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In recent years, myoelectric hands have become multi-degree-of-freedom (DOF) devices, which are controlled via machine
learning methods. However, currently, learning data for myoelectric hands are gathered manually and thus tend to be of low
quality. Moreover, in the case of infants, gathering accurate learning data is nearly impossible because of the difficulty of
communicating with them. Therefore, a method that automatically corrects errors in the learning data is necessary.
Myoelectric hands are wearable robots and thus have volumetric and weight constraints that make it infeasible to store large
amounts of data or apply complex processing methods. Compared with general machine learning methods such as image
processing, those for myoelectric hands have limitations on the data storage, although the amount of data to be processed is
quite large. If we can use this huge amount of processing data to correct the learning data without storing the processing data,
the machine learning performance is expected to improve. We then propose a method for correcting the learning data through
utilisation of the signals acquired during the use of the myoelectric hand. The proposed method is inspired by “survival of the
fittest.” The effectiveness of the method was verified through offline analysis. The method reduced the amount of learning data
and learning time by approximately a factor of 10 while maintaining classification rates. The classification rates improved for
one participant but slightly deteriorated on average among all participants. To solve this problem, verifying the method via
interactive learning will be necessary in the future.

1. Introduction

For the many amputees living worldwide, various technolo-
gies have been developed to support them in their daily lives.
One of these technologies is the myoelectric hand, which is
used to reconstruct the upper limb functions of amputees.
A myoelectric hand functions through the use of biological
signals called electromyograms (EMGs), which occur when
muscles contract. The myoelectric hand measures these sig-
nals to guess the intended hand motion of the wearer and
controls the robot hand based on the intention determined
by the system.

Approximately half a century ago, myoelectric hands
were single-degree-of-freedom (DOF) devices and had sev-
eral limitations to their hand functions. To counteract these
limitations, multi-DOF hands have recently been developed
in a number of countries. For example, the BeBionic [1],
manufactured by RSL Steeper and acquired by Ottobock in

2017, and i-Limb [2], manufactured by Touch Bionics
(which was acquired by Össur in 2016), are well-known
multi-DOF myoelectric hands available in the market today.
With regard to research endeavours, the SmartHand project
[3, 4] funded by the European Commission (EC) aims at
developing an intelligent artificial hand that looks and feels
like a real hand. One of the products of this prominent pro-
ject is the SSSA-MyHand [5]. Meanwhile, our group has
been developing multi-DOF myoelectric hands for several
years now [6–8].

However, despite these advancements, and even with the
commercial availability of multi-DOF myoelectric hands, a
huge gap between myoelectric hands and human biology
remains. It is difficult to duplicate the complex natural func-
tion of a human hand via artificial mechanics. The most
important and biggest problem that needs to be resolved
for multi-DOF robot hands is how to control its multiple
actuators using limited EMG signals.
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Methods of controlling a multi-DOF myoelectric hand
can be divided into three main categories: state transition
control, proportional control, and pattern recognition; any
method can be based on one, or a combination of more than
one, of these categories. The simplest state transition control
is known as threshold control, wherein the hand grasp is
controlled based on the amplitude of the EMG signal. A
more complex form of state transition control, called a
finite-state machine, features several states of hand postures
and switches to these states via a muscle trigger or physical
button. Proportional control is a method that relates the
amplitude of an EMG signal to the hand-grasping angle.
Some researchers combine state transition control and pro-
portional control to control the posture via state transition
and the grasping angle via proportional control. These two
methods are intended mainly for the control of a single-
DOF myoelectric hand. On the other hand, pattern recogni-
tion is intended for use with multiple sensors and therefore
for controlling a multi-DOF myoelectric hand. This method
mainly uses machine learning, constructs a relationship
model between the EMG signals and hand postures, and
performs classifications based on the similarity of the input
EMG signals to the learned posture model. Compared to
the other two methods, pattern recognition can achieve
more hand postures through its use of multiple sensors.
However, this method requires learning, to construct a
model, whenever the myoelectric hand is mounted.

EMG signals are weak and fragile biological signals that
vary depending on the individual, and also on daily condi-
tions, even for the same person [7]. Pattern recognition is
suitable for detecting minor differences in these EMG sig-
nals. Therefore, this method can be used for controlling a
multi-DOF myoelectric hand with dexterity because of the
capability of machine learning methods to learn and adapt
to a given state.

The accuracy of a machine learning method used in pat-
tern recognition depends on the quality of the data used for
learning. The general flow of the control of a myoelectric
hand via pattern recognition is as follows:

(1) The subject wears the myoelectric hand

(2) The subject demonstrates a specific muscle activity,
and the signals are stored with a label for the corre-
sponding posture

(3) Steps 1–2 are repeated for every pattern that needs to
be learned

(4) After all the necessary data are stored, the classifier
learns from these input data

(5) After learning, the classifier is now able to classify
the current muscle activity using learned parameters
and to control the robot hand based on the classifica-
tion result

In step 2, the labels are assigned by either the subject or
an assistant using an external device (e.g., a tablet). However,
unlike in general pattern recognition such as image process-
ing, in the case of a myoelectric hand, we do not know if the

labels on the learning data are correct or not. Mathemati-
cally speaking, the intraclass variance should be small, the
interclass variance should be large, and the boundary data
should be removed. However, because people manually
gather the learning data, they often label very similar muscle
activities with different postures, making classification diffi-
cult. This activity is especially complicated in the case of
infants, with whom it is very difficult to communicate and
for whom it is nearly impossible to gather valid learning
datasets. Thus, the pattern recognition method is rarely used
for infants. We have applied myoelectric hands for infants
and children in a clinical setting [9]. The reason why it is dif-
ficult to apply pattern recognition methods to infants is a
difficulty to communicate with infants and consequently a
difficulty to label the signals. However, if we can label the
signal appropriately, pattern recognition methods are very
useful because they determine classification boundaries as
appropriate based on individual muscular activities even if
the target is an infant whose muscular activity is unknown.
Therefore, we want to semiautomate the labelling signals
by the proposed method.

Moreover, EMG signals have time-variant characteris-
tics, which can be problematic. These signals fluctuate in
daily life depending on sweat, muscle fatigue, and changes
in grasp scheme, among others.

On the other hand, a myoelectric hand has volumetric
and weight constraints, and thus, it is infeasible to use a
complex discrimination method or to store large amounts
of learning data in it. In our previous study, the myoelectric
hand stored approximately only 60 to 120 learning data
points for three posture classifications, whereas it processed
100 data points per second. If the myoelectric hand is used
for an hour, approximately 360,000 data points will be proc-
essed, whereas the size of the stored data remains at approx-
imately only 60 to 120. If this huge amount of data can be
used for evaluating the stored learning data without having
to be stored, the accuracy of the method for controlling the
myoelectric hand is expected to improve.

Our objective is to construct a method that automatically
corrects the stored learning dataset using EMG signals while
the myoelectric hand is in use. To this end, this paper
explains how to correct the stored learning data and verifies
the usefulness of the method.

The proposed method is expected to obtain the optimal
feature space without increasing the calculation burden or
storage capacity, even for subjects with whom communica-
tion is very difficult, such as infants. Moreover, by adapting
to small changes due to factors such as sweat or muscle
fatigue, this method is expected to solve the time-variance
problem.

2. Material and Method

We propose a method of correcting the learning data inspired
by the principle of “survival of the fittest.” This phrase is used
to describe natural selection based on the Darwinian evolu-
tionary theory [10]. This principle involves three elements:
environment, individuals, and groups. The environment is
ever-changing, wherein unsuitable individuals die, and
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suitable individuals thrive, resulting in groups evolving
adapted to the environment. The relationship between these
elements can be regarded as similar to those in pattern recog-
nition. Pattern recognition has three elements: input data
(EMG features, in the case of the myoelectric hand), units,
and classes. For a myoelectric hand, a class refers to the pos-
tural pattern to be classified, whereas a unit refers to several
representative values belonging to a class, which are stored
feature vectors. Pattern recognition is the process of
determining the unit that is most similar to the input data
and outputs the class corresponding to that unit. Classifier
performance can be improved when units are provided with
high intraclass reproducibility and interclass separability.
Based on the principle of “survival of the fittest,” if the EMG
features are considered analogous to the environment, the
units analogous to individuals, and the classes analogous to
groups, we can expect to be able to optimise the units to the
EMG features by updating them in parallel with the classifica-
tion of the input data.

The EMG features (analogous to the environment)
depend on the intention of the subject. The subject would
not want to use feature space areas where several classes
are mixed and would prefer to use independent areas
instead, because the expression of muscle activity in mixed
areas leads to instability in the control of the myoelectric
hand. Therefore, EMG features analogous to the environ-
ment encourage evolution toward class separation.

The proposed method is a way of correcting learning
data, and thus, it can be combined with all machine learning
methods to improve their accuracies.

The process flow of the proposed method is illustrated
in Figure 1. Typically, machine learning constructs a
model using learning data in a learning phase and then
classifies further input data using the learned model in a
classification phase. By comparison, the proposed method
learns the model in the same way and then evaluates the
learning data using the data obtained while the wearer
controls the hand and updates the model. Because the
method uses a large amount of input data, which are
obtained while the wearer controls the hand, to evaluate
the learning data without storing the input data, the accu-
racy is expected to improve while the storage capacity and
processing burden are maintained.

2.1. EMG Features. EMG features comprise a huge amount
of nonstored data. Generally, in traditional methods, these
data are used only for classification, except in the learning
phase. By contrast, in the proposed method, these features
are considered as analogous to the environment and are
used for the evaluation of the generation and removal of
units. In this way, the accuracy of the classifier can be
improved without the device having to store large amounts
of data.

The wearer of the myoelectric hand is expected to avoid
using areas where multiple classes are mixed and to favour
using areas where only a single class exists. Therefore, based
on the change in the frequency of use, we can correct the
learning data without teaching the input data.

EMG signals are fragile neural signals, and thus, the
usual method of handling these data is to use extracted
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Figure 1: Comparison of processing flow between traditional and proposed methods.

3Cyborg and Bionic Systems



features instead of the original signals for input. In this
study, the power spectrum (PS) and mean absolute value
(MAV) were employed. EMG features can be classified
into time-domain and frequency-domain features, and
MAV and PS are representative features of these domains,
respectively [11]. Recently, methods that use spatial fea-
tures, called HD-EMG, measured by tens or hundreds of
sensors, have also been invented, but they are still in the
experimental stage [12, 13]. In our research studies thus
far, these features were traditionally employed and tended
to have better classification rates than those of other fea-
tures. Furthermore, the proposed method can be applied
to every type of EMG feature.

In this study, the feature vector V consists of MAV and
PS.
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Here, sht represents the signal sequence on time t and the
sensor channel h, whereas Nch denotes the number of sen-
sors. The feature f FEðsÞ for one sensor has one MAV and
several PSs with multiple frequency bands.

MAV is the amplitude of the EMG signals and is defined
as follows:
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Here, NFL is the frame length used to extract the feature.
In the experiment, NFL was 512, and the sampling frequency
was 1600Hz; therefore, the MAV was calculated using the
last 0.32 s of data.

On the other hand, PS is the frequency-domain feature
and is calculated using the fast Fourier transform (FFT).
PS is the magnitude of the energy at a given frequency of
the input signal. Several PSs were calculated from a single
signal sequence. In this study, PS was calculated as the
energy of the frequency band based on the smoothing of
neighbouring values.
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Here, IP is the smoothing range and j is an imaginary
unit. Nspct is the number of sampling frequency bands per
channel. NFL is common to the MAV, and the frame is
shifted at regular intervals. The assumption is that, before
FFT can be applied, the signal must be periodic and contin-
uous. (6) is a window function that makes the signal contin-
uous. Discontinuities in a signal cause errors in the high-
frequency components, and thus, we need to calculate up
to twice the frequency of PS and use only lower ones. More-
over, Shannon’s sampling theorem requires that we sample
the data at twice the frequency of the signal [14]. Therefore,
the sampling frequency should be four times the maximum
frequency of the EMG signals (approximately 10 – 400Hz).

In this paper, 8 PSs at equal intervals were extracted per
channel on the range from 0 to 400Hz, and the smoothing
range was 5. Thus, the extracted frequency bands were 20
– 30, 70 – 80, 120 – 130, 170 – 180, 220 – 230, 270 – 280,
320 – 330, and 370 – 380Hz.

2.2. Units. In the proposed method, units refer to the stored
learning data, which are typical data comprising EMG fea-
tures for each posture. Based on the analogy that the units
correspond to individuals in the principle of “survival of
the fittest,” the classes are optimised via mooring of those
that are suited to the environment and elimination of those
that are not. The adaptation of units to EMG features can
be expressed in three functions, as shown in Figure 2.

Each unit has a corresponding number of suitability
points. When a feature is inputted, the nearest unit earns a
suitability point. Units with more suitability points are
weighted as more important during the learning of the clas-
sifier. The points will be lost over time, and units with points
lower than zero are eliminated. Thus, the units placed where
data are frequently inputted survive, whereas the units
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placed where data are rarely inputted are removed, similar to
a survival race among organisms.

The calculation for the nearest unit was based on dis-
tance. The distance dui between the input feature vector
Vin and a unit ui is calculated using the root sum squares
of the difference for each dimension.

dui =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
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n o2
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Here, q is a feature value, and Ndim is the dimension size
of the feature vectors.

There is no guarantee that the correspondence between
the attributes of the unit and the intention of the wearer will
be correct. However, it is expected that the wearer will try to
change the scheme of muscular contractions if the hand pos-
ture is misclassified. In other words, the environment (input
EMG features) will change to avoid the misclassification
area. As a result, it is expected that an appropriate feature
space will be constructed.

Generally, the unit closest to the input data is given a
suitability point; however, if the distance between the input
data and the closest unit is greater than a certain threshold,
no unit can earn the point; furthermore, the coordinates
are stored. If data that do not belong to any postures are fre-
quently inputted within a short time and within a close
range, the centre of the data is generated as a new unit. This
unit is then considered to belong to the nearest class.

2.3. Classes. Each class consists of units and corresponds to a
posture of the hand. However, even for a single hand pos-
ture, muscular activities often differ depending on the force
or balance of muscular contractions. It is difficult for any-
one, especially an amputee, to maintain constant muscular
activity. Thus, it is necessary for a single posture of the myo-
electric hand to be expressed in terms of a few different EMG
patterns. In this method, because the class has several units,
it is possible to assign multiple EMG patterns to the same

posture as initial values. Through the optimisation of the
feature space, the EMG patterns converge to an easy-to-use
placement that is difficult to confuse with another posture.
The creation and removal of classes depend on the creation
and removal of units that belong to each class.

2.4. Manual Correction. If a misclassification occurs early in
the learning phase, the optimisation of the feature space will
proceed based on a false assessment. Because this method
assumes that the feature space does not change drastically,
it will be difficult to converge properly once the feature space
is significantly broken. Therefore, a function that allows for
the manual addition of learning data is necessary. If the
usual functionality for gathering learning data can be used
in the evaluation phase, the convergence of the feature space
can be corrected to a suitable form. Specifically, when the
wearer feels that the robot hand is not moving as intended,
additional learning data can be gathered using an external
device, such as a tablet, in the same way as when the initial
learning data were gathered.

2.5. Process Flow of Correction, Learning, and Classification
in Application. When the proposed method is applied to
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the myoelectric hand, the first step is for the learning data to
be gathered in the same manner as in the traditional
method. The EMG features are labelled with corresponding
postures using an external device, such as a tablet, and
stored. However, because these data are manually gathered,
they are likely to contain errors. This is especially true for
when the myoelectric hand is being remounted, wherein sig-
nals often change because of sensor placement, sweat, and
grasping strategies, among others. Therefore, after the hand
is remounted, the proposed method corrects the learning
data using evaluation data. These evaluation data have no
labels for posture, and thus, the learning data can be cor-
rected semiautomatically. Subsequently, the classifier learns
the relationship between the EMG features and postures
using the extracted data, which comprise learning data
already corrected using the evaluation data. After the classi-
fier has finished learning, data to be classified, i.e., without
labels for posture, are inputted, and the features are classified
into postures.

3. Experiment

3.1. Overview. The proposed method requires interactions
with the wearer. However, comparisons of performance with
and without the new method can be difficult to perform.
Therefore, we conducted a basic offline analysis. As
described previously, the feature space will converge incor-
rectly if misclassification occurs early in the learning phase.
For this reason, we verified the evaluation and removal func-
tions, excluding the generation functions.

A dataset that was used in previous research [15] was
employed. This dataset was collected to validate the robust-
ness of methods to several kinds of changes in EMG signals:
grasping force, postures, subjects, remounting of sensors,
and repetition.

3.1.1. Subjects. The subjects were three healthy males in their
twenties. Two of them were right-handed, and one was left-
handed. For all subjects, the signals were measured from the
right forearms.

3.1.2. Task. The raw EMG signals, PS, and average MAV
were displayed for the subjects. They were instructed to
change their grasping forces and postures to follow the target
waveforms. The nine target postures were as follows: rest

(rst), open palm (opn), power grasp (pwg), precision grasp
(prg), lateral grasp (ltg), wrist flexion (flx), wrist extension
(ext), wrist pronation (prn), and wrist supination (spn).
These three grasping postures (pwg, prg, and ltg) are called
basic types of hand postures because 80% of the activities
of daily living (ADL) can be achieved with these postures

Hidden layer
60 neurons

Input layer
45 neurons

Classified
posture

EMG signals (5 ch)
Feature

extraction

5 MAVs
40 PSs

Winner
takes all

Output layer
9 neurons
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Figure 4: Structure of ANN (three-layered feed-forward type).

Table 1: Hyperparameters of a classifier.

Hidden neuron 60

Learning rate 0.0002

Learning times 20,000

Initial value −0.1 to 0.1

Table 2: Number of extracted data points.

Extracted (proposed) Learning (traditional) Ratio

Subj. A 414:1 ± 57:2 5413:0 ± 1:7 7.6%

Subj. B 369:7 ± 38:7 5411:7 ± 2:7 6.8%

Subj. C 346:4 ± 57:8 5412:0 ± 3:0 6.4%

Ave. 376:7 ± 58:3 5412:2 ± 2:5 7.0%

Table 3: Learning time (min:s).

Proposed Traditional Ratio

Subj. A 1 : 18 ± 0 : 09 10 : 57 ± 0 : 09 11.9%

Subj. B 1 : 10 ± 0 : 08 10 : 16 ± 2 : 22 11.4%

Subj. C 1 : 09 ± 0 : 09 11 : 09 ± 0 : 06 10.3%

Ave. 1 : 12 ± 0 : 10 10 : 47 ± 1 : 24 11.3%

Table 4: Classification rates (%).

Proposed Traditional Difference

Subj. A 89.24 88.80 +0.44

Subj. B 67.87 68.15 −0.29
Subj. C 89.08 89.69 −0.61
Ave. 82.06 82.21 −0.15
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[5]. Furthermore, the target grasping force was set to three
levels for each posture, except for the rest posture. Control-
ling the grasping force prevents a difference in force levels
from corresponding to a difference in posture patterns.

3.1.3. EMG Measurement and Preprocessing. The EMG sig-
nals were measured using sensors that we have developed.
First, a sensor measured the signal while the in-phase com-
ponent of the noise was removed using a differential ampli-
fier. Power line interference (PLI) at approximately 50Hz
was then removed using a notch filter, and only the fre-
quency band of the EMG signals was extracted using a band-
pass filter (10–400Hz). Finally, a secondary amplifier was
used to amplify the signal. The signal was amplified by
approximately 80,000 times in total using the differential
amplifier and secondary amplifier. The sampling frequency
was 1600Hz.

3.1.4. Placement of Sensors. Five sensors were employed for
this experiment. These sensors were attached to the flexor
digitorum superficialis (ch. 0), extensor digitorum (ch. 1),
abductor pollicis longus (ch. 2), extensor indicis (ch. 3),
and extensor digiti minimi (ch. 4), as shown in Figure 3.
These muscles meet the three requirements for myoelectric
hands: located in the forearm, related to the movement of
the fingers, and can be determined via external palpa-
tion [16].

3.1.5. Remounting of Sensors. The EMG signals were mea-
sured in nine trials against a day equivalent. Nine postures
were included in the trial, and the target force was decided
quasirandomly. “Quasirandomly” signifies that the order is

random, but the number of appearances for each event is
equal. As a result, there were three trials for each target force
and posture in a single dataset against a day equivalent. Sub-
sequent measurements were obtained after sufficient time
had passed since the removal of the sensor. Multiple mea-
surements were performed over several days, and task
achievement levels were calculated. A task achievement level
refers to how much the measured data deviated from the tar-
get data; a smaller value is considered to be more desirable.
The three-day equivalent data with the lowest task achieve-
ment levels for each subject were then selected for further
analysis.

3.2. Classifier. Both the proposed and traditional methods
employ a three-layered feed-forward type artificial neural
network (ANN) as the classifier. The structure of the ANN
is shown in Figure 4. In this study, the hyperparameters were
the same as those shown in Table 1. The dimension of the
input was 45, which consisted of five MAV and 40 PS from
five channels. The output was a value between 0 and 1 for
each posture; the posture of the neuron with the highest
value was regarded as the classified posture, or the posture
resulting from the classification, based on the principle of
“winner takes all.” The proposed method performed
weighted learning based on suitability points. Furthermore,
the threshold to determine the nearest unit was set to infin-
ity, and thus, there was never a situation where no unit
earned a suitable point. Therefore, no additional units were
generated.

3.3. Validation. The dataset of a day equivalent consisted of
nine trials. It was divided into three parts such that the
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Figure 6: Case where the proposed method works well. Axes are common and calculated via principal component analysis (PCA) using
learning data. PC1 and PC2 denote first and second principal components, respectively. Specific values are meaningless in (a) to (d)
because whitening is performed during PCA. (a) Learning data (Subj. A Day 2 part. 3). (b) Evaluation data (Subj. A Day 1 part. 1, 2). (c)
Extracted data (Subj. A Day 2 part. 3). (d) Classifying data (Subj. A Day 1 part. 3). (e) Classification rate of the proposed method (Ave.
100.00%). (f) Classification rate of the traditional method (Ave. 98.44%).
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posture and force conditions were equal, and cross-
validation was performed. One part of day X was used for
learning, one part of day Y was used for classification, and
the other two parts of day Y were used for evaluation. Clas-
sification rates were calculated for all combinations of days.

Although using datasets from different days for learning
and classification, i.e., with the myoelectric hand remounted,
reduces the classification rates, the proposed method is
expected to improve the classification rates using input data,
which are obtained from the myoelectric hand after
remounting, for evaluation.

The effectiveness of the proposed method was validated
based on comparisons in terms of the number of learning
data points, learning time, and classification rates.

4. Result and Discussion

4.1. Number of Learning Data Points. The numbers of learn-
ing data points for both the traditional and proposed
methods are shown in Table 2. The traditional method con-
structed a relationship model between the EMG signals and
hand postures using all of the learning data. By contrast, in
the proposed method, the learning data were scored using
the evaluation data, and most of them were removed. The
proposed method then constructed a model using the
extracted data that survived. As shown in Table 2, the ratios
of extracted data for each subject were 6.4% to 7.6%.

Verification was performed using a laptop PC, which is
capable of storing much more data than a myoelectric hand
is capable of storing in real-life application. The size of the
extracted data is reasonable for a microcomputer to store
and process it.

As mentioned earlier, this research involved nine target
postures, and the target grasping force was set to three levels
for each posture, excluding the rest posture. Hence, 25 types
of muscle activities were assigned to the classifier as input.
The number of extracted data points per type was approxi-
mately 15, which is a very small number compared with
those used in previous studies. As shown later, the classifica-
tion rates were maintained, and thus, the feature space was
adequately represented using a small amount of data.
Because myoelectric hands have weight and volume con-
straints, it is important to reduce the amount of data to be
stored.

4.2. Learning Time. The learning times of both the proposed
and traditional methods are listed in Table 3. The learning
time is the time used to construct the model, which includes
the time to load the data and to output the result. The load
and output times were sufficiently short compared to the

learning time. In the traditional method, learning was per-
formed based on all the learning data, whereas in the pro-
posed method, learning was performed based on only the
extracted data. If the learning cycle exceeded the maximum
learning time (20,000 cycles), or if the error per neuron
was below the determined truncation error (0.0002), the
learning was considered completed. As shown in the table,
the learning time of the proposed method is significantly
reduced. The main reason for the decrease in learning time
was the reduction in the number of learning data points.
As mentioned previously, reducing the processing burden
is important for myoelectric hands.

4.3. Classification Rates. The classification rates for each sub-
ject are shown in Table 4, and a comparison between the
classification rates of the traditional and proposed methods
is shown in Figure 5.

As a result of the proposed method, based on the aver-
ages, the classification rates decreased slightly. It should be
noted that the numbers of data points used for learning were
distinctly different, and thus, this comparison was unfavour-
able to the proposed method. According to the details of
each trial, there were cases wherein the proposed method
worked well and wherein it did not.

An example of a case in which the proposed method
worked well is shown in Figure 6. In Figures 6(a)–6(d), the
feature spaces were dimensionally compressed into two
dimensions via principal component analysis (PCA). The
axis scales of the images were unified. Each posture was
placed radially around the rest posture, and the stronger
the force, the further out it was placed. They were also placed
in the flexor and extensor muscle groups. Subfigures (e) and
(f) show confusion matrices, wherein the rows indicate
actual postures, and the columns indicate classified postures.
Some adjacent postures were misclassified by the traditional
method, e.g., open palm and wrist extension. By contrast, in
the proposed method, the extracted data that were selected
were only the characteristic data similar to the evaluation
data, resulting in improved classification rates.

However, as stated earlier, there were also cases in which
the proposed method did not work well. There are two main
causes for these cases. First, if the classification rate of the
traditional method is excessively low, the proposed method
will not work well because it is assumed that the feature
space does not change drastically. The low classification
rates of the traditional method indicated that the muscle
activities were not reproducible. Table 5 summarises the
trend of improvement or deterioration of the classification
rate of the proposed method compared to that of the tradi-
tional method. Trials in which the classification rate

Table 5: Number of datasets improved or deteriorated by the proposed method.

Classification rate of the traditional method
100 to 90 90 to 80 80 to 70 70 to 0

Improved (more than 1%) 8 6 2 3

Small difference (−1% to 1%) 7 3 1 3

Deteriorated (less than −1%) 5 7 3 6
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Figure 7: Case where posture was misclassified. Representations of figures are the same as in Figure 6. (a) Learning data (Subj. A Day2 part.
1). (b) Evaluation data (Subj. A Day 3 part. 2, 3). (c) Extracted data (Subj. A Day 2 part. 1). (d) Classifying data (Subj. A Day 3 part. 1). (e)
Classification rate of the proposed method (Ave. 89.01%). (f) Classification rate of the traditional method (Ave. 93.51%).

10 Cyborg and Bionic Systems



increased by more than 1% were defined as “improved,”
those that decreased by more than 1% were defined as “dete-
riorated,” and the others were defined as resulting in a “small
difference.” Figure 5 and Table 5 show that when the classi-
fication rates of the traditional method were high,
“improved” tended to be more frequent, whereas when the
rates were low, “deteriorated” tended to be more frequent.
The difficulty of the task performed in this experiment was
high because of the large number of target postures and
force levels. In actual applications, an appropriate number
of postures should be set according to the subject, and the
number of postures should be increased step by step through
training.

The second main cause of the proposed method not
working very well is that there were misclassifications of cer-
tain postures. These were observed when the classification
rates of the traditional method were high but were deterio-
rated by the proposed method. An example of a case
wherein certain postures were misclassified is shown in
Figure 7. The representation in Figure 7 is the same as that
used in Figure 6. Based on the feature space of the evaluation
data, the repeatability of wrist supination was low and
became confused with the open palm and precision grasp.
As a result, in the feature space of the extracted data, only
a small number of units that take responsibility for wrist
supination have survived. This signifies that, in the evalua-
tion phase, suitability points were given for units of incorrect
postures. As a result, the classification rate of wrist supina-
tion was significantly reduced.

In this study, we performed an offline analysis; however,
to truly solve this problem, we need to verify the effective-
ness of our proposed method when used together with inter-
active learning and unit generation functionalities.

5. Conclusion

In machine learning, the quality of learning data is very
important. However, because of the volumetric and weight
constraints of myoelectric hands, the limited storage capac-
ity and processing performance should also be considered.
Therefore, we aimed to construct a method for automatically
correcting the stored learning dataset using EMG signals
while the myoelectric hand is in use. Our proposed method
is inspired by the principle “survival of the fittest.” Partial
verification of the proposed method via offline analysis
showed that it reduced the number of learning data points
and learning time while maintaining the classification rates.
Although the classification rates improved for one partici-
pant, they slightly deteriorated on average among all partic-
ipants. To solve this problem, it is necessary to verify the
method when used together with interactive learning. We
intend to perform that study in the near future.
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