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Abstract A mutation is ultimately essential for adaptive evolution in all populations. It arises all

the time, but is mostly fixed by enzymes. Further, most do consider that the evolution mechanism is

by a natural assortment of variations in organisms in line for random variations in their DNA, and

the suggestions for this are overwhelming. The altering of the construction of a gene, causing a dif-

ferent form that may be communicated to succeeding generations, produced by the modification of

single base units in DNA, or the deletion, insertion, or rearrangement of larger units of chromo-

somes or genes. This altering is called a mutation. In this paper, a mathematical model is introduced

to this reality. The model describes the time and space for the evolution. The tool is based on a com-

plex domain for the space. We show that the evolution is distributed with the hypergeometric

function. The Boundedness of the evolution is imposed by utilizing the Koebe function.
� 2015 Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Consider a population evolves agreeing with the method con-
taining mutations and natural assortment, and some of its
quantitative traits are modified progressively. The question

is: what is the rate of this modification? The speed of evolution
is critical in constant competition of classes and is of significant
practical prominence in relation to present day phenomena

such as, adaptation of endangered species to changing environ-
mental conditions or adaptation of pathogens to existing
methods of treatment. Measurable method of evolution dates

back at least to Fisher’s (1930) book, which enclosed his
well-known ‘‘Fundamental Theorem of Natural Selection”,
affirming that the rate of increase of the mean fitness of a pop-
ulation at any moment of time, attributed to natural selection,

equals the genetic variance of fitness of that population at that
moment of time. The following question is, of course, what
concludes this variance in the population fitness, and how to

predict it?
Though diverse epigenetic and genetic methods stand elab-

orated in the development plus preservation of altered tissues,

the evolution of population can be determined by the relative
significance of an asymmetric and the symmetric cell differen-
tiation, cell divisions and death. A central issue in evolutionary
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genetics is to calculate whether a population accrues damaging
or beneficial mutations.

The equivalent proteins and genes stay perceived to be

important for instruction of various tissues. This unity and
conservation of straightforward procedures entail that their
mathematical models can employ crossways the spectrum of

pathological and normal growth. An androgynous population
accumulates damaging mutations and, consequently, its fitness
will grow. On the other hand, it newly rotated out that useful

mutations are additional ample than formerly supposed.
One recognizes that the technique of demonstrating such

schemes remains to utilize a discrete family of ordinary differ-
ential equations labeling dynamics of cells at various matura-

tion phases and evolution between the phases. These
consequently entitled multi-compartmental models stay
founded by the condition that in every lineage of cell origina-

tors there occurs a discrete sequence of maturation phases,
which are consecutively crossed. Nevertheless, it is besides flat-
tering increasingly strong that the differentiated originator’s

system such sequence only beneath homeostatic assumptions.
A devoted cell usually arranges a continuous sequence, which
may include incremental phases, the measure of which could

be changeable (Biktashev, 2014; Alfaro and Carles, 2014;
Britton et al., 2015; Abasi et al., 2015; Gerleea and Altrock,
2015; Chao et al., 2015; Landguth et al., 2015). As an applica-
tion, cell differentiation devoid of cell divisions is detected

throughout neurogenesis. Furthermore, in certain tissues such
as the mammary gland, different phases of differentiation
stand not well recognized.

This clarification appeals not simply to the essential biolog-
ical question of whether the cell differentiation is a continuous
or a discrete development and what is the amount of cell

difference, nevertheless correspondingly to how to select a suit-
able forming method. Is the pace of maturation (commitment)
verbalized by continuous divisions, or is maturation a contin-

uous development decoupled from proliferation? The conven-
tional interpretation in ordinary hematopoiesis appears to be
opposite. To discuss these questions and to consider the impact
of potential continuous transformations of the differentiation

procedure, one can impose a classical method based on partial
differential equations of transport category and compare this
method to its discrete complement. The argument of

disappearance is a multi-compartmental method of a discrete
gathering of cell subpopulations, which stood newly suggested
in Marciniak-Czochra et al. (2009) and Doumic et al. (2011) to

study the dynamics of the hematopoietic scheme with cell
proliferation and differentiation structured by a nonlinear
feedback loop.

Hitherto an additional category of evolution is selection.

This income that various alleles could have various susceptibil-
ities for resampling, for instance, various amounts at which
they resemble. An auxiliary element might be migration, i.e.,

genetic substantial is communicated among various popula-
tions for the reason that the individuals booming this substan-
tial travel from one population to the following.

Analysis of populations has approximately continuously
depended on processes founded on estimated gene identities
or heterozygosities, because of these connections to variance

and the binary nature of sexual reproduction and diploid
inheritance. The corresponding processes and their numerous
simplifications for divided populations have likewise played a
central role in evolutionary biology and population genetics.
This method highlights the frequent alleles by introducing in
them much more weight than their population fraction, and
multi-level hierarchical additive partitioning is not typically

likely with heterozygosity-based measures (Landguth et al.,
2015).

Investigators in numerous castigations have progressively

documented that variety inside populations and compositional
differentiation between populations cannot be completely cat-
egorized by a single measure. For example, ecologists have

touched a consensus (Chao et al., 2014) that instead of one
or a few diversity measures, it is best to practice a multifaceted
diversity measure parameterized to totally describe the class
abundance distributions in ecological assemblages. By anal-

ogy, moreover to measures based on heterozygosity, comple-
mentary abundance-sensitive measures that are sensitive to
less frequent alleles are needed to portray a more complete pic-

ture of allele frequency distribution or differentiation among
populations.

Mathematics is frolicking an ever more significant character

in the physical and biological sciences. The technique followed
in most texts on these topics (e.g., electrodynamics, quantum
mechanics, classical mechanics, modern physics, mathematical

biology, chemical biology, etc.) is forum-getting at the problem
as a differential equation that is associated with one of several
special differential equations (Bessel’s, Hermite’s, Legendre’s,
Laguerre’s, etc.). All the above equations have solutions in

term of special functions. The most important special function
is the hypergeometric function (Seaborn, 1991)

pFqða1; . . . ; ap; b1; . . . ; bq; zÞ ¼
X1
n¼0

ða1Þn . . . ðapÞn
ðb1Þn . . . ðbqÞn

zn

n!
;

where (x)n is the Pochhammer symbol. The hypergeometric
function is utilized to test, classify and analyze various types
of biological process (Gurarie and King, 2014).

In this paper, a mathematical model is presented for this
certainty. The method designates the time and space for the
evolution. The tool is based on a complex domain for space.

Therefore, we utilize some of the concepts in geometric func-
tion theory, such as univalent function. We show that the evo-
lution is distributed with the hypergeometric function. The

Boundedness of the evolution is imposed by utilizing the
Koebe function. This new method allowed us to understand
the fitness of the population geometrically. The changing with

respect to time and space is formulated by employing the con-
cept of fractional calculus in real as well as in a complex
domain.

2. Material and methods

In this section, we select some recent mathematical models.

2.1. Adaptive dynamics

Adaptive dynamics is essentially apprehensive with qualitative
questions such as stability of evolution, the direction of evolu-
tion, steady states and speciation due to branching. On the
quantitative stage, the fundamental for adaptive dynamics is

the following canonical equation:

dM

dt
¼ jðMÞdrðM; xÞ

dx

����
x¼M

;
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where M is the average value of the trait at time t, r(M,x) mea-

sures the fitness of characters with trait value x in the environ-
ment of resident trait values M and the coefficient jðMÞ is
defined as a non-negative coefficient.

2.2. Stochastic model

Stochastic model is concerned about the evolution and the
competitive omission principle, that at each instant of time,

the selection decreases the population to a certain category,
which though changes in time due to random mutations. This
model is imposed and vindicated in, consuming a stochastic

model, under certain asymptotic statements about the muta-
tion rate. Faintly simplifying, the key assumption is that muta-
tions are accordingly rare that for a given population size,

there is adequate time between consecutive mutations for the
whole population to change to the new trait value if it is fitter
than the previous.

2.3. Quantitative genetics

Quantitative genetics are establishing a number of its own
methods and studied complicated problems associated with a

quantitative description of evolution. One method is through
the technique of moments, which reflected multilocus determi-
nation of a quantitative trait in a sexually duplicating popula-

tion, and in specific offered an infinite chain of ordinary
differential equations for the moments of allelic distribution.

2.4. Gaussian distribution

Gaussian distribution is considered. This method analyzed the
speed of evolution, though far from any evolutionary stable

state, based on the simplest possible expressive method. This
is a deterministic integro-partial differential equation, which
is analogous to numerous procedures assumed or derived else-
where. In addition, the author provided a simple derivation of

this model from, avoiding to sort non-verifiable conditions, for
terror that the final outcomes may convert artifacts of any such
conditions. The applied efficacy of the model is demonstrated

by giving that treatment of a more faithful model through
asymptotic methods

dM

dt
¼ ½rðxÞ � �MðtÞ�Mþ @

@x
CðxÞMþDðxÞ @M

@x

� �
;

�M ¼
Z 1

�1
Mðt; xÞdx:
2.5. The Replicator-mutator

The Replicator-mutator is a model that considered a class of
nonlocal reaction–diffusion problems. The authors made a dif-
ficult and detailed analysis of the Cauchy problem associated
with

@tM ¼ @xxMðx� �MÞM; �M ¼
Z 1

�1
xMðt; xÞdx:

Indeed, they showed that it can be reduced to the heat

equation, and therefore calculate its solution explicitly. This
allowed to designate a selection of comparing behaviors
depending on the initial data.
2.6. The proposed method

Our aim is to introduce a new model of evolution based on
fractional calculus in real and complex domains. Our model
takes the form

Da
tMðt; zÞ ¼ jðMÞDb

zMðt; zÞ; ð1Þ
with

ðMð0; 0Þ ¼ 0; a 2 ð0; 1�; b 2 ð1; 2�; t 2 ½0;T�; z 2 UÞ;
where U is the open unit disk, Da

t is the Riemann–Liouville

fractional differential operator of order 0 < a< 1,

DafðtÞ ¼ d

dt

Z t

a

ðt� sÞ�a

Cð1� aÞ fðsÞbs:

Corresponding to the fractional integral operator for a con-

tinuous function f(t) of order a > 0,

IaafðtÞ ¼
Z t

a

ðt� sÞa�1

CðaÞ fðsÞds:

If the above operators are defined in a complex domain for
analytic function f, then they are called the Srivastava–Owa
operators (Podlubny, 1999; Srivastava and Owa, 1989)

Db
z fðzÞ ¼

d

dz

Z z

0

ðz� #Þ�b

Cð1� bÞ fð#Þb#; z 2 U:

And

IbfðzÞ ¼
Z z

0

ðz� #Þb�1

CðbÞ fð#Þd#:

Remark 2.1.

Da
t t

k ¼ Cðkþ 1Þ
Cðk� aþ 1Þ t

k�a; k > �1; 0 6 a < 1

and

Iatk ¼ Cðkþ 1Þ
Cðkþ aþ 1Þ t

kþa; k > �1; a > 0:

We need the following result, which can be found in
Ibrahim and Jalab (2013) and Ibrahim et al. (2015):

Lemma 2.1. Let M(t,z) be a univalent function (one to one) in
the unit disk for all t 2 ½0;T�; z 2 U. Then

jDb
zMðt; zÞj 6 r�l

Cð1� lÞ ðrFðð2Þn; ð1Þn; ð1� lÞn; rtÞÞ0;

1 < b ¼ 1þ l 6 2

0 :¼ d

dz
; r ¼ jzj; z 2 U n f0g

� �
;

where the equality holds true for the Koebe function

fðzÞ ¼ z

ð1� zÞ2 ; z 2 U:

Our aim is to find an approximate solution for the Eq. (1).
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Theorem 2.1. Consider the initial differential Eq. (1). If

jjðMÞj < e; e > 0; b ¼ lþ 1; l 2 ð0; 1� and M(t,z) is univalent
in U, then Eq. (1) has an approximate solution to the hyperge-
ometric function

Mðt;rÞ� e
rlCð1�lÞCð1þaÞt

aðrFðð2Þn;ð1Þn;ð1Þn;ð1�lÞn;ð1þaÞn;rtÞÞ0:

Proof. By using the upper bound of the fractional differential
operator (Lemma 2.1), we have

Da
tMðt; zÞ � er1�l

Cð1�lÞ ðrFðð2Þn; ð1Þn; ð1� lÞn; rtÞÞ0

¼ er
rlCð1�lÞ

X1
n¼0

ð2Þnð1Þn
ð1�lÞn

nþ1
n!
ðrtÞn:

Operating the above equality, by Ia and applying some
properties of the fractional calculus (Remark 2.1), yields

Mðt;rÞ¼ er
rlCð1�lÞ

X1
n¼0

ð2Þnð1Þn
ð1�lÞn

nþ1

n!
rn

Cðnþ1Þ
Cðnþ1þaÞt

nþa

¼ er
rlCð1�lÞCð1þaÞt

a
X1
n¼0

ð2Þnð1Þnð1Þn
ð1�lÞnð1þaÞn

nþ1

n!
ðrtÞn

¼ er
rlCð1�lÞCð1þaÞt

aðrFðð2Þn;ð1Þn;ð1Þn;ð1�lÞn;ð1þaÞn;rtÞÞ0;

ð2Þ
where 0:=d/dz. Hence, the proof. h
Figure 1 The solution of Eq. (1) for various values of l, where
a= Є= t= 1. Mature cells evolution with time–space distribu-

tion of cell density along the maturation level.

Figure 2 The solution of Eq. (1) when
3. Results

Eq. (1) has a converged solution in a complex domain. The
solution can be approximated by a hypergeometric function.

This leads to a stable evolution of the population determining
by changing both time and space. Founding of the self-similar
result in (2) outlines of population in the trait space at selected

times during initial transient following an initial point (0,0).
Parameters of the system are: 0 < a 6 1, 1 < b 6 2 and
e> 0 (the maximum value of the non-negative coefficient of
the system). Numerical simulation on the interval r 2 [0,1)

with Neumann boundary conditions (simulation with Dirichlet
boundary conditions or wider interval produces indistinguish-
able results) is explained. We tension here that the functional

form (2) is not an arbitrary assumption, but an exact conse-
quence of the evolution Eq. (1), once appropriate initial condi-
tions are provided. These initial conditions would be some type

of Gaussian special function. Though, numerical models
shown in Fig. 1 propose that the general solution at arbitrary
initial distributions asymptotically grows into normal as time

increases, so the special class (2) must in fact be completely
illustrative. We comprehended that this result can be reflected
as a positive, bounded, and stable solution in the unit disk. We
could employ this method on well known fractional diffusion

equations likewise the fractional wave equation in a complex
domain. A reminder that the hypergeometric function includes
the Mittag–Leffler function (Ibrahim and Jalab, 2013; Ibrahim

et al., 2015). 3-Dimensional form of solution is imposed in
Fig. 2, where a = l = 0.5 and a = 0.9, l = 0.5, respectively.
The maximal solution is in the boundary of the unit disk at

t= 0.4 and e= 1.

4. Discussion

To comprehend the modification of the fractional models, we
derived an approximation equation for the time–space frac-
tional differential model supposing that a continuum of differ-

ent phases can be demarcated. The fractional power in both
time and space is delivered by the information that the frac-
tional differentiation is organized by intracellular biological
developments, which remain definitely continuous in time, at

least when be close to over a huge total of cells. Accordingly,
designed for the appropriate time scaling, we have to take
responsibility that commitment and maturation of cell progen-

itors do not progress by the separation clock (one step in the
a= l = 0.5 and a= 0.9, l = 0.5.
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maturation process = one division) nonetheless is a continu-
ous procedure and can be considered between the divisions.
This statement clarifies the essential difference between the

two models (fractional model and ordinary model). The orga-
nized population model (fractional formula) is certainly a
boundary of the ordinary equation with the changes between

compartments connected to the division of the cells. Con-
versely, the simulations can show precisely the identical
dynamics for an appropriate choice of the maturation rate

function.

5. Conclusion

We formulated properties of the solution to (1) for a wide class
of initial conditions, which generalized (by employing the con-
cept of fractional calculus for both time and space) and

extended (by utilizing the complex domain in the unit disk)
the properties of the approximate solutions. We did that in
terms of the special function called the hypergeometric func-
tion, which involve so many well known functions such as

the exponential function. The proposed model described in
continuous phenotypic trait space and continuous time. We
did not need the equilibrium point of the system. That is the

model stabilized far away from evolutionary stable equilib-
rium. This is the first discussion of the stability of a system
without its equilibrium point. The hypergeometric function

was a powerful trait in the population and emerges sponta-
neously during the course of evolution, as stated in Theo-
rem 2.1. This eliminates the need for any artificial closing
procedures in the fractional differential equations in a complex

domain. In biological standings, the growth of the Eq. (1) in
the progress of evolution is owed to the absence of stabilizing
selection in the simplified version of our model. Stabilizing

selection can stop that growth, as illustrated by the stationary
solution of Eq. (2) around a local optimum in the fitness land-
scape (T ? 1). Additionally, the action of the hypergeometric

function is needed to obtain an asymptotic approximation of
the model.
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