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Copy number variation (CNV) detection has become an integral part many of genetic
studies and new technologies promise to revolutionize our ability to detect and link them to
disease. However, recent studies highlight discrepancies in the genome wide CNV profile
when measured by different technologies and even by the same technology. Furthermore,
the change point algorithms used to call CNVs can have substantial disagreement on
the same data set. We focus this article on comparative genomic hybridization (CGH)
arrays because this platform lends itself well to accurate statistical modeling. We describe
some newer methodological developments in local statistics that are well suited for CNV
detection and calling on CGH arrays. Then we use both simulation studies and public data
to compare these new local methods with the global methods that currently dominate
literature. These results offer suggestions for choosing a particular method and provide
insight to the lack of reproducibility that has been seen in the field so far.
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INTRODUCTION
The identification of copy number variations (CNV) has been
integral in improving our understanding of the molecular basis
for many diseases. A CNV region represents a deviance in copy
number from a reference genome that will typically contain 2
copies of each DNA segment (Sebat et al., 2004; Zhang et al.,
2009). The different copy number in the DNA can cause dramatic
effects in the levels of mRNA and protein levels which can impact
many cell processes and lead to diseases such as cancer (Curtis
et al., 2012). Currently, CNV regions have been found to be use-
ful markers for improving diagnostics, finding disease subtypes,
understanding response to therapy, and even performing com-
parative studies between species (Diskin et al., 2009; Zhang et al.,
2009; Thomas et al., 2011; Curtis et al., 2012).

CNV are measured through both array-based technologies
and sequencing based technologies. While sequencing platforms
hold promise for CNV detection, array based platforms are the
primary technology used to identify CNVs useful for diagnos-
tics. These platforms have developed rapidly to provide increased
genome resolution that should provide increased power to detect
smaller CNV. However, an alarming number of studies have
reported discrepancies when comparing calls from a replicate
sample measured on different platforms and even on the same
platform (Baumbusch et al., 2008; Curtis et al., 2009; Pinto et al.,
2011). Further complicating this is that many studies have shown
that different algorithms will provide different calls on the same
sample (Lai et al., 2005; Winchester et al., 2009; Pinto et al., 2011).
It is common practice to focus on regions identified from two
different methods and to remove all calls that are smaller than
five probes (Pinto et al., 2011). However, it has been noted that
many of the removed regions detected only by one method can be
validated (Conrad et al., 2010; Pinto et al., 2011).

SNP arrays have quickly become the dominant platform for
CNV detection in human studies due to a higher resolution of
probes with CN measurements. They also allow for the inclusion
of SNPs, reference genomes, and other sources of information
to improve power (Scharpf et al., 2008). However, comparative
genomic hybridization (CGH) arrays remain common amongst
scientists who study model organism due to the lack of available
resources or poor reference genome. CGH arrays have a simple
mean shifts structure for which segmentation methods have been
developed. These methods are relatively simple compared to the
Hidden Markov Models (HMM) used for SNP arrays and they
model the data more accurately (Scharpf et al., 2008). This allows
for a better understanding of why these methods differ and which
one to use.

The common methods for CGH arrays, Circular Binary
Segmentation (CBS) (Olshen et al., 2004; Venkatraman and
Olshen, 2006), ADM-2 (Agilent Technologies), Nexus (Nexus
Copy Number), and Fused Lasso (Tibshirani and Wang, 2008) are
all global methods meaning they compare potential CNV regions
to the full genome. They can also effectively detect aberrations
of any size. This also allows them to be used for cancer stud-
ies for which large aberrations are typical, but it implies these
methods may not fully take advantage of the sparse structure
present in normal genomes. Recently, two new local segmenta-
tion algorithms have been proposed that focus on detection of
CNV from high-resolution data sets (Jeng et al., 2010; Niu and
Zhang, 2012). Not only are these methods a major conceptual
change from the popular global change point methods, they have
strong theoretical justifications which may guide intuition on
detection limits. This improved understanding of the detection
limit may provide insight into the lack of concordance between
methods.
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In the current paper, we will review current global techniques
and then contrast them with these new methods. Next we will per-
form power analysis to understand the benefits and drawbacks
of local vs global inference methods and to provide guidance
to investigators considering different approaches. Finally, we will
evaluate all methods on publically available data to evaluate and
understand the concordance between methods. Results indicate
that at least for the array CGH case, the problem is clearer for
why one method may work better than another.

MATERIALS AND METHODS
GLOBAL SEGMENTATION METHODS
The most popular methods in statistics to detect multiple
unknown change points are recursive binary segmentation meth-
ods (Killick et al., 2012). CBS (Olshen et al., 2004; Venkatraman
and Olshen, 2006), ADM-2 (Agilent Technologies), and Nexus
(Nexus Copy Number) are all based of this simple and yet power-
ful and effective procedure. These methods simplify the problem
of finding multiple change points by searching for them one at
a time. This is equivalent to performing forward selection. Each
procedure starts by finding the most likely 1 or 2 change point
locations on the chromosome. This is determined by defining
a test statistic (usually a t-test) comparing the probe averages
between the proposed change point locations, and the probe
averages outside this window. Once the locations are found, a sig-
nificance criterion is evaluated. If it is met, then the chromosome
is split into 2–3 segments and the procedure is repeated on each
newly formed segment. The procedure stops when significance is
no longer met.

The advantage of these methods is that they are typically fast
enough for modern data sets and they are easy to implement given
a significance criterion. However, determining the correct cut off
is not trivial (Olshen et al., 2004). Also, compared to other meth-
ods such as the Fused Lasso (Tibshirani and Wang, 2008), these
methods are difficult to extend in a simple and fast way to include
multiple sources of information such as B allele frequencies.

Penalized regression methods have also been popular for
addressing the CNV problem and researches have found much
more success generalizing them to larger models (Zhang et al.,
2010). Each of these methods minimizes an objective function
that consists of the sum of squares of the residuals plus some
penalty terms that promote scarcity in calls and break points. The
most common method is the Fused Lasso (Tibshirani and Wang,
2008) that uses an L1 penalty for both the coefficients as well as
the difference in neighboring coefficients.

The major benefit to penalized regression methods compared
to binary segmentation is that it is minimizing an objective func-
tion that should result in a global minimum. However, the major
drawback in that one must choose tuning parameters and this can
dramatically affect the answer.

CBS
CBS searches for change points 2 at a time and searchers for the
maximum t-test statistic comparing the averages of the probes
between the proposed change point locations to the averages
outside of the proposed change point locations. It determines sig-
nificance by using permutation tests by rearranging the probes.

The permutations implemented are an approximation that allows
CBS to scale well. Each segment is tested independently of other
segments and this allows CBS to find very small regions amongst
large regions that can commonly be seen in cancer genomics.

Using p-values as a stopping criterion in a forward selection
type method is generally considered bad practice (Zhang and
Siegmund, 2007). They lose their interpretation when number
of change points is unknown in advance essentially due to the
large amounts of multiple testing (Olshen et al., 2004; Zhang and
Siegmund, 2007). An mBIC procedure had been developed and
this is more consistent with current statistical practice. However,
this procedure can tend to be over conservative and remove CNV
that have been validated (Zhang and Siegmund, 2007). Both p-
value and mBIC versions are easy to use and we will compare both
in simulations.

ADM-2
This method is provided by Agilent technologies and it finds the
change point that maximizes the t-test of comparing the aver-
ages between change points to 0 (Agilent Technologies). When
a segment is kept, it is median centered and the procedure is
repeated on the three new segments. This effectively combines the
segmentation and calling process into one step.

The main drawback to this algorithm is that the significance
threshold for the t-test values is a set user defined threshold. This
makes it less automated and more subjective than CBS. However,
tuning the value allows for an easy and intuitive way of dealing
with large amounts of confounding that is present CNV studies.
It is also substantially faster than using permutation tests. ADM-
2 also uses Agilent computed standard errors to weight log ratios
and reduce the effects of bad probes. This can be useful if done
accurately.

Nexus
Nexus employs a ranking procedure prior to segmentation
(Nexus Copy Number). Ranking is typically used to reduce the
effects of extreme outliers. While, outliers do tend to exist, it is
well accepted that most of the log ratio probes can be well approx-
imated by a normal or slightly heavy tailed symmetric distribu-
tion. This implies that the Nexus procedure may be dramatically
throwing away power.

After ranking, Nexus uses the same mean shifts testing pro-
cedure as CBS except it uses a normal distribution to determine
significance to speed computation. However, using a normal dis-
tribution is a very inappropriate way of approximating the null
distribution for maximum t-test type statistics (Olshen et al.,
2004). If ranking were not employed, this would result in a large
numbers of false positives.

FUSED LASSO
The Fused Lasso method as originally proposed (Tibshirani and
Wang, 2008) minimizes the following criteria

β̂ = arg min
∑

i

(
yi − βi

)2

subject to :
∑

j

∣∣βj

∣∣ ≤ s1,
∑

j

∣∣βj − βj + 1

∣∣ ≤ s2
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The global solution found by the method is entirely dependent on
the choice of tuning parameters. The suggestion in the original
paper, which was developed for large copy number aberrations in
cancer, is to use a smoothed estimate of the CNV profile to get
a crude estimate of the bound for both penalties. This tended to
give a slightly smoothed but useful estimate of the cancer pro-
file. More modern implementations suggest starting at the null
flat solution and then to gradually increase the tuning parameters
(Zhang et al., 2010). Each additional change point or region that
is formed is penalized by BIC. This finds a minimum that is the
estimated CNV profile.

LOCAL SEGMENTATION METHODS
While global segmentation compares the mean differences
between regions across the genome, the newer local methods
scan the genome to find the most probably change points or
CNV. SaRa (Niu and Zhang, 2012) and LRS (Jeng et al., 2010)
have emerged as promising new approaches for calling/detecting
CNVs. Both elegantly show that the power of detection of a
change point or a region is directly proportional to

T = n
(
μ/σ2

)

log N

where N is the total number of the probes on the chromosome,
n is the number of probes in a CNV, μ/σ is the signal to noise
ratio of the average of probe log ratios in the segment to overall
noise on the array. In other words, the test statistic that deter-
mines power for testing the change point or region is proportional
to a t-test divided by the loge of the total number of probes.

SaRa
This new procedure introduces a novel sliding window approach
to find probes with a high probability of being a break point
(Niu and Zhang, 2012). After screening a list of high proba-
bility probes, this procedure uses backwards selection to find
a final change point configuration. The advantage here is that
the approach is intuitive and unlike binary segmentation, it can
be theoretically shown to have a high probability of detecting
all breakpoints if the correct window size is used. However, as
with any sliding window approach, it is a challenge to choose an
accurate window size. The author’s recommend using multiple
window sizes to form a pool of potential change points. The cur-
rent recommendation is to use 3 window sizes corresponding to
1, 2, and 3 times the loge of the total number of probes. These are
then pruned with backwards selection using mBIC as described
above.

LRS
The final method is appropriate for use only for germ line CNV
data (Jeng et al., 2010). Similar to ADM-2, it combines calling
and break point detection by identifying regions that are signif-
icantly different from 0. The first step is to scan the genome for
any aberrations surpassing an extreme value threshold with width
less than a pre chosen length L. The located regions are then sum-
marized into non-overlapping CNV calls. By reducing the size of
the alternative distribution of regions to be constrained within

regions of length L, this method can be theoretically shown to
be having high power to find all regions that surpass the given
threshold.

The main assumption for this algorithm is that L is specified
to be larger than the width of all present CNV but smaller than
the distance between any two CNV. One could use previous expe-
rience to choose L [i.e., 100 probes is a reasonable setting (Jeng
et al., 2010)] or a second algorithm could be used to justify or tune
the parameter adaptively. A sensitivity analysis could also be per-
formed to focus on regions that are called differently for various
choices.

SIMULATION SET UP
Our goal in this paper is to compare the ability of these global
and local methods to detect CNV using standard implementa-
tions. Thus, we will borrow a simple but effective simulation set
up from the local change point papers (Jeng et al., 2010; Niu and
Zhang, 2012). The factors we vary are

1. N: total number of probes will vary between 5000, 10,000, and
20,000. This is the typical range of probes per chromosome
seen on the Agilent 244 K data set that we evaluate in the real
data analysis.

2. For each value of N, the length of the segment, n, varies from
loge(N) to 5 loge(N).

3. The signal to noise of the segment μ/σ is varied from 0.8 to 3
4. The measurement error noise will be generated both from a

normal distribution, which is the standard assumption, and
from a heavy tailed distribution. We used a t distribution with
8 degrees of freedom for the heavy tailed distribution because
it represents the measurement error seen in the real data below.

The segment width and signal to noise were chosen to represent
a range of values from difficult to detect to easy to detect. This
should provide better intuition for discrepancies in methods for
real data. Five-hundred sample profile for each factor combina-
tion were evaluated. Each sample contains CNV of each width
and these CNV are evenly spaced across the genome. We evalu-
ate the methods described above across these different factors on
their ability to detect aberrations and compare the number and
pattern of false positive break points.

REAL DATA
Recently 6 HapMap samples (Pinto et al., 2011) were collected in
triplicate on 11 of the common technologies used to date. The
results from this study were that not only are the platforms qual-
itative different, but popular methods can give different answers
as well on the same sample. We selected 3 HapMap samples and
pulled data from the Agilent 244 CGH array to evaluate meth-
ods. The samples chosen were NA10851, NA18517, and NA12239.
All samples in the study were normalized to NA10851 so we also
evaluate the NA10851 self-self hybridizations because this set of
technical replicates allows us to evaluate the array influence in
causing false positives. There exist many methods for using self-
self hybridizations to remove false positives for the rest of the
samples in a study (Khojasteh et al., 2005; Lee et al., 2011) but
there does not appear to be a consensus on which to choose.
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We choose to simply evaluate the patterns of false positives using
standard implementation of the above methods, compare these
patterns to results from simulations, and evaluate how well this
can be used to improve concordance for other samples. The 3
technical replicates for each sample will allow us to evaluate how
well each algorithm identifies reproducible CNV as well as what
combination of algorithms provides the largest detection ability.

IMPLEMENTATION
CBS is implemented using the DNAcopy package (Olshen et al.,
2004) in R (R Core Team, 2013). No default settings were mod-
ified. The Fused Lasso implementation was performed using
the cghFLasso package. We let the software choose the tuning
parameters using the default smoothing technique. Since this
method typically results in a smoothed estimate, we segmented
the smoothed estimate by using a threshold at 0.5. This reduced
the large number of break points that would be detected other-
wise but still allowed us to observe whether the true break points
were detected. Software to implement the SaRa and LRS algo-
rithms was kindly provided by the authors of the methods. The
main tuning parameter for LRS is the max width of the scan statis-
tic (L). This was chosen to be so that the scan statistic would be
larger than all segments used in all but the largest simulation.
The threshold to keep a region was sqrt[2 ∗ log(N ∗ L)] where
N is the total sequence length. We also used 3 window sizes
for the SaRa procedure, which are proportional to 1, 2, and 3
times the loge of the number of probes. This was recommended
by the original paper and shown to perform well compared to
the algorithm using and 1 window size alone. These window
sizes completely coincide with the length of the aberrations we
are trying to detect so it should maximize power for the sliding
window. The global algorithms have a computational complex-
ity of O(Nˆ2) while the local algorithms have a complexity of
O[Nlog(N)]. Thus, each of these methods are fast and can eas-
ily be run on large data sets efficiently on basic desktop or laptop
machines.

RESULTS
POWER
An aberration was considered detected if a break point is found
within 8 probes for both break points. As expected the power was
not affected by actual genome size because aberration width was
increased at the appropriate rate. Figures 1, 2 display the results
for each method, aberration width, and signal to noise for both
error distributions averaged over the different genome lengths. It
is clear that the sparse signal methods are substantially more pow-
erful than CBS (p < 0.001) and the difference in power is even
more dramatic for the t-error distribution than for the normal
distribution.

Interestingly, Sara appears to outperform the other algorithms
for the smallest 3 CNV widths, but the power stops increasing for
larger width aberrations. This pattern directly corresponds to the
fact that the smallest 3 CNV widths corresponded exactly to the
Sara window lengths used. This highlights how power to detect
CNV with an arbitrary aberration width will be similar to the
power to detect an aberration of size equal to the nearest Sara
window size.

FIGURE 1 | Power for different signal to noise and CNV width under a

normal distribution.

FIGURE 2 | Power for different signal to noise and CNV width under a

heavy tailed (t8) distribution.

For the LRS algorithm, we have a similar pattern in that the
power will be maximized for aberrations with width equal to L.
Aberrations larger than L will be broken into multiple aberrations
that must be joined after segmentation or a single region that will
be a sub part of a larger region. The first situation can be easily
handled because the multiple aberrations will be non-zero and
they can be found quickly. The second situation is best handled
by a global method such as CBS.

The Fused Lasso has a strange power curve for both error dis-
tributions. This is mostly likely due to how the smoothing param-
eters are selected in the software. As better and more flexible
software (i.e., allow users to choose tuning parameters) becomes
available, it would be interesting to implement this method across
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many settings. In this case, it is the worst performing algorithm
for power.

FALSE POSITIVES
Table 1 shows the average number of false positives for each
algorithm and error distribution. This table indicates that the per-
mutation approach for CBS maintains robustness to noise. CBS
interestingly has fewer false positives for t-distribution error, but
this is likely explained by the substantial decrease in power. We
once again see that the Fused Lasso has sub par performance with
the highest number of false positives in the normal distribution
and it has a higher number than CBS for the heavy tailed errors.
Due to the poor performance of the Fused Lasso here and in other
work (Niu and Zhang, 2012) we do not use it for the real data
evaluation.

Both LRS and Sara appear to have unacceptably high false pos-
itive rates for heavy tailed distributions. However, we provide a

Table 1 | Average number of false positive break points by error

structure for simulation.

Normal t8

CBS 0.430 0.287

CBS-BIC 0.372 0.264

SaRa 0.617 1.401

LRS 0.324 4.424

Fused Lasso 0.805 1.060

Max S.E. (paired) = 0.12.

representative example in Figure 3, to demonstrate that the both
algorithms tends to have false positives as regions with very small
widths and these are extremely easy to remove. However, we also
highlight in Figure 3, that the false positive for the SaRa algorithm
has wider widths for the same false positive and so a larger thresh-
old is required to remove it. The variable window size of the LRS
scan statistic adjusts differently to the data than the fixed window
of the Sara scan. The Sara algorithm also requires an additional
magnitude threshold step because this algorithm does not call set
regions as 0. Also, we do not show data, but the number of false
positives does increases with genome length when errors are heavy
tailed.

The simple pattern of false positives along with the increased
power suggest both the Sara and LRS algorithm could be used to
provide better concordance between technical replicates as com-
pared to other more global algorithms. One would have to make
small adjustments to remove small width aberrations, but such
adjustments are standard practice currently (Pinto et al., 2011).

REAL DATA
The NA10851 data shows that there are a large number of
false positives in the technical replicates but most can be easily
removed. This gives us a good basis for the amount of segmenta-
tion induced by platform effects. We can see many results similar
to our simulation. CBS has large number false positives and the
sparse signal methods tend to have even more false positives. We
can see in Figure 4A, that the LRS algorithm once again tends
to have large magnitude calls have widths less than 5 probes
while the SaRa algorithm tends to have slightly larger widths with
smaller magnitudes. If we use a standard threshold of 5 probes

FIGURE 3 | LRS and SaRa results on simulation before and after pruning.

The top figure runs the standard LRS and SaRa procedure and results in a
few false positives. The middle figure shows the difference width and

magnitude between two algorithms for one false positive. The bottom figure
is the result of removing small width aberrations. This now matches the true
simulated profile for LRS but the false positive for SaRa remains.
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FIGURE 4 | Distribution of regions on Self-Self Hybridization and

sample NA18517. (A) shows the distribution of regions for each
method on one technical replicate of the self-self hybridization. The
thresholds used here are 5 probes and 1.5 times the median absolute

deviation. (B) shows the same figure for the non self-self hybridization.
The differences between the algorithms are more apparent and it is
clear how the threshold rules may affect the calls for different
algorithms differently.

FIGURE 5 | log(Number) of unique CNV identified by each algorithm

for HapMap sample NA18517 for each technical replicate.

(Pinto et al., 2011) and 1.5 times the median absolute deviation,
we can remove nearly all calls for this repetition. We use these
thresholds to post-process calls for the rest of the samples.

This contrast between methods becomes more interesting as
we focus on the non self-self hybridizations. In Figure 4B, it is
clear that the same simple thresholds will results in substantially
more calls for SaRa than LRS. While LRS once again has many
low width calls, the SaRa algorithm has more variability. We also
see that there are many regions detected by CBS and SaRa that are

FIGURE 6 | log(Number) of unique CNV identified by each algorithm

for HapMap sample NA12239 for each technical replicate.

larger than the scan width of 100 chosen for LRS. This suggests the
need to use a global algorithm in conjunction with LRS to obtain
accurate break point detection for larger regions. Both samples
also have same consistent pattern in terms of number of probes
called by an algorithm for both of the samples (Figures 5, 6).

To objectively contrasts algorithms, we define the percent con-
cordance between two methods/replicates as the total number
of probes called as a CNV by both methods divided by the
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FIGURE 7 | This is % Concordance between repetitions for the same

method for NA18157. Each sample was measured in triplicate so the
probes declared CNV from one method on a repetition are compared to the
probes declared as a CNV from the same method on a different repetition.

FIGURE 8 | This is % Concordance between repetitions for the same

method for NA12239. Each sample was measured in triplicate so the
probes declared CNV from one method on a repetition are compared to the
probes declared as a CNV from the same method on a different repetition.

geometric mean of the number or probes called as CNV by
either method. This value gets reduced dramatically for methods
like SaRa that call large numbers of probes. The lower con-
cordance across replicates compared to other methods, seen in
Figures 7, 8 for NA181517 and 10 for NA12239, indicates that
SaRa is calling large amounts of probes that are not as easily
reproducible.

FIGURE 9 | This is % Concordance between methods for HapMap

sample NA18517. Percent concordance is defined as the number of probes
called as a CNV on two algorithms divided by the geometric mean of the
total number of probes called significant by the two algorithms.

FIGURE 10 | This is % Concordance between methods for HapMap

sample NA12239. Percent concordance is defined as the number of
probes called as a CNV on two algorithms divided by the geometric mean
of the total number of probes called significant by the two algorithms.

The remarkable result here is the similarity between LRS and
CBS both with each other and across replicates. Without process-
ing the LRS algorithm detects nearly 4–5 fold more false positives.
After we threshold the calls, we see that the LRS has over 90%
concordance with the CBS algorithm and with the LRS results
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on other replicates (Figures 7–10). This is nearly a 50% increase
relative to other combinations in particular the ADM2-Nexus
combination and it is higher than previous results reported
in literature (Pinto et al., 2011). Similar to simulations, we
also see that the LRS calls a few more probes significant than
CBS, and the similarity across replicates suggests that these are
reproducible.

DISCUSSION
In this paper, we compared and assessed the usefulness of two
new calling algorithms relative to popular standard methods. It is
clear that these methods have substantially higher power to detect
CNV, but they are less robust to assumptions especially deviations
from normality. However, we also find that it is easy to under-
stand how heavy tails affect these algorithms and thus it is easy to
remove these effects.

In the real data, we found that the LRS and CBS methods
have a concordance nearly 50% higher than previous methods
after using thresholds for clear false positives. Standard meth-
ods like ADM and Nexus do not achieve the same levels of
similarly. Since the usual practice is to use multiple algorithms
along with basic thresholds, our recommendation would be to
first use CBS to find the larger calls because it is more robust to
heavy tails. This should then be augmented with the LRS proce-
dure with some pruning to evaluate specific regions. It should be
noted that the results and conclusions in both simulations and
real data could be limited to our current implementation of the
software. Better implementation along with better methods (i.e.,
choice of window for SaRa) could lead to different results and
conclusions.

Future work would use calls from the 10 other platforms to try
and get a better sense of the false positive and false negative rates

of various discrepancies. As sequencing technologies become
more common, it would be useful to obtain break point loca-
tions using deep sequencing that could then be used to more
accurately assess the array technologies. Also, evaluation of these
same HapMap samples on sequencing platforms would allow
for all major CNV platforms to be compared thoroughly. This
is important because sequencing platforms tend to create addi-
tional problems both computationally due to size of data and
methodology due to different assumptions being required (Duan
et al., 2013). Methods used must have lower computational com-
plexity as well as be more robust. An even larger problem with
sequencing technologies is that the biases present in data are less
understood.

Overall, in this work, we saw clear differences in the methods
that were utilized and could easily make conclusions. However,
employing statistical models to CNV platform comparison is still
currently not done and it would be a useful tool for the commu-
nity, as technologies get higher in resolution. Until, problems with
sequencing technologies are effective reduced, array based tech-
nology will continue to be a popular resource for study of CNV.
We hope that this work will be useful to others in choosing the
appropriate method and platform for their study.
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