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Abstract

Ecological niche models (ENMs) have increasingly been used to estimate the potential

effects of climate change on species’ distributions worldwide. Recently, predictions of spe-

cies abundance have also been obtained with such models, though knowledge about the cli-

matic variables affecting species abundance is often lacking. To address this, we used a

well-studied guild (temperate North American quail) and the Maxent modeling algorithm to

compare model performance of three variable selection approaches: correlation/variable

contribution (CVC), biological (i.e., variables known to affect species abundance), and ran-

dom. We then applied the best approach to forecast potential distributions, under future cli-

matic conditions, and analyze future potential distributions in light of available abundance

data and presence-only occurrence data. To estimate species’ distributional shifts we gener-

ated ensemble forecasts using four global circulation models, four representative concentra-

tion pathways, and two time periods (2050 and 2070). Furthermore, we present distributional

shifts where 75%, 90%, and 100% of our ensemble models agreed. The CVC variable selec-

tion approach outperformed our biological approach for four of the six species. Model projec-

tions indicated species-specific effects of climate change on future distributions of temperate

North American quail. The Gambel’s quail (Callipepla gambelii) was the only species pre-

dicted to gain area in climatic suitability across all three scenarios of ensemble model agree-

ment. Conversely, the scaled quail (Callipepla squamata) was the only species predicted to

lose area in climatic suitability across all three scenarios of ensemble model agreement. Our

models projected future loss of areas for the northern bobwhite (Colinus virginianus) and

scaled quail in portions of their distributions which are currently areas of high abundance. Cli-

matic variables that influence local abundance may not always scale up to influence species’

distributions. Special attention should be given to selecting variables for ENMs, and tests of

model performance should be used to validate the choice of variables.
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Introduction

Global climate change may markedly influence species populations worldwide and may have

increased negative effects on species that are not able to adapt to changes in climate or to dis-

perse to suitable conditions elsewhere [1–3]. Climatic conditions are important in determining

an organism’s geographic distribution because of specific eco-physiological constraints [2, 4–

6]. Climate change has already caused shifts in the distribution of many species [7–9], and is

estimated to continue affecting distributions in the future [10, 11]. Ecological niche models

(ENMs) can be useful in predicting changes in a species’ distribution [12], though such tech-

niques often rely on the availability of a sufficient amount of occurrence and/or abundance

data representative of the species’ distribution [13]. This potential limitation has led to a large

number of studies focused on avian species [14,15] because of the plethora of occurrence data

publicly accessible through government monitoring programs (Breeding Bird Survey [BBS];

[16]), as well as citizen science programs (eBird; [17]).

Though initially ENMs were focused on studying the biogeography of species, more

recently research has focused on utilizing such models to help relate probability of occurrence

to intrinsic growth rates [18], population size [19], population density [20], reproductive

parameters [21], and species abundance [22–24]. Combined with population demographic

information, these analyses can be used to more accurately target areas of conservation con-

cern [25] by identifying potential “species’ strongholds”. However, an important assumption

made about climatic variables incorporated in ENMs is that they are biologically meaningful

to the species of interest, and the selection of these variables can greatly affect the performance

and resulting ENMs [26–27]. When incorporating population demographic information to

ENMs, inclusion of biologically meaningful variables that directly relate to demographic rates

and exclusion of “relaxed” variables [27], or variables that have little importance on such rates,

should be taken into consideration [28]. Despite this concern, ecological niche modeling stud-

ies often use all 19 bioclimatic variables that are freely available (www.worldclim.org) and cor-

relation/variable contribution filtering to dictate the modeling parameters [29]. Such

generalized approaches may cause major sources of uncertainty when creating ENMs [30].

Here, we investigate model performance differences under three variable selection methods

and present an analysis of potential climate induced shifts in the distributions of the temperate

North American quail species (California quail [Callipepla californica], Gambel’s quail [Calli-
pepla gambelii], scaled quail [Callipepla squamata], northern bobwhite [Colinus virginianus],
Montezuma quail [Cyrtonyx montezumae], and mountain quail [Oreortyx pictus]). The three

species in the Callipepla genus are primarily distributed within the western and southwestern

regions of North America. More specifically, California quail are distributed from parts of

southern Washington, through Oregon and California, and into Baja California and generally

inhabit semiarid regions characterized by vegetation ranging from open woodlands, shrub-

lands, and agricultural areas [31]. Gambel’s quail are distributed in the arid southwestern

regions of North America and inhabit areas indicative of desert vegetation but are also abun-

dant within agricultural and urban areas [32]. Scaled quail are distributed throughout the arid

and semi-arid southwestern and south-central regions of North America and primarily inhabit

areas with grassland and shrubland vegetation [33], though will often be present within agri-

cultural areas as well [33–34]. Similarly, the mountain quail and Montezuma quail are also

western species in North America, but mountain quail typically inhabit upland forests gener-

ally above 1,000 m in elevation [35]. Conversely, the Montezuma quail are distributed in the

arid southwestern portions of the United States and throughout Mexico and inhabit wood-

lands typically comprised of oak (Quercus spp.) and oak-pine (Pinus spp.) species [36]. Finally,

the northern bobwhite is the only species that is primarily found in the eastern regions of
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North America, where its distribution includes the southeastern United States, though ranges

north between 40–45˚ latitude, west into the Great Plains, and into parts of northern Mexico

[37–38]. The northern bobwhite is a shrubland obligate species, but does also occur in grass-

lands, woodland savannahs, and small agricultural areas throughout its distribution [38–39].

These species are of conservation concern as they have experienced distribution-wide

declines in recent decades [40–41], which may be exacerbated in future climates because

of their low dispersal abilities [42]. Furthermore, many of these species are designated as

umbrella species [43] for biodiversity conservation and have been shown to be positive indica-

tors for the occurrence of other avian species of conservation concern [44]. Thus understand-

ing potential climate induced shifts in the distributions of these species may have conservation

implications beyond temperate North American quail. Finally, these species offer an opportu-

nity to relate abundance data to distributional estimates obtained from ENMs because exten-

sive knowledge exists on what abiotic variables influence local annual abundance and

reproduction of most of these species (Table 1). Therefore, our objectives were to: 1) test

whether performance of ENMs improved when using only variables known to directly affect

species’ abundance, compared to performance of models based on other variable selection

approaches and 2) use the top performing ENMs from our variable selection exercise to ana-

lyze species abundance data in relation to future distribution shift estimates to identify poten-

tial critical areas of loss in environmental suitability. We hypothesized that there would be

idiosyncratic relationships between the best variable selection approaches across species,

which may be driven by scale mismatch between what influences local abundance and what

influences broad scale distributions. Furthermore, as we generally expect future distributions

of our target species to shift in relation to changing climatic conditions [7–9], we also hypothe-

sized that species with the highest areas of abundance located along the fringe of their distribu-

tions (i.e., northern bobwhite [41]) would lose potential population “strongholds” (i.e., areas

Table 1. Climate variables known to affect abundance and/or reproduction of temperate quail species in North America.

Common name Scientific name Climate variable Reference(s)

California quail Callipepla californica Fall-Spring precipitation [45]

Winter precipitation [46]

Gambel’s quail Callipepla gambelii Winter-Spring precipitation [47–50]

Maximum July temperature [50]

Scaled quail Callipepla squamata Winter precipitation [51]

Summer precipitation [52–54]

Spring precipitation [52–53]

Annual precipitation [55]

Modified Palmer Drought Severity Indexa [55]

Northern bobwhite Colinus virginianus Maximum July temperature [56–57]

Spring precipitation [58]

Summer precipitation [58]

Fall precipitation [57]

Modified Palmer Drought Severity Indexa [55,59]

Annual precipitation [59]

Montezuma quail Cyrtonyx montezumae Summer precipitation [60]

Mountain quail Oreortyx pictus N/Ab N/Ab

a Not included in our analysis.
b Information not available.

https://doi.org/10.1371/journal.pone.0184316.t001
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of high relative abundance) due to changes in future distributions based on climate change

projections.

Materials and methods

To test our hypotheses, we used a presence-only maximum entropy algorithm to build ENMs

with variables known to directly influence species abundance at a local level. We then com-

pared the performance of these models to ENMs built using traditional variable selection

approaches to determine if factors influencing local abundance data also scaled to influence

environmental suitability across species’ distributions. Finally, we forecasted species distribu-

tional shifts under future climate scenarios through the use of our top performing ENM to

determine if areas of currently high relative species abundance along the edge of distributions

would be lost under the future climate scenarios.

Species occurrence data

We collated species occurrence data from the BBS [16] and eBird [17] databases, similar to

other ENMs studies [15,61–62], to create a presence-only occurrence dataset for our modeling

exercises. The BBS is a multi-national bird survey program that has been used to monitor

breeding bird population trends in North America since 1966 [63–64]. Its design includes

using thousands of observers annually to conduct point count surveys along repeated transects

located on roadways throughout much of North America [63]. Raw data and trend estimates

are made publicly available through the BBS website (https://www.pwrc.usgs.gov/bbs/). A

more detailed description of the BBS protocol and analysis techniques are provided by [63]

and [65]. The eBird database is a citizen science program established to archive and share bird

observations submitted by the public [17]. Currently, this is considered the largest ecology

based citizen science project [61]. Inclusion of eBird records in our occurrence dataset allowed

us to consider geographic areas outside the sampling range of the BBS survey (i.e., Mexico) in

which some of our target species occur. The range of dates for occurrence data from the BBS

and eBird was 1966–2000 and 1950–2000, respectively, which temporally matched the range

in dates for the climatic variables included in the modeling framework discussed below. We

note that eBird observations were more abundant in recent decades as opposed to the earlier

decades of our study timeframe, however this database was useful in obtaining occurrence

information through the entire temporal range that coincided with our climatic data.

Because the species we examined are non-migratory game species, the overall number of

occurrence points was much greater than typical sample sizes recommended for ENMs [66].

Oversampling and clustering of occurrence data can often lead to overfitting issues in a pres-

ence-only modeling framework [67–68]. This relates to models fitting tightly to calibration

data, which in turn will limit the ability of the model to predict independent evaluation data

[68]. Spatially rarefying occurrence data in such situations has been shown to improve models

by limiting the possibility of over-fitting [68–69]. Previous studies vary in the spatial rarefica-

tion buffer used (10-20km), with justification for these buffer distances based on ecology of

the study species [69], spatial heterogeneity of the climate [68], or the clustering nature and

abundance of data points from a database [15]. Similar to [15], we chose a 20 km buffer

around points for all six species we examined, a distance within their dispersal range [70–73].

To spatially rarefy occurrence data, we used the Spatially Rarefy Occurrence Data tool in the

SDM Toolbox (v1.1b; [74]) for ArcGIS 10.2.1 (ESRI, Redland, California, USA). Further elimi-

nation of points included the removal of occurrence points that represented “introduced” or

“stocked” populations, as we were only interested in modeling the distribution of native popu-

lations. To eliminate these types of entries, we removed any occurrences outside the known
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historic distribution of the species and any entries in which observers noted “stocked” or

“introduced” individuals in the comments section. We also verified that locations were within

the species’ historic distribution by validating our data with range maps downloaded from

NatureServe [75]. This resulted in the removal of five and 222 occurrence locations for Gam-

bel’s quail and California quail, respectively. No other species had occurrence locations

removed after data validation with NatureServe maps. Finally, as outlined by [15], eBird

includes different observation protocols that may influence the interpretation of occurrence

type. The “exhaustive area counts” protocol can represent single occurrence coordinates for

large areas covered by the observer and may not reflect occurrence at a scale relevant to

ecological modeling. Likewise, the “traveling count” protocol represents a single occurrence

coordinate for a large distance traveled. To account for these potential biases, we eliminated

traveling count observations in which the observer traveled >2 km [15,76] and exhaustive area

counts in which the observer covered an area>100 ha [15].

Initial sample sizes and spatially rarefied sample sizes varied across species. Initial sample

sizes ranged from 382 (Montezuma quail) to>38,000 (bobwhite) occurrence locations. After

spatially rarifying our data, sample sizes were reduced to: 552, 268, 317, 2,013, 31, and 216 for

California quail, Gambel’s quail, scaled quail, northern bobwhite, Montezuma quail, and

mountain quail, respectively (S1 Fig).

Climate data

We obtained baseline (1950–2000) climate data at a spatial resolution of five arc minutes

(~9 km) from the WorldClim database [77], which represented static climatology raster sur-

faces (i.e., a mean value from 1950–2000) and included 19 bioclimatic variables as described

by [77]. Additionally, we derived five average maximum summer temperature and cumulative

seasonal rainfall variables from WorldClim monthly average climate data: average maximum

temperature for June, July, and August (˚C), cumulative rainfall for winter (mm; December,

January, and February), cumulative rainfall for spring (mm; March, April, and May), cumula-

tive rainfall for summer (mm; June, July, and August), and cumulative rainfall for fall (mm;

September, October, November). These five variables, along with three of the 19 bioclimatic

variables, maximum temperature of the warmest month (˚C; Bio5), mean annual temperature

(˚C; Bio1), and average annual rainfall (mm; Bio12), represented variables that have been dem-

onstrated to directly influence the abundance of our study species based on previous research

(Table 1).

Previous research has emphasized the importance of training ENMs only based on climatic

data existing within the known spatial distribution of a study species [78–79]. We therefore

trained our ENMs with climatic data that were clipped to the spatial extent of the species’

potential study extent. We restricted the study extent to a 500km buffer around “contempo-

rary” locations [15]. [15] described contemporary locations as species occurrence points from

the year 2001. As our most recent occurrence data was in 2000, we considered these locations

to be our contemporary points which were used in creating the species’ study extent. In a simi-

lar study, a 200km buffer was shown to be too restrictive for many species and their projected

future distributions [22], thus [15] suggested a 500km buffer to encompass potentially large

shifts in projected occurrence data. Therefore, we used this buffered range as our study extent

for selecting background points and projecting future species’ distributions. This buffer

ensured that no occurrence points were located outside of our study extent for each species.

Furthermore, the species’ specific study extents created from these contemporary locations

included the known natural historic ranges of all six species, as corroborated by experts of

these species (described in [80–81]). Study extents after this procedure were: 1.80x1012 ha,
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2.39x1012 ha, 2.63x1012 ha, 3.29x1012 ha, 3.43x1012 ha, and 7.43x1012 ha for mountain quail,

Montezuma quail, Gambel’s quail, scaled quail, California quail, and northern bobwhite,

respectively. We projected all of our data into the North American Albers Equal Area Conic

projection [67,82] as our study extents covered a large range in latitude (>200 km) based on

our criteria [67].

Maximum entropy modeling

Preliminary modeling for variable selection. We created seven unique suites of climatic

variables to run seven separate model suites, thus we directly tested whether or not a model

using climatic variables known to directly affect local abundance performed better than other

approaches. The seven model suites used were: biological (use of variables known to directly

affect local abundance [Table 1]), correlation/variable contribution (CVC; i.e., variable reduc-

tion through correlation analysis [29] and variable contribution to model accuracy gain), and

random (i.e., a selection of random bioclimatic variables equal to the number of variables con-

tained in each biological model [n = 5 random suites]).

We used the maximum entropy algorithm Maxent, version 3.3.3k [83] to test which variable

selection approach performed best for creating ENMs. The Maxent algorithm is used for gen-

erating ENMs with presence-only/pseudo-absence data [84] and climatic variables. Maxent

has been shown to have higher predictive power than many other modeling techniques [66–

67] by minimizing the entropy (a measure of dispersedness) between the probability densities

of presence data and “background” data (locations without presence information) in environ-

mental covariate space [67]. For our preliminary Maxent modeling (i.e., for the variable selec-

tion exercise), input parameters were kept at default values [83]. Though changing the input

parameters from default values can influence model performance [85–87], we did not change

input parameters until the second (and final) stage of our modeling efforts (described in the

next section), which was done after our initial variable selection analysis was completed. This

included the use of 10,000 background points, which has been shown to perform similarly

when compared to models using all potential background points [83]. We used a regulariza-

tion multiplier of 1, performed 500 iterations per model, and used a convergence threshold of

0.00001 for each model. To test the validity of our models, we held-out 25% of our presence

data for testing through random selection and used 75% for training each species model

[15,88–89]. We replicated models for each variable suite 100 times using the bootstrap method.

For each model, we used 10 percentile training presence as the threshold method to convert

the continuous occurrence probability estimates into binary suitability maps. This threshold

rule has been shown to outperform other threshold rules in Maxent modeling [90]. Thus, any

cells with logistic values below these individual threshold values were categorized as

unsuitable.

To create the CVC suite, we initially selected and eliminated highly correlated variables

from the 19 bioclimatic variables (|r|>0.7; [29]), as well as variables contributing�1% to

model accuracy gain [21] as determined through Maxent. If two variables were highly corre-

lated, we initially eliminated a correlated variable if it contributed�1% to model accuracy

gain. If both correlated variables contributed >1% to model accuracy gain, we retained the

variable contributing most to model accuracy gain and eliminated the second variable. This

was repeated until all pairwise correlation coefficients between our climatic variables was

|r|�0.7 and all variables contributed >1% to model accuracy gain. For the random suites, we

used randomly selected variables from the list of the 19 bioclimatic variables. The number of

randomly selected variables was equal to the number of variables used in our biological model.

Because the performance of a model built with random variables is highly determinant on the
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variables being selected, we compared models based on five suites of random variables to the

models obtained with CVC and biological suite of variables. For the biological suite, we limited

our variable selection to the eight climatic variables that were based on previous knowledge of

these species’ ecological responses to environmental trends, as described in the “Climate Data”

section (Table 1). Similar to the CVC modeling approach, we estimated a Pearson’s correlation

coefficient for all combinations of our biologically relevant variables and used the threshold of

|r|>0.7 to eliminate highly correlated variables [29]. We also eliminated variables that had

�1% contribution to accuracy gain of preliminary models that we ran for the six species [21].

Thus, each species of interest had a unique set of variables for their respective biological model

suites.

To evaluate and compare the performance of our seven model suites in Maxent, we used

test occurrence data and the binary suitability maps to calculate test omission error, averaged

across the 100 replicates for each suite and standardized by mean area predicted present [91],

as well as the average Area Under the Curve (AUC) of the Receiver Operating Characteristic

(ROC), a threshold independent method of evaluating models [92]. Since test omission errors

are sensitive to the amount of area predicted suitable [93], we further assessed the performance

of our model suites using the standardized omission error. This is calculated by estimating test

omission for each model replicate based on a binary suitability map that has the same percent

area of suitability, which was set at the mean percentage of suitable area predicted across all

model replications for each species [91]. This standardized test omission error thus allows for

direct comparison of performance between models. For the threshold-independent method of

model evaluation (ROC), the AUC value can range from 0–1 and indicates the probability of a

presence point having a higher AUC value than a random background point. This means that

a value of 1 indicates a completely accurate prediction, whereas a value of 0.5 indicates no dif-

ference in the presence and the background point, and values <0.5 indicate predictions that

perform worse than a random model [94]. The AUC value has been scrutinized for being an

unreliable predictor of model performance [95–96], thus conclusions based solely on the AUC

of the ROC are not recommended. For this reason, we selected the variable suite that had the

best performing standardized test omission error and then carried forward that variable suite

for further Maxent models described in the next section. We tested for differences in the aver-

age standardized test omission errors by conducting a one-way ANOVA and a post hoc Tukey

HSD pair wise comparisons test (α = 0.05) across model suites using PROC GLM in SAS 9.4

(Statistical Analysis System Institute Inc, Cary, North Carolina, USA). If there were no statisti-

cal differences in the top performing suites, we used the biological suite as our baseline model

to maintain a better “ecological understanding” of our study species [29].

Accounting for Maxent model complexity. Incorporating species occurrence data and

climatic variables from our best performing variable suite described above, we estimated cur-

rent and future quail distributions with Maxent, version 3.3.3k [83]. As mentioned in the pre-

vious section, algorithm parameter values have been shown to influence the performance of

models created through Maxent [85–87]. Specifically, the regularization multiplier, which

controls model complexity, can significantly influence the performance of models when this

parameter is changed from its default value of one [87]. To account for this, we calibrated our

best performing models for each species from the variable selection analysis with different val-

ues for the regularization multiplier. We compared average test omission rates across models

with different regularization multiplier values (0.25, 0.50, 1.00, 1.50, 2.00, 4.00, 6.00, 8.00, and

10.00; [87]) across 100 replicates. Beyond changing the regularization multiplier values, all

modeling efforts at this stage of the analysis were the same as described in the previous section.

We tested for differences in average test omission errors by conducting a one-way ANOVA

and a post hoc Tukey HSD pair wise comparisons test (α = 0.05) across models with differing
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regularization multiplier values using PROC GLM in SAS 9.4. We used the regularization mul-

tiplier that resulted in the statistically lowest test omission error for all further analyses, unless

the default regularization multiplier value (1.00) was not statistically different than other regu-

larization multiplier values. Finally, we projected our species’ specific Maxent models onto the

future climate change scenarios described below.

Future projections and post-modeling analysis

To model species distributional shifts under future climate scenarios, we carried forward the

best performing model for each species from the two previous stages of model building as our

baseline model. Climate data for future projections (the same variables as for baseline models)

were also obtained from the WorldClim database at a spatial resolution of five arc minutes

(~9 km), similar to the baseline data. To account for variation in global circulation models

(GCMs) on which the future climate datasets are based, we used an ensemble forecasting pro-

cedure to estimate future distribution shifts [97]. To capture variability across GCMs, we

randomly selected four [98] and used data at four representative concentration pathways

(RCPs; 2.6, 4.5, 6.0, and 8.5), or scenarios of greenhouse gas emissions, across two time periods

(2050 [average for 2041–2060] and 2070 [average for 2061–2080]) in which data were avail-

able. The four random GCMs selected were the CCSM4, GISS-E2-R, HadGEM2-ES, and the

MRI-CGCM3, all included in the 5th Assessment IPCC report (AR5; [99]). In sum, for each

species we estimated 32 baseline models and 32 corresponding future projections (4 GCMs X

4 emission scenarios X 2 time periods).

After estimating ENMs under future climate scenarios, we used the Raster Calculator tool

in ArcGIS 10.2 to compare differences in binary occurrence probabilities of current and future

distributions. An ensemble suitability range for current distributions was assigned where all 32

model runs agreed on a binary presence for each species. We then created ensemble future dis-

tribution projections across both time periods, at three levels of model projection agreement:

75%, 90%, and 100% (i.e., where 75%, 90%, and 100% of the 32 models agreed). We used

binary outputs to create our ensemble forecasts as to avoid uncertainty in the appropriateness

of averaging different Maxent logistic values across models. We included three levels of agree-

ment to capture variability between climate scenarios that may have altered degree of agree-

ment. Based on these ensemble forecasts, we categorized distribution conditions that raster

cells could be classified into 8 conditions (Table 2). We used these distributional conditions to

estimate the overall percent gain or loss for future distributions of the six quail species, relative

to the current estimated distribution.

Both Montezuma quail and mountain quail can inhabit regions classified as “sky islands”

and are often restricted to areas of elevations �1,000 m [35, 100]. For these two species, we

Table 2. Possible distribution conditions occurring within species’ potential distribution maps pro-

duced by the Maxent algorithm under future climate scenarios.

Condition Description

1 distribution expansion from current to 2050 and remaining suitable from 2050 to 2070

2 suitable at current and through all time periods

3 unsuitable from current to 2050 but expanding from 2050 to 2070

4 distribution contraction from current to 2050 but expanding from 2050 to 2070

5 distribution expansion from current to 2050 but contracting from 2050 to 2070

6 suitable from current to 2050 but contracting from 2050 to 2070

7 unsuitable at current and through all time periods

8 distribution contraction from current to 2050 and remaining unsuitable from 2050 to 2070

https://doi.org/10.1371/journal.pone.0184316.t002
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used the estimated shifts in species distributions based on our 90% model agreement to

determine whether or not areas that were predicted to become unsuitable in future climate

scenarios were lower in elevation compared to areas predicted to remain suitable with a t-

test assuming unequal variance (p < 0.01). To do this, we obtained a 30 arc-second (~1 km)

digital elevation model (DEM) raster online (https://databasin.org/datasets/d2198be9d2264

de19cb93fe6a380b69c) from a collaborative effort between the National Aeronautics and

Space Administration, the United Nations Environment Programme/Global Resource

Information Database (UNEP/GRID), the U.S. Agency for International Development

(USAID), the Instituto Nacional de Estadistica Geografica e Informatica (INEGI) of Mexico,

the Geographical Survey Institute (GSI) of Japan, Manaaki Whenua Landcare Research of

New Zealand, and the Scientific Committee on Antarctic Research (SCAR).

Finally, we accessed relative abundance data (S2 Fig) for all species except the Montezuma

quail (in which data were not available [41]) to determine the implications of future distribu-

tional shifts on current populations. For each of the other five species, abundance was esti-

mated from BBS data for 2008–2012. We conducted a two-way ANOVA and a post hoc Tukey

HSD pair wise comparisons test (α = 0.05) to test for statistical differences between relative

abundance values among areas of current suitability to areas that are estimated to contract (or

become unsuitable) in future climate scenarios and across species using PROC GLM in SAS

9.4. Tests were conducted across our distribution conditions (Table 2) and across 75%, 90%,

and 100% ensemble forecasts. We initially tested for differences in relative abundance across

suitability conditions for our entire dataset with species as a random effect. If species was con-

sidered significant in our model, we conducted a one-way ANOVA to estimate species-specific

relationships. Because sample sizes were large (n>1,000) for our ANOVA tests on the abun-

dance data for all species, we estimated ƞ2 (Eta squared) to test for an effect size between the

possible distribution conditions [101]. We considered ƞ2 < 0.06 to be a small effect size, ƞ2

0.06 to<0.14 to be a medium effect size, and ƞ2�0.14 to be a large effect size [101]. Relative

abundance data not within the species native historic range was not included in these analyses.

Furthermore, as relative abundance data were from 2008–2012, data outside the continental

United States were not available.

Results

Variable selection and model performance

The biological variable suite was only used for two species in our modeling framework, sug-

gesting there was evidence that variables that influence local species abundance do not neces-

sarily scale to influence species’ distributions. More specifically, based on standardized test

omission error, the CVC variable selection approach significantly outperformed the biological

variable selection approach and random variable selection approach (Fig 1) for the California

quail (F[6,693] = 83.93, p =<0.01) and northern bobwhite (F[6,693] = 98.84, p =<0.01). Fur-

thermore, the CVC variable selection approach significantly outperformed the biological vari-

able selection approach for the scaled quail (F[6,693] = 59.27, p =<0.01) and mountain quail

(F[6,693] = 28.76, p =<0.01), though was not statistically different than the top performing

random variable suite (p>0.05). For Gambel’s quail, the biological variable suite significantly

outperformed the CVC approach (F[6,693] = 28.11, p =<0.01), though was not statistically

different than the top performing random variable suite (p>0.05). Finally, although the bio-

logical, CVC, and top performing random variable suite outperformed the four remaining ran-

dom variable suites (F[6,693] = 4.59, p =<0.01), there were no significant differences between

the biological, CVC, and top performing random variable suite when analyzing Montezuma

quail data (Fig 1). Models for all species and all variable suites besides one random variable
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suite for bobwhite performed reasonably well [102], with all test AUCs averaging within 0.72

to 0.91 (Fig 1). One random variable suite for bobwhite had a test AUC value of 0.67. Test

omission rates at the 10% training omission threshold also indicated that our models per-

formed well, with average rates ranging from 0.11 to 0.18 (Fig 1). Based on the standardized

test omission error values, we used the CVC variable suite for California quail, scaled quail,

mountain quail, and bobwhite ENMs. We used the biological variable suite to create ENMs for

the Gambel’s and Montezuma quail.

Fig 1. Model performance metrics used in determining the best variable selection approach to

estimate potential distributions for temperate North American quail through the Maxent algorithm.

Variable selection approaches included a biologically relevant suite (black bar), the top performing random

suite (grey bar), and a correlation/variable contribution (striped bar) suite. The random variable suite included

in this figure is the random suite that had the best standardized omission error of the five random variable

suites included in our analysis. Significant differences in model performance metrics are indicated by letter

groupings from post hoc Tukey HSD pairwise comparison test results from a significant one-way ANOVA.

https://doi.org/10.1371/journal.pone.0184316.g001
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Test omission errors for all six species were generally greater for models when the regulari-

zation multiplier was below the default value of 1.00 (Fig 2). The one-way ANOVA results

indicated that there were statistical differences in test omission errors across the range of val-

ues for the regularization multiplier: California quail (F[8,891] = 97.58, p<0.01), Gambel’s

quail (F[8,891] = 87.21, p<0.01), scaled quail (F[8,891] = 130.16, p<0.01), northern bobwhite

(F[8,891] = 17.48, p<0.01), Montezuma quail (F[8,891] = 3.94, p<0.01), and mountain quail

(F[8,891] = 162.53, p<0.01). However, the default regularization multiplier value was used for

northern bobwhite (p> 0.82) and Montezuma quail (p> 0.48) models as there was no statisti-

cal difference in model performance between a default value and other values with low test

omission values (Fig 2). Conversely, regularization multiplier values of 8.00, 6.00, 6.00, and

Fig 2. Test omission errors from regularization multiplier tuning experiments of Maxent models for

temperate North American quail. Test omission errors were based on a 10th percentile presence threshold

and are averaged across 100 replications. Significant differences in test omission estimates are indicated by

letter groupings from post hoc Tukey HSD pairwise comparison test results from a significant one-way

ANOVA.

https://doi.org/10.1371/journal.pone.0184316.g002
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8.00 were used for California quail, Gambel’s quail, mountain quail, and scaled quail as these

values outperformed models made with other regularization multiplier values based on test

omission errors.

Average variable contributions to model accuracy gain (averaged across 100 replicates per

species) are indicated in Table 3. The Montezuma quail and the northern bobwhite had the

least number of contributing variables whereas scaled quail and mountain quail had the most,

after adjusting models for initial variable correlations and contributions. At least one biocli-

matic variable was included in each species’ model set except for the Gambel’s quail. Mean

temperature of the wettest quarter (BioClim8) was the most frequently included variable and

occurred in four of the six species’ ENMs. Average partial plot relationships between all con-

tributing models and climate suitability were idiosyncratic for all species (S3–S8 Figs).

Future species’ distributions

Based on 90% agreement between model projections on all future climate datasets into 2070,

four of the six species (California quail, scaled quail, Montezuma quail, and mountain quail)

are predicted to have a net loss in areas that are currently environmentally suitable (Fig 3). In

general, areas of net gains in potential future distributions occurred across high latitudes

whereas potential distribution contractions occurred across lower latitudes (Figs 4–6). Areas

that were predicted to remain suitable for Montezuma quail under the 90% model agreement

scenario were significantly higher in elevation (�x ¼ 1909:16m, S.E. = 11.69 m) compared to

areas that were predicted to become unsuitable (�x ¼ 1652:95m, S.E. = 17.63 m; t = -12.11,

p< 0.01). Likewise, areas that were predicted to remain suitable for mountain quail under the

90% model agreement scenario were significantly higher in elevation (�x ¼ 923:07m, S.E. =

12.81 m) compared to areas that were predicted to become unsuitable (�x ¼ 620:48m, S.E. =

28.21 m; t = -9.77, p< 0.01). Though disparity existed in estimated losses and gains of future

Table 3. Variables useda in the final Maxent experiments for training ecological niche models of temperate North American quail species and aver-

age variable contribution to model accuracy gain. Standard errors are in parentheses.

Variable California quail Gambel’s quail Scaled quail Northern bobwhite Montezuma quail Mountain quail

BioClimb 1 0.00 0.00 0.00 49.62 (0.17) 26.83 (0.74) 0.00

BioClim 3 25.28 (0.49) 0.00 19.54 (0.57) 0.00 0.00 9.78 (0.45)

BioClim 4 0.00 0.00 0.00 0.00 0.00 31.48 (1.00)

BioClim 8 18.40 (0.61) 0.00 7.84 (0.37) 1.55 (0.06) 0.00 12.60 (0.32)

BioClim 9 4.55 (0.19) 0.00 0.00 0.00 0.00 0.00

BioClim 11 0.00 0.00 22.00 (0.64) 0.00 0.00 0.00

BioClim 14 0.00 0.00 0.00 0.00 0.00 11.62 (0.32)

BioClim 15 0.00 0.00 7.67 (0.41) 36.54 (0.16) 0.00 11.73 (0.77)

BioClim 16 0.00 0.00 34.29 (0.81) 0.00 0.00 0.00

BioClim 18 38.93 (0.54) 0.00 0.00 12.29 (0.20) 0.00 0.00

BioClim 19 12.84 (0.58) 0.00 8.66 (0.25) 0.00 0.00 22.79 (0.74)

Cumulative fall precipitation 0.00 2.49 (0.22) 0.00 0.00 0.00 0.00

Cumulative spring precipitation 0.00 19.44 (0.74) 0.00 0.00 25.11 (0.70) 0.00

Cumulative summer precipitation 0.00 18.60 (0.36) 0.00 0.00 30.86 (0.73) 0.00

Cumulative winter precipitation 0.00 5.31 (0.21) 0.00 0.00 17.20 (0.80) 0.00

Maximum average summer temperature 0.00 54.16 (0.77) 0.00 0.00 0.00 0.00

a Variables with 0% contribution to model accuracy gain were not used in model training.
b BioClim variables are estimated from [77] and are described at www.worldclim.org.

https://doi.org/10.1371/journal.pone.0184316.t003
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projected distributions for all species between model agreement scenarios, Gambel’s quail was

predicted to gain more environmentally suitable area in all model agreements when compared

to the other five species (Fig 3). Conversely, scaled quail were predicted to lose the most area of

environmental suitability (Fig 3) based on the 90% model agreement projection. It should be

noted that 75% model projection agreement (S9–S11 Figs) is likely more liberal and 100%

model projection agreement (S12–S14 Figs) is likely a conservative estimate of future distribu-

tions and should be interpreted with some caution.

Implications for species relative abundance

Based on our 90% model agreement scenario, two-way ANOVA results indicated that there

were significant differences in BBS relative abundance values across our predicted distribution

conditions (Table 2) and across species (F[7,49406] = 955.45, p<0.01). The effect size of our

Fig 3. Estimated percentages of distribution shifts for temperate North American quail based on

ensemble projections of Maxent models into 2070. Ensemble forecast model agreement is indicated as

followed: 75% (black), 90% (gray), and 100% (striped).

https://doi.org/10.1371/journal.pone.0184316.g003
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model was considered medium based on an ƞ2 value of 0.12. All pairwise comparisons of

mean relative abundance estimates across our predicted distribution conditions were signifi-

cant (p<0.01), with mean relative abundance values of 15.96, 9.98, 7.97, and 5.51 for distribu-

tion conditions 4, 8, 6, and 2 respectively. This indicated that areas with the highest relative

abundance for temperate North American quail species were predicted to contract in environ-

mental suitability in 2050 though become suitable again in 2070 (condition 4). Furthermore,

our results indicated that areas with the lowest relative abundance were in areas predicted to

be the most stable in environmental suitability in future climates (condition 2).

As our initial model indicated differences across species, we conducted a one-way ANOVA

across species to determine which species were predicted to lose significant areas of high rela-

tive abundance. For brevity, the results based on our 75%, 90%, and 100% model agreement

scenarios are summarized in the supporting information (S1–S4 Tables). The results from

our 90% model agreement scenario suggest that scaled quail are at risk of potentially losing

“strongholds”, or areas of high relative abundance, under future climate scenarios. Conversely,

the California quail and mountain quail are projected to lose approximately 12% and 8.1% of

their potentially suitable distributions, respectively (Fig 3). Yet, for the California quail, areas

that are currently estimated as suitable and are predicted to remain suitable through 2070 have

significantly higher relative abundance than areas that are lost in future climate scenarios (S1

Table), while no immediate differences in relative abundance values were predicted across

conditions for the mountain quail. There were no general trends with the Gambel’s quail and

Fig 4. Future predicted changes in distributions of California quail (Callipepla californica; a) and

Gambel’s quail (Callipepla gambelii; b) projected to 2070 and based on ensemble forecasts

(estimated through Maxent) at 90% agreement. Major rivers of North America (blue lines) are included for

geographic reference. Full descriptions for possible distribution conditions are given in Table 2. In short,

distribution conditions represent: condition 1 (distribution expansion from current to 2050 and remaining

suitable from 2050 to 2070), condition 2 (suitable at current and through all time periods), condition 3

(unsuitable from current to 2050 but expanding from 2050 to 2070), condition 4 (distribution contraction from

current to 2050 but expanding from 2050 to 2070), condition 5 (distribution expansion from current to 2050 but

contracting from 2050 to 2070), condition 6 (suitable from current to 2050 but contracting from 2050 to 2070),

condition 7 (unsuitable at current and through all time periods), and condition 8 (distribution contraction from

current to 2050 and remaining unsuitable from 2050 to 2070).

https://doi.org/10.1371/journal.pone.0184316.g004
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northern bobwhite abundance data with respect to loss of potentially suitable areas that could

be considered strongholds, though they may be at risk of losing areas with intermediate levels

of relative abundance in future climate scenarios. As with the ENM results, we note that the

75% model agreement scenario results are more liberal and the 100% model agreement sce-

nario results are more conservative in relation to the 90% model agreement scenario (S1–S4

Tables).

Discussion

Our results illustrate that climatic variables that influence local abundance do not always scale

up to influence species’ distributions. This was evident as only two of the six species in our

study retained abundance-based variable suites for creating ENMs. Furthermore, our ENMs

predicted that only two of the six quail species are projected to have overall increases in esti-

mated environmentally suitable area under climate scenarios into 2070, under our 90% model

agreement scenario. This has important implications for conservation of these species if areas

lost under future climate scenarios are currently areas with the highest relative abundance (i.e.,

scaled quail). By integrating estimates of future distributional shifts within the context of cli-

mate change and species’ response data such as relative abundance, managers should be able

to plan for conserving novel landscapes for dispersing populations while continuing to focus

efforts on areas of high abundance that are predicted to be maintained under changing cli-

matic conditions.

Fig 5. Future predicted changes in distributions of scaled quail (Callipepla squamata; a) and northern

bobwhite (Colinus virginianus; b) projected to 2070 and based on ensemble forecasts (as estimated

through Maxent) at 90% agreement. Major rivers of North America (blue lines) are included for geographic

reference. Full descriptions for possible distribution conditions are given in Table 2. In short, distribution

conditions represent: condition 1 (distribution expansion from current to 2050 and remaining suitable from

2050 to 2070), condition 2 (suitable at current and through all time periods), condition 3 (unsuitable from

current to 2050 but expanding from 2050 to 2070), condition 4 (distribution contraction from current to 2050

but expanding from 2050 to 2070), condition 5 (distribution expansion from current to 2050 but contracting

from 2050 to 2070), condition 6 (suitable from current to 2050 but contracting from 2050 to 2070), condition 7

(unsuitable at current and through all time periods), and condition 8 (distribution contraction from current to

2050 and remaining unsuitable from 2050 to 2070).

https://doi.org/10.1371/journal.pone.0184316.g005
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The CVC variable selection approach generally outperformed the biological selection

approach of climate-based variables, though the magnitude of these difference varied between

species (Fig 1). The lack of performance for our biological variable suite when compared to the

CVC variable suite (Fig 1) is likely related to scale [103], suggesting that factors that influence

local species’ abundance do not always scale up to determine species’ distributions. For exam-

ple, the northern bobwhite has a broad distribution which will experience varying effects of

climate change across latitudinal (i.e., temperature) and longitudinal (i.e., precipitation) gradi-

ents. Furthermore, for the two species in which the biological variable suite was used to deter-

mine species’ distributions (Gambel’s quail and Montezuma quail), there was evidence of

transmutability [104] in the relationship of these variables as data were scaled up. For instance,

a negative relationship between summer temperatures and productivity of Gambel’s quail has

been reported [50]. However our results indicate that, although maximum average summer

temperature contributed most to our ENMs for Gambel’s quail (Table 3), there was actually a

positive relationship between probability of suitability and maximum average summer temper-

ature (S4 Fig). Transmutation across scales also occurred for the Montezuma quail data, in

which the positive relationship between abundance and summer precipitation [60] changed to

a unimodal relationship (i.e., an indication of niche breadth) when scaled up to the species’

distribution (S7 Fig). These results further emphasize the importance of considering scale

when working with species’ distribution models.

Fig 6. Future predicted changes in distributions of Montezuma quail (Cyrtonyx montezumae; a) and

mountain quail (Oreortyx pictus; b) projected to 2070 and based on ensemble forecasts (estimated

through Maxent) at 90% agreement. Major rivers of North America (blue lines) are included for geographic

reference. Full descriptions for possible distribution conditions are given in Table 2. In short, distribution

conditions represent: condition 1 (distribution expansion from current to 2050 and remaining suitable from

2050 to 2070), condition 2 (suitable at current and through all time periods), condition 3 (unsuitable from

current to 2050 but expanding from 2050 to 2070), condition 4 (distribution contraction from current to 2050

but expanding from 2050 to 2070), condition 5 (distribution expansion from current to 2050 but contracting

from 2050 to 2070), condition 6 (suitable from current to 2050 but contracting from 2050 to 2070), condition 7

(unsuitable at current and through all time periods), and condition 8 (distribution contraction from current to

2050 and remaining unsuitable from 2050 to 2070).

https://doi.org/10.1371/journal.pone.0184316.g006
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Based on our analysis of species’ relative abundance, scaled quail and northern bobwhite

trends indicated the potential loss of areas with high and intermediate relative abundance,

respectively (S1 Table). A majority of these areas occurred on the periphery of the estimated

species’ distributions [41]. As climate induced shifts in distributions can often affect edge pop-

ulations disproportionately [105], direct loss of these “peripheral strongholds” could have

major conservation implications [106]. We note that just as distributions are expected to shift,

dispersal patterns and species’ interactions with biotic and abiotic variables [107] will likely

facilitate a shift in species’ abundance as well. Interpretations should take this into consider-

ation and future research attempting to model shifts in the future abundance of these species

would be beneficial.

A general outcome in biogeographical studies in the context of future climate change is that

non-montane species tend to shift distributions northward while montane species shift distri-

butions towards higher elevations [9,108–111]. Species endemic to high elevation areas may be

more vulnerable to a changing climate as they become more restricted to smaller, higher eleva-

tion areas termed “sky islands” [112]. Geographic restriction of species to these sky islands

may be a result of the traditional low elevation/competition vs. high elevation/physiological

stress hypothesis [113], though more recently this pattern has also been attributed to the phylo-

genetic niche conservatism process [114–115], in which instantaneous niche retention exists

[116]. If indeed niche conservatism determines high elevation distribution restrictions in cer-

tain species, they may be highly susceptible to geographic isolation due to climate change

[115]. In our study, both Montezuma quail and mountain quail, which typically occur at eleva-

tions>1,000 m [35, 100], had predictions of distribution contraction based on 90% and 100%

model agreement scenarios. Consistent with the theory of sky islands, the contraction of these

species’ distributions occurred at lower elevations and southern latitudes and areas of suitabil-

ity were retained at significantly higher elevations. Whether this is related to phylogenetic

niche conservatism or an interaction between low elevation and competition is unknown.

However, for mountain quail, interspecific competition with similar species like the California

quail seems to be insignificant [117] and interspecific competition between Montezuma quail

and other sympatric quail species is largely understudied. Furthermore, a unique biogeo-

graphic history with early genetic separation for the Montezuma quail (~15 Ma; [118]) and

mountain quail (~12.6 Ma; [118–119]) may lend such high elevation restrictions toward niche

conservatism.

All six species indicated general trends of southern latitudinal loss, at varying levels, in esti-

mated environmental suitability of their current distribution (Figs 4–6). This has been shown

in many other Galliformes, in which northward shifts were more common than any other

directional shift [42]. However, these southern edge shifts in future predicted distributions

should be viewed with caution. The low latitudinal periphery of a species’ distribution could

actually have high stability because of heterogeneity in topography and in plant community

structure, providing greater opportunities for establishing climatic niches [105,120]. The vari-

ability in these responses is related to the scale at which most climate change research is

focused. Detailed knowledge is becoming increasingly available on how organisms respond to

fine-scale heterogeneity in a thermal landscape, particularly in relation to local topography

and vegetation structure [121–125]. These behavioral responses could help to stabilize poten-

tial distribution shifts. For instance, in our study a temperature-related variable was the highest

contributing variable for only half of the species (Table 3), with all relationships indicating the

presence of a niche breadth except for the Gambel’s quail (S3–S8 Figs). It is likely that tempera-

ture was not the best contributor to many broad scale models in our study because many of

these species have been known to phenotypically and behaviorally adapt to variation in
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temperatures at very fine scales [126–129], which may slow the rate of low latitudinal distribu-

tion contraction beyond that which our models predict.

The use of land cover data in ENMs has produced mixed results with regards to model per-

formance and predicted distributions for many species, and varies across species [130–133].

However, there is often high uncertainty in projected future land cover models and these vari-

ables are often not included when projecting ENMs into future scenarios [134]. Thus, our

overall goal was to model the climatic suitability for these species rather than incorporating

both climate variables and land cover data under future scenarios. This is not to say that land

cover can be ignored in conservation planning and management efforts. Indeed, current and

future land cover across species’ distributions will certainly influence abundance and distribu-

tion of Galliformes included in our analysis [135–137]. Climate based models merely offer one

of several tools to aid in decision making and conservation prioritization and should be viewed

as such, with the inherent limitations acknowledged.

Furthermore, we note that we were restricted to analyzing our datasets within a presence-

only/pseudo-absence framework [84], which offers unique challenges to predicting species’

distributions due to assumptions based on sampling biases and detection probabilities of

individuals [138]. However, as demonstrated with this study, researchers are often limited to

using presence-only data to ensure coverage of presence points throughout the known distri-

bution by collating multiple datasets. Because of this, techniques have been developed to

overcome these biases [68, 139] and research has demonstrated robust model performance

from the Maxent algorithm despite these biases [140–141]. Yet, we do acknowledge that vari-

ability in detection probabilities could possibly lead to model uncertainty, particularly within

areas that are predicted to be areas of range expansion/contraction [142]. Thus, areas catego-

rized under distribution conditions 3, 4, 5, and 6 (Table 2) should be viewed with this bias in

mind.

Though conservation has historically been considered a crisis discipline with objectives

focused on preventing the extinction of rare or threatened species [143–144], recent arguments

suggest conservation biologists should also focus efforts on conservation of more common

species, as declines in such species may be representative of changes in ecological structure

and functions [144–145]. A benefit to modeling common species is that occurrence data and

knowledge of biologically meaningful climatic variables can often be easily accessible, as we

have demonstrated here. These data may give conservation biologists insight into broad tem-

poral and spatial trends related to at risk ecosystems. We suggest, as did [44, 144], that rela-

tively common species, in addition to rare species, should receive attention if maintaining

biodiversity is a goal.
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