ancestry-based models in women of
Hispanic, African American, and African ancestries found
that they generally had lower discriminatory ability for
breast cancer risk prediction than that reported in Euro-
pean populations [119, 134, 178]. On the other hand, the
European ancestry PRSs have been found to have similar
performance in Latinas [62] andAsians [179]. As such,more
systematic and thorough evaluations for the utility of PRS
in clinical settings across multiple ancestries are still
needed. We must be cautious in the implementation of
PRSs so as not to provide inaccurate information and
exacerbate existing health disparities.

To avoid exacerbating health disparities, promoting
large-scale GWAS in homogenous populations from
understudied ethnic groups to generate ancestry-specific
PRS will be a potential path forward [180]. Substantial in-
vestment will be needed to acquire sufficiently large sam-
ple sizes for PRS to achieve equal performance in other
ethnic groups [47, 175]. Another path toward parity in PRS
accuracy is increasing diversity among study participants
included in genetic research [175]. Key methodological
considerations for GWAS in ethnically diverse populations
have been recently discussed, including the choice be-
tween performing association analysis in single ancestry
groups followed by meta-analysis and performing mixed
model for multi-ancestry groups [181]. Accordingly, novel
computational methods that bring in data from ethnically
diverse populations to build trans-ancestry PRS, such as
MultiPred, are being developed [182–185]. Despite the dif-
ficulties in analyzing genetic data in ethnically diverse
populations, it is scientifically and clinically imperative,
and there are a growing number of analytical methodolo-
gies to do it well [181].

Validation of PRS for its clinical utility

Standardization of any risk stratification tool is essential
for consistent implementation across settings. Currently,
standards and methods to build PRS are constantly
developing. The prediction performance of PRSs for a dis-
ease can vary depending on the number of SNPs included,

the SNP weight estimates based on a certain GWAS dataset

utilized, the specific computational method used for PRS

construction and handling of LD, and the training dataset

used to determine the optimal PRS. Prediction performance

can also vary owing to the covariates, such as age and sex,

adjusted for in the assessment of PRSs. This inconsistency

in the development and evaluation of PRS now becomes a

major challenge during its clinical application. Therefore

analysis guidelines and reporting standards, as well

as additional resources, such as accessible database of

published PRSs and external validation data sets, are

necessary to improve comparability and evaluation of

PRSs [8, 79, 186].
The dramatic decrease in the costs of genetic testing

has increased the feasibility of applying PRSs in many
clinical settings. The clinical utility of PRSs in personalized
prevention, however, needs further validation in large-
scale population-based prospective cohort studies. Ulti-
mately, the impact of PRS on clinical decision-making and
outcomes (e.g., reduction in incidence and mortality for
high risk population and avoidance of over-diagnosis)
must be carefully evaluated in pragmatic clinical trials
(PCTs) and, when possible, RCTs prior to implementation
in clinical settings [187, 188]. Finally, implementation of
PRS into population screening programs also requires
consideration of the social, ethical, and psychological
outcomes. For example, consideration needs to be given to
the acceptance and adoption of new risk-stratification
programs that use genetic information (particularly for
those with a reduced risk), training health professionals in
developing best risk communication tools, and cost-
effectiveness and cost-benefit evaluations of alternative
prevention strategies [114, 187, 189].

Concluding remarks

The past two decades have witnessed the great success of
GWAS that are revolutionizing our understanding of cancer
genetics. Taking advantage of the findings from GWAS
coupled with more assessable and affordable array-based
genotyping technologies, it is right time to develop poly-
genic risk prediction models and to evaluate its utility in
the population level. However, future studies will be
required to further refine PRS methodologies, better inte-
grate both genetic and conventional risk factors of cancer,
and to address other pending challenges surrounding the
implementation of PRS to fully realize the promise of pre-
cision prevention of cancer.
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