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Abstract: IL-2 is a cytokine released from CD4+T cells with dual actions and can either potentiate
the inflammatory response or quell a chronic inflammatory response depending on its circulating
concentration. IL-2 is elevated in many chronic inflammatory conditions and is increased during
preeclampsia (PE). PE is characterized by new-onset hypertension during pregnancy and organ
dysfunction and increasing evidence indicates that proinflammatory cytokines cause hypertension
and mitochondrial (mt) dysfunction during pregnancy. The reduced uterine perfusion pressure
(RUPP) model of placental ischemia is a rat model of PE that we commonly use in our laboratory
and we have previously shown that low doses of recombinant IL-2 can decrease blood pressure in
RUPP rats. The objective of this study was to determine the effects of a low dose of recombinant IL-2
on multi-organ mt dysfunction in the RUPP rat model of PE. We tested our hypothesis by infusing
recombinant IL-2 (0.05 ng/mL) into RUPP rats on GD14 and examined mean arterial pressure (MAP),
renal, placental and endothelial cell mt function compared to control RUPP. MAP was elevated in
RUPP rats (n = 6) compared to controls (n = 5) (122 ± 5 vs. 102 ± 3 mmHg, p < 0.05), but was reduced
by administration of LD recombinant IL-2 (107 ± 1 vs. 122 ± 5 mmHg, n = 9, p < 0.05). Renal,
placental and endothelial mt ROS were significantly increased in RUPP rats compared to RUPP+ IL-2
and controls. Placental and renal respiration rates were reduced in RUPP rats compared to control
rats but were normalized with IL-2 administration to RUPPs. These data indicate that low-dose IL-2
normalized multi-organ mt function and hypertension in response to placental ischemia.
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1. Introduction

Preeclampsia (PE) is a pregnancy associated disorder affecting 5–7% of pregnancies
worldwide and is a well-known cause of maternal, fetal, neonatal morbidity and mor-
tality [1]. PE is defined as new-onset hypertension and end-organ dysfunction during
pregnancy occurring after the 20th week of gestation and is associated with chronic immune
activation, proteinuria, fetal growth restriction and maternal endothelial dysfunction [2].
The only treatment for PE is delivery of the fetus, which is oftentimes pre-term. There-
fore, additional investigation into the pathophysiological mechanisms that lead to the
development of PE is necessary in order to develop potential therapies.

A normal pregnancy evolves with tightly controlled immune responses, whereas
pregnancies diagnosed as PE exhibit a heightened pro-inflammatory immune response [3].
The complex immune response in PE has been associated with inflammatory immune cells
and cytokines, which leads to the production of reactive oxygen species (ROS), increased
expression of endothelin-1 (ET-1), sFlt-1 and autoantibodies to the angiotensin II type 1
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receptor (AT1-AA) [4,5]. Importantly, in PE, reduced uterine perfusion may cause placental
ischemia, a phenomenon that has been well demonstrated in the reduced uterine perfusion
pressure (RUPP) rat model of preeclampsia [2,5–7]. Reactive oxygen species (ROS) are
highly reactive free radicals that damage DNA, RNA, and protein, leading to cellular
dysfunction and death. Oxidative stress is created during the imbalance between ROS and
antioxidant defense of the cell [6,8]. In normal pregnancies, there is an increase in ROS
compared to the non-pregnant state; however, ROS production is excessive in pathological
states such as preeclampsia [6,9]. Vaka [6] examined mitochondrial (mt) dysfunction
and ROS in the RUPP rat model of PE and found that mt dysfunction contributed to the
hypertension. Although we know the importance of renal and placental mt dysfunction in
hypertension in the RUPP model of PE, other avenues to lower excessive ROS or improve
mt function need to be examined.

Many clinical studies have demonstrated that low-dose IL-2 ranging from 0.3 × 106 to
3.0 × 106 IU improved chronic inflammatory states and outcomes in patients with type
1 diabetes, ischemic heart disease, autoimmune liver disease, and lupus [10–13]. We have
recently shown that low-dose IL-2, specifically (LD = 0.01 IU: 0.05 ng/mL), attenuated
circulating and placental NK cells, normalized T regulatory cells, and lowered sFlt-1 and
renal preproendothelin and blood pressure in the RUPP rats [14]. However, we do not
know the effect of IL-2 on renal or placental mt dysfunction as a mechanism to improve
hypertension. Therefore, we repeated our study and infused low-dose IL-2 (0.01 IU) into
the RUPP rats and evaluated its effect on blood pressure and multi-organ mt function.

2. Materials and Methods

Timed-pregnant 12-week-old female Sprague Dawley (SD) rats (>240 g) were pur-
chased from Envigo (Indianapolis, IN, USA) housed in an enclosed temperature-controlled
room (75 ◦F) consisting of a 12:12 h light/dark cycle and free access to standard chow
and water. All experiments were in compliance with the guidelines of the University of
Mississippi Medical Center, and the animals were handled with care based on the ap-
proved protocol #1435 (12/1/2020) and published principles in the National Institutes of
Health Guide for the Care of Animals and the Institutional Animal Care and Use Commit-
tee (IACUC).

Rats were divided into three groups consisting of normal pregnant rats (NP, n = 5),
reduced uterine perfusion pressure rats (RUPP, n = 6), and RUPP rats treated with a low-
dose (LD) treatment of recombinant IL-2 (RUPP + LD IL-2, n = 9, 0.05 ng/mL) (Recombinant
IL-2, R and D Systems, Minneapolis, MN, USA). On day 14, the RUPP surgery was
performed [15]. This surgical procedure is a model of preeclampsia in the rat and mirrors
the pathophysiology of PE in women [6,15]. Surgical clips were placed just above the iliac
bifurcation on the abdominal aorta and on ovarian arteries on the left and right side to
reduce blood flow by approximately 40%. One group of pregnant RUPP rats received a
low dose of recombinant IL-2 (0.05 ng/mL) infused intraperitoneally by a mini-osmotic
pump (Alzet; Model 2002; Cupertino, CA, USA) inserted on day 14 of pregnancy. We
have previously published that infusion of this dose of recombinant IL-2 into normal
pregnant rats had no effect on blood pressure [14]. On day 18, all groups were inserted
with indwelling carotid catheters [15]. Following the RUPP procedure, analgesics were
provided to the rats, and included 5 mg/kg carprofen administered via subcutaneous
injection and once daily for 2–3 days following RUPP surgical procedure, and 0.25%
bupivacaine hydrochloride administered topically after carotid catheter insertion. On GD
19, blood pressure was measured with a pressure transducer (Cobe II tranducer CDX Sema,
Aurora, CO, USA) and recorded continuously for one hour after a 30 min stabilization
period as previously described [15], and is the average of several of the readings over a
one-hour period. On gestation day 19, mean arterial pressure (MAP), fetal and placental
weights were measured, and blood, placentas, and kidneys were collected for analysis of
mitochondrial function.
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2.1. Isolation of Mitochondria

Renal or placenta mitochondria were isolated from rats using differential centrifu-
gation method [6,16]. Concisely, fresh tissues were rinsed and processed using a dounce
homogenizer. The homogenate was centrifuged at 4000 rpm for 3 min at 4 ◦C. The super-
natant was centrifuged at 10,000 rpm for 10 min at 4 ◦C, and the pellet was collected and
suspended in 1 mL of Mito I buffer (250 mM sucrose, 10 mM HEPES, 1 mM EGTA 0.1%
BSA, pH 7.2) and centrifuged at 10,000 rpm for 10 min at 4 ◦C. The collected pellet was
suspended in 1 mL of Mito II (250 mM sucrose, 10 mM HEPES, 0.1% BSA, pH 7.2) and
centrifuged at 10,000 rpm for 10 min at 4 ◦C. The final pellet was collected and suspended
in 200 µL of Mito II buffer and used for respiration and ROS experiments.

2.2. Mitochondrial Respiration

Respiration in isolated mitochondria was measured using an Oxygraph 2K. The
basal, state 2, state 3, state 4, and uncoupled respiration rates were measured using
glutamate/malate, ADP, oligomycin, and FCCP (carbonyl cyanide-4-[trifluoromethoxy]
phenylhydrazone), respectively [6]. Non-mitochondrial respiration was recorded with the
use of Rotenone and antimycin A. The data collected were analyzed and expressed as pmol
of oxygen consumed per second per milligram of mitochondrial protein.

2.3. Mitochondrial ROS

Mitochondrial hydrogen peroxide (H2O2) production in placental and renal mito-
chondria was determined by using amplex red assay [6,17]. Mitochondria (0.4 mg/mL)
were incubated in a 96 well plate containing respiration buffer, superoxide dismutase
(40 U/mL), horseradish peroxidase (4 U/mL), and succinate (10 mM). Amplex red (10 µM)
was added to the wells last to start the reaction. The final volume of the wells used in the
microplate was 200 µL. The real-time production of H2O2 was measured at 555/581 nm
excitation/emission using a plate reader for 30 min at 25 ◦C. Sample controls (blanks
without mitochondrial protein or amplex red) were included in the assay.

2.4. Endothelial Mitochondrial ROS

Mitochondrial-specific reactive oxygen species were measured using MitoSOX red, a
fluorogenic dye that specifically targets the mitochondria in live cells. HUVECs (ATCC),
passage 4, were grown to 70% confluency in 6 well culture plates in HUVEC complete
growth medium [Medium 199-DMEM (50:50), 10% FBS, and 1% antimycotic/antibiotic]
in a humidified atmosphere of 5% CO2 at 37 ◦C. Cells were serum starved for 4 h prior
to incubation with HUVEC complete growth media and 10% of individual serum from
NP (n = 5), RUPP (n = 4), or RUPP + LD IL-2 (n = 7) sera overnight. Each experiment for
individual rats were performed in duplicate and averaged together/animal. The data were
then averaged for each group.

Media with serum was rinsed off and cells were incubated with MitoSOX red (5 µM)
for 30 min at 37 ◦C. Antimycin A (100 µM) was utilized as a positive control. Serum free
medium was added after washing the cells twice with DPBS and the cells were incubated
for an additional 4 h. Cells were collected and analyzed in the FL2 channel of Gallios flow
cytometer (Beckman Coulter, Brea, CA, USA).

2.5. IL-2 Cytokine Profile

Blood samples from NP, RUPP, and RUPP + LD IL-2 were collected and centrifuged at
825× g for 10 min at 4 ◦C. Serum samples were separated from the clot. The supernatant
was obtain, aliquoted, and stored at −80 ◦C. IL-2 cytokine levels in serum samples from
NP, RUPP, and RUPP + LD IL-2 were measured using a Bio-Plex immunoassay according
to the manufacturer’s instructions. Data were acquired using the BIO-PlexTM 200 system
(Bio-Rad Laboratories, Hercules, CA, USA).
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2.6. Statistical Analysis

All statistical analyses were performed with GraphPad Prism 7.02 software (GraphPad
Software, San Diego, CA, USA). Results were reported as means ± SEM. Comparison of
groups were assessed by one-way ANOVA with Bonferroni multiple comparisons test as
post hoc analysis. Results were considered as statistically significant when p < 0.05.

3. Results
3.1. IL-2 Significantly Lowered Blood Pressure in RUPP Rats

Mean arterial pressure (MAP) was elevated in RUPP rats (n = 6) compared to NP
controls (n = 5) (122 ± 5 vs. 102 ± 3 mmHg, p < 0.05), but was reduced by administration
of LD IL-2 in RUPP rats (107 ± 1 vs. 122 ± 5 mmHg, n = 9, p < 0.05) (Figure 1). Placental
weights were reduced in both RUPP rats (0.53 ± 0.03 g, p < 0.05) and RUPP + LD IL-2 rats
(0.50 ± 0.02 g, p < 0.05) compared to NP controls (0.66 ± 0.04 g) (Table 1). Fetal weights
were reduced in RUPP rats (1.99 ± 0.07 g, p < 0.05) and RUPP + IL-2 rats (1.95 ± 0.08 g,
p < 0.05) compared to NP controls (2.27 ± 0.05 g) (Table 1). Percent reabsorptions and
survivability were reduced in RUPP rats compared to NP controls and RUPP + LD IL-2
rats (Table 1).
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Figure 1. Mean arterial pressure was elevated in RUPP rats (n = 6) compared to NP rats (n = 5),
but was normalized in RUPP rats administered a lose dose of IL-2 (n = 9). Results were reported
as means ± SEM and considered statistically significant when p < 0.05. (* p < 0.05 vs. NP control;
+ p < 0.05 vs. RUPP).

Table 1. Placental Weights, Fetal Weights, Percent of Total Reabsorptions, and Percent Survival.

Animal Group Placental Weight (g) Fetal Weight (g) % Reabsorptions % Survived

NP 0.66 ± 0.04 2.27 ± 0.05 0 ± 0 100 ± 0

RUPP 0.53 ± 0.03 * 1.99 ± 0.07 * 19.6 ± 4 * 80.4 ± 4 *

RUPP + LD IL-2 0.50 ± 0.02 + 1.95 ± 0.08 + 0.43 ± 0.1 # 99.5 ± 0.1 #

* p < 0.05 RUPP vs. NP control; + p < 0.05 RUPP + LD IL-2 vs. NP control; # p < 0.05 RUPP + LD IL-2 vs. RUPP.

3.2. IL-2 Significantly Improved Multi-Organ mt Function in RUPP Rats

Placental mitochondrial ROS, as measured by production of H2O2, was significantly
elevated in RUPP rats (144.6 ± 14.18% gated, p < 0.05, n = 5) compared to NP controls
(100 ± 12.34% gated, n = 5), but was normalized in RUPP + LD IL-2 rats (108.7 ± 7.38%
gated, p < 0.05, n = 9) (Figure 2A). Renal mitochondrial ROS increased in real-time pro-
duction of H2O2 in RUPP rats (127.1 ± 2.81% gated, p < 0.05, n = 5) in comparison to NP
controls (100 ± 5% gated, n = 5), but was significantly reduced in RUPP + LD IL-2 rats
(63.26 ± 3.57% gated, p < 0.05, n = 9), Figure 2B.
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Figure 2. There were increases in the (A) placental and (B) renal production of mitochondrial ROS in RUPP rats (n = 5)
compared to NP rats (n = 5). Administration of a low dose IL-2 in RUPP rats (n = 9) normalized the production of
mitochondrial ROS in the placenta and kidney. Results were reported as means ± SEM and considered statistically
significant when p < 0.05. (* p < 0.05 vs. NP control; + p < 0.05 vs. RUPP).

Placental mitochondrial state 3 respiration, which is indicative of ATP produced from
the addition of ADP, significantly decreased in RUPP rats (n = 6) (24.83 ± 15.53 pmol
of O2/s/mg, p < 0.05) compared to NP controls (n = 5) (132.9 ± 6.64 pmol of O2/s/mg)
(Figure 3A). State 3 placental respiration increased significantly in RUPP rats + LD IL-2
(n = 6) (157.3 ± 48.56 pmol of O2/s/mg, p < 0.05) compared to RUPP rats, Figure 3A.
Placental mitochondrial uncoupled respiration, which is indicative of electron transport
chain function, was reduced significantly in RUPP rats (n = 6) (14.96 ± 3.89 pmol of
O2/s/mg, p < 0.05) compared to NP controls (n = 5) (91.02 ± 15.73 pmol of O2/s/mg)
(Figure 3B) but was significantly improved in RUPP + LD IL-2 rats (n = 6) (118.1 ± 35.42
pmol of O2/s/mg, p < 0.05) compared to RUPP rats, Figure 3B.
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Figure 3. There reductions in (A) state 3 and (B) uncoupled placental mitochondrial respiration in RUPP rats (n = 6)
compared to RUPP + LD IL-2 (n = 6) and NP rats (n = 5). Results were reported as means ± SEM and considered statistically
significant when p < 0.05. (* p < 0.05 vs. NP control; + p < 0.05 vs. RUPP).

Renal mitochondrial state 3 respiration, which is indicative of ATP produced from
the addition of ADP, was significantly reduced in RUPP rats (n = 5) (138.4 ± 48.21 pmol
of O2/s/mg, p < 0.05) compared to NP controls (n = 5) (958 ± 200.6 pmol of O2/s/mg)
(Figure 4A), but was normalized in RUPP + LD IL-2 rats (n = 6) (904 ± 288 pmol of
O2/s/mg, p < 0.05), Figure 4A. Renal mitochondrial uncoupled respiration, which is in-
dicative of electron transport chain function, decreased significantly in RUPP rats (n = 5)
(68.1 ± 9.29 pmol of O2/s/mg, p < 0.05) compared to NP controls (n = 5)
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(476 ± 95.3 pmol of O2/s/mg) (Figure 4B), but was increased in RUPP + LD IL-2 rats (n = 6)
(824 ± 255.3 pmol of O2/s/mg, p < 0.05) compared to RUPP, Figure 4B.

Placental RCR (state 3/state 4) significantly decreased in RUPP rats (n = 6)
(0.79 ± 0.21 RCR, p < 0.05) compared to NP controls (n = 5) (1.77 ± 0.25 RCR) (Figure 5A),
but was normalized in RUPP + LD IL-2 rats (n = 6) (1.77 ± 0.25 RCR, p < 0.05), Figure 5A.
Although there was a decrease in renal RCR in RUPP rats (1.23 ± 0.37 RCR, n = 5) compared
to NP controls (2.07 ± 0.35 RCR, n = 5), it was not significant nor was renal RCR improved
in RUPP + LD IL-2 rats (1.30 ± 0.13 RCR, n = 5), Figure 5B.
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Figure 4. (A) State 3 and (B) uncoupled renal mitochondrial respiration were reduced in RUPP rats (n = 5) compared to NP
rats (n = 5), but were normalized in RUPP + LD IL-2 rats (n = 6). Results were reported as means ± SEM and considered
statistically significant when p < 0.05. (* p < 0.05 vs. NP control; + p < 0.05 vs. RUPP).
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Figure 5. (A). Placental RCR (state 3/state 4) was reduced in RUPP (n = 6) compared to both NP rats (n = 5) and RUPP + LD
IL-2 rats (n = 6). (B). Renal RCR (state3/state 4) was reduced in RUPP rats (n = 5) compared to NP rats (n = 5).There was no
significant difference in RCR demonstrated in RUPP + LD IL-2 rats (n = 5) compared to RUPP rats. Results were reported as
means ± SEM and considered statistically significant when p < 0.05. (* p < 0.05 vs. NP control; + p < 0.05 vs. RUPP).

Mt ROS significantly increased in endothelial cells, HUVECS, exposed to media
containing sera from RUPP (n = 4) (6.38 ± 1.81% gated, p < 0.05) compared to NP controls
(n = 5) (1.86 ± 0.6% gated) (Figure 6), but was normalized in RUPP + IL-2 rats (n = 7)
(2.69 ± 0.53% gated, p < 0.05) compared to RUPP, Figure 6.
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Figure 6. HUVECS incubated with RUPP sera (n = 4) exhibited an increase in endothelial mt
dysfunction as demonstrated by an increase in mtROS compared to NP sera (n = 5), but co-incubation
with RUPP + LD IL-2 sera (n = 7) normalized the production of mtROS. Results were reported as
means ± SEM and considered statistically significant when p < 0.05. (* p< 0.05 vs. NP control;
+ p < 0.05 vs. RUPP).

3.3. Serum IL-2 Levels Are Increased in PE

As shown in Figure 7, IL-2 levels were higher RUPP + LD IL-2 (68 ± 16 pg/mL,
p < 0.05) than RUPP control rats (5 ± 3.5 pg/mL, n = 4).
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Figure 7. Comparison of IL-2 cytokine levels demonstrated that RUPP sera (n = 5) was lower
compared to RUPP rats treated with a low dose of recombinant IL-2 (n = 5) and NP controls sera
(n = 4). Results were reported as means ± SEM and considered statistically significant when p < 0.05.
(* p < 0.05 vs. NP control; + p < 0.05 vs. RUPP).

4. Discussion

One hallmark of PE is multi-organ dysfunction, which can include a combination of
renal, hepatic, neural, cardiac, placental or endothelial dysfunction. Appropriate cellular
processes at the level of the mitochondria such as maintaining electron transfer, cellular
respiration, and oxygen utilization are important for tissue homeostasis and function.
In this study, we investigated the effects of recombinant IL-2 supplementation on PE
characteristics such as hypertension and placental and renal mt dysfunction/ROS in RUPP
rats. In addition, we measured endothelial mt dysfunction from cells exposed to circulating
factors in sera from control normal pregnant rats, RUPP rats and RUPP rats + IL-2. The
RUPP rat model of placental ischemia is a well characterized and well known model of
preeclampsia that mimics the physiological features of humans, including hypertension,
immune system abnormalities, systemic and renal vasoconstriction, and oxidative stress
in the mother, and intrauterine growth restriction found in the offspring. Therefore, the
RUPP model of placental ischemia has been shown by our lab and others as a useful model
in studying the effects of placental ischemia. Although a limitation of our study is that
we had a small number of animals in our experimental groups, the overall purpose of
our study was to understand more about the effect of IL-2 and its role in inflammation in
response to placental ischemia. The results of our study demonstrated that IL-2 normalized
mean arterial pressure and significantly reduced the mt ROS in the kidney and placenta of
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RUPP rats. Moreover, IL-2 reduced mt ROS from HUVECs exposed to sera from RUPP
rats, indicating that IL-2 was able suppress circulating factors produced in response to
placental ischemia that stimulate endothelial dysfunction. Importantly, renal and placental
respiration were reduced in RUPP rats compared to normal pregnant rats. Low-dose
recombinant IL-2 was able to normalize both renal and placental respiration, thus indicating
that low-dose IL-2 was able to improve organ function in response to placental ischemia.

A compilation of research indicates that endothelial and mt dysfunction is readily
observed in preeclamptic placentas [6,18–27]. Previously, McCarthy [28] showed vascular
mtROS and decreased respiration in HUVECs exposed to sera from PE patients compared
to HUVECS cultured with sera from normal pregnant women, thus indicating the impor-
tance of the release of soluble factors in the circulation to cause cellular mt dysfunction.
Notably, we demonstrated that the blockade of circulating AT1-AA from human PE sera
was able to attenuate mtROS in HUVECS cultured with PE sera with and without AT1-AA
blockade [23]. In addition to the AT1-AA, our lab has recently investigated the impor-
tance of mt oxidative stress in PE pathology, and has linked reduced vascular endothelial
mt respiration and mtROS with the presence of CD4+ T cells stimulated in response to
placental ischemia [23–29]. In a previous study from our groups, we showed that LD
recombinant IL-2 improved T regs cell in RUPP rats. In corroboration with our previous
studies, this study demonstrated that infusion of low-dose IL-2 was able to normalize
impaired mitochondrial function in tissues and vascular endothelium, thereby presenting
a novel role for IL-2, possibly via improving T reg cells, in the pathology of preeclampsia.
Importantly, PE is caused by multiple factors, and we investigate the role of various factors
to contribute to the pathology of the disease and to possibly eliminate gaps in the literature.
Although this study investigated IL-2, there is still more to understand about preeclampsia
and the other factors that contribute to this disease. In addition, multiple factors can
induce placental mitochondrial ROS production, and for example, we have previously
shown that natural killer cells [4] and CD4+ T cells [29] cause mitochondrial dysfunction
in RUPP rats and endothelial cells incubated with RUPP serum exhibit mitochondrial
ROS [6]. HUVECS treated with serum from PE women and incubated with MitoSOX Red
indicated that serum from PE women contained circulating factors which contribute to mi-
tochondrial dysfunction and an increase in mt ROS in cultured human vascular endothelial
cells, thereby demonstrating that an increase in oxidative stress contributes to endothelial
dysfunction [6,23]. Furthermore, PE is associated with chronic immune activation, thereby
leading to an increase in inflammatory cytokine production. This imbalance leads to
chronic inflammation that is characterized by increases in pro-inflammatory cytokines and
oxidative stress, (ROS), (endothelin (ET-1), and agonistic autoantibodies to the angiotensin
II (Ang II), type 1 receptor (AT1-AA). These and other factors may influence mitochondrial
activity and its contribution to maintenance of normal blood pressure during pregnancy.
Discovering strategies that could potentially target mitochondrial stress via reducing mt
oxidative stress and improving mitochondrial function is a finding that will greatly benefit
maternal and fetal outcomes.

We recently showed a low-dose regimen of IL-2 consisting of three regimens between
0.01 and 0.05 IU into the RUPP rats significantly increased T Regs and decreased NK
cells and hypertension during pregnancy [14]. We chose the lowest dose IL-2 from the
previous study we performed because it had least detrimental effects on pup weight and
survivability while still lowering the blood pressure and other factors associated with
placental ischemia of pregnancy, such as sFlt-1 and renal endothelin-1. Moreover, this dose
of IL-2 normalized circulating T regs in our previous study. Considering the importance of
IL-2 in NK cell and T cells maturation, transformation and activity, we utilized this dose
for our current study.

Regulatory T cells are necessary to maintain an immune steady state and to prevent
autoimmune diseases. IL-2 has been touted for its unique ability for T cell expansion,
function, and survival. When disrupted, IL-2-dependent balance of Treg and T effector
cells causes autoimmunity and chronic inflammation. Recent studies have indicated that
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treatment with a low-dose IL-2 induces immune tolerance resulting in the suppression of
an unwarranted immune responses and suggests that it may be a possible treatment of
certain autoimmune disorders [30]. Because Treg cells cannot make their own IL-2, they
depend on IL-2 produced by activated CD4+ T cells, therefore, linking T effector and T reg
cell populations for immune homeostasis. In numerous autoimmune diseases, there is a
decrease in the numbers and function of Treg cells [31–34] that is restored by exogenous
low doses of IL-2 in mice [35,36] and humans [37–39]. Clinical trials of low-dose IL-2 in
patients have had selective effects on T regs in healthy individuals, patients with hepatitis
C virus-induced vasculitis, type 1 diabetes, and systemic lupus erythematosus [39–42].
Although some studies have reported that IL-2 did not alter or increase blood pressure
in rats, it appears that the differences in the dose and frequency of IL-2 injection may be
responsible for the difference in the lack of antihypertensive effect.

Previous studies have shown that IL-2 attenuated progression of hypertension in
Dahl S rats, which was accompanied by improvements in renal dysfunction and cardiac
hypertrophy [43,44]. In addition, treatment with IL-2 immune complex of hypertensive
mice was shown to increase T regs and reduce aortic stiffening [44]. Moreover, a low dose
of IL-2 administered in mice was able to prevent type 1 diabetes mellitus and improve the
numbers of Tregs via their programming dependence on IL-2 [45]. Importantly, a high dose
of IL-2 could produce lethal toxicity [46,47] and lead to the destruction of cells making high-
dose IL-2 efficacious in treating metastatic cancer due to increasing the activity of natural
killer cells toward the tumors. Therefore, the dose of IL-2 appears to be a determining
factor in the imbalance between immune tolerance and destructive autoimmunity and is
important to be established safely before moving forward as a treatment for any disease.

In order to successful maintain pregnancy, cytokines are necessary for maintaining
a fetotolerant environment. Although IL-2, TNF-α, and IFN-γ are characteristic of T
Helper 1-type immunity and induce a cytotoxic and an inflammatory reaction, IL-2 has
been shown to improve inflammation during pregnancy without causing any detrimental
effects [48]. In a normal pregnancy, IL-2 levels are decreased to concentrations necessary
for the development, proliferation, and survival of T regs [49,50]. When IL-2 levels are high,
pregnant women have a higher susceptibility for spontaneous abortion, preterm delivery,
IUGR, and the development of PE [51,52]. High doses of IL-2 cause capillary damage,
renal and liver damage, and hypotension [10–12]. Yet, higher doses of IL-2 have been
coupled with additional drugs as a chemotherapeutic agent [10–12,53]. At high doses, NK
cell proliferation and cytolytic activity are stimulated, which is an important component
of some metastatic cancer therapies [53]. Furthermore, a high-dose treatment of IL-2 has
been shown to be beneficial in treating metastatic cancer because of an increased activity
of natural killer cells towards tumors. Therefore, high-dose treatments have been more
common and utilized for longer periods of treatment compared to those utilizing lower
doses of IL-2. However, these current studies show that in late pregnancy, low-dose IL-2
may help to lessen inflammation in response to placental ischemia which in turn lowers
hypertensive molecules such as sFlt-1, ET-1 and mt ROS.

Cytolytic natural killer cells were also significantly decreased with LD IL-2 infusion
in to RUPP and normal pregnant rats [14]. Because the immune cell profile was so very
different between RUPP and RUPP+IL-2 in our previous study and because we have
shown the importance of both T cells and NK cells to cause mitochondrial dysfunction, we
examined the effects of IL-2 on mt function in RUPP rats. Mitochondria are an important
source of ROS production, and the superoxide that is not able escape the mitochondria is
reduced to hydrogen peroxide. Therefore, the highly reactive free radicals (ROS) damage
the cellular contents and result in cellular dysfunction and cell death. Increased cell death
within a tissue contributes to an overall dysfunction of that tissue and organ and therefore
damage to mitochondrial function correlates with dysfunctional organ systems. HUVECS
supplemented with serum from preeclamptic and normotensive women have shown im-
paired tube like structure formation and normal regular tube-like structure, respectively [9].
Furthermore, an in vitro model of HUVECS treated with PE serum demonstrates that
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NADPH oxidase activity is increased and thus is important in O2 formation [54–56]. We
have shown that circulating factors such as the AT1-AA and TNF-α contribute to vascular
endothelial cell mt dysfunction. In this study, we show that LD IL-2 improves not only
renal and placental mt function in RUPP rats but that circulating factors stimulated by
placental ischemia in the RUPP treated with LD IL-2 are decreased to the extent that RUPP
sera no longer stimulates endothelial cell mt dysfunction and ROS.

5. Conclusions

In conclusion, supplementation of IL-2 significantly decreased the blood pressure in
RUPP rats and lowered both placental and renal mt dysfunction/ROS and endothelial mt
dysfunction/ROS. Moreover, in the current study, infusing a low dose of IL-2 mitigated the
decrease in fetal reabsorptions, and thereby increased the percent survivability of the fetus
in contrast to untreated RUPP rats. Although the previous study by Cunningham et al. [14]
showed adverse fetal effects of LD IL-2, this study did not, which could be due to different
operator’s skills, yet both studies did demonstrate an increase in reabsorptions compared
to NP controls. Therefore, coupled with our previous study, these results demonstrate that
IL-2 normalized mt function in RUPP rats, which is associated with lower blood pressure
and improved fetal survivability, thereby indicating that a potential therapeutic target for
PE could be a carefully planned regimen of LD IL-2.
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