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Regulation of cell signaling cascades is critical in making sure the response is

activated spatially and for a desired duration. Cell signaling cascades are

spatially and temporally controlled through local protein phosphorylation

events which are determined by the activation of specific kinases and/or

inactivation of phosphatases to elicit a complete and thorough response.

For example, A-kinase-anchoring proteins (AKAPs) contribute to the local

regulated activity protein kinase A (PKA). The activity of kinases and

phosphatases can also be regulated through redox-dependent cysteine

modifications that mediate the activity of these proteins. A primary example

of this is the activation of the epidermal growth factor receptor (EGFR) and the

inactivation of the phosphatase and tensin homologue (PTEN) phosphatase by

reactive oxygen species (ROS). Therefore, the local redox environment must

play a critical role in the timing andmagnitude of these events. Mitochondria are

a primary source of ROS and energy (ATP) that contributes to redox-dependent

signaling and ATP-dependent phosphorylation events, respectively. The

strategic positioning of mitochondria within cells contributes to intracellular

gradients of ROS and ATP, which have been shown to correlate with changes to

protein redox and phosphorylation status driving downstream cellular

processes. In this review, we will discuss the relationship between

subcellular mitochondrial positioning and intracellular ROS and ATP

gradients that support dynamic oxidation and phosphorylation signaling and

resulting cellular effects, specifically associated with cell migration signaling.
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Introduction

Two primary reversible post translational modifications,

protein oxidation and phosphorylation, can elicit cooperative

or divergent cell signaling responses affecting numerous cell

processes including cell proliferation (Yao et al., 2019), cell

migration (Hurd et al., 2012; Cao et al., 2015), transcription

(Riedl and Egly, 2000; De Nigris et al., 2001; Al-Mehdi et al.,

2012), stress response (Hamada et al., 2020), immune cell

activation (Davidson et al., 2003; Gostner et al., 2013; Iwasaki

et al., 2020) and more. These modifications directly impact

protein structure and function, hence altering their

downstream cell signaling cascades (Karasev et al., 2018; Fu

et al., 2019). Mitochondria have emerged as an important

source of ROS that contribute to redox signaling (Horn et al.,

2017; Jezek et al., 2020) while being the primary source of cellular

ATP required for cellular energy and protein phosphorylation.

Mitochondria are dynamic organelles that vary in size, shape and

location depending on cell type (normal and disease), energy

status and metabolic demand for mitochondrial metabolites

(Tilokani et al., 2018).

Mitochondria produce ROS and ATP at the electron

transport chain (ETC) which takes place in the inner

mitochondrial membrane (IMM). Electrons are passed from

NADH and FADH2 through IMM bound protein complexes,

with subsequent pumping of H+ ions to the intermembrane space

(IMS). H+ ions are pumped from the IMS through the ATP

synthase and into the mitochondrial matrix to generate ATP

(Zhao et al., 2019). ROS generation occurs when the electrons

from NADH/FADH2 leak out of the protein complex and bind

with O2 to form superoxide (O2
−) which can be enzymatically

converted to H2O2 via the mitochondrial superoxide dismutase

(SOD2) (Cadenas and Davies, 2000; Turrens, 2003).

Approximately 0.2–2% of the electrons flowing through the

ETC, under physiological conditions, can leak out to cause

oxidation of proteins proximal to mitochondria (Cadenas and

Davies, 2000; Turrens, 2003).

Not only can mitochondria produce ATP and ROS, but they

can also regulate calcium (Ca2+) concentrations which also

regulate mitochondrial function. A flux of mitochondrial Ca2+

causes activation of the dehydrogenases in the tricarboxylic acid

(TCA) cycle, which are the rate limiting steps during oxidative

phosphorylation; therefore, causing an increase in NADH which

eventually feeds into the ETC (Duchen, 1992; Maechler and

Wollheim, 2000; Rizzuto et al., 2000). The mitochondria can also

associate with the endoplasmic reticulum (ER), which is involved

in Ca2+ storage and release. Therefore, the interaction between

mitochondria and the ER can lead to different Ca2+ associated

pathways such as increased mitochondrial bioenergetics or even

cell death (Carreras-Sureda et al., 2018; Marchi et al., 2018). The

relationship between the mitochondria and Ca2+ signaling

throughout the cell is extensive and not the central focus of

this review.

The subcellular positioning of mitochondria, and the localized

activity of mitochondria, drives intracellular gradients of ATP and

ROS and therefore mitochondrial trafficking is necessary for

localized accumulation of these molecules (Schuler et al., 2017;

Alshaabi et al., 2021). A large body of research supports a key role

for ROS-dependent redox signaling in regulating cell migration

phenotypes (Hurd et al., 2012). Emerging research now shows the

subcellular positioning of mitochondria also supports cell

migration phenotypes (Desai et al., 2013; Altieri, 2017; Schuler

et al., 2017), providing an interesting, yet unresolved, link between

mitochondrial trafficking and redox signaling in cell migration. In

this review we will discuss the relationship between mitochondrial

positioning and the downstream signaling cascades elicited from

localizedmitochondrial ROS (mROS) andATPwith a focus on cell

migration.

Figure 1
The two primary cellular sources of reactive oxygen species
(ROS) are the NADPH oxidase (NOX) family of enzymes (NOX1-5,
DUOX 1–2) and the mitochondrial electron transport chain (ETC).
TheNOX enzymes produces ROS (O2

- andH2O2) towards the
extracellular space, O2

- is spontaneously or enzymatically (via
SOD) dismutated to H2O2. H2O2is either transported through
membrane channels or passed through the plasma membrane to
elicit signaling in the cytoplasm. Mitochondria produce ROS into
the mitochondrial matrix or the intermembrane space.
Mitochondrial H2O2 can exit the mitochondria and signal in the
cytoplasm. The ROS from both sources participate in redox-
dependent signaling through oxidation of target cysteine residues
on proteins. Cysteine sulfenic acids can form intra-disulfide bonds,
inter-disulfide bonds, and become glutathionylated. All three of
these species elicit several cell signaling responses within the cell.
These three protein species can be converted back to the reduced
thiol state via thioredoxin (TRX) and glutaredoxin (GRX) proteins.
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Sources of ROS and redox signaling

The oxidation of target proteins occurs through ROS,

specially hydrogen peroxide (H2O2) reacting with a free thiol

(-SH) to form a sulfenic acid (-SOH), typically on cysteine

residues, but can also react with methionine, tryptophan, and

tyrosine residues (Hoshi and Heinemann, 2001; van der Vliet

et al., 2018) (Figure 1). Chemical cell signaling events are well

characterized for the reversible oxidation of cysteine residues

(Berndt et al., 2007; Garcia-Santamarina et al., 2014); however,

far less is understood about the role of oxidation of methionine,

tryptophan, and tyrosine residues. Specific, structurally distinct

and solvent accessible cysteine residues are targets for oxidation

by H2O2, and these modifications result in structural and

functional changes in target proteins (Cecarini et al., 2007)

(Figure 1). Similar to protein phosphorylation/

dephosphorylation cascades, the reversible oxidation of

specific cysteine residues modulates signaling pathways that

govern all facets of cell physiology (Yanes et al., 2010).

Physiochemical characteristics of oxidized cysteine residues in

target proteins underlie the specificity and hierarchy of responses

in redox signaling. ROS, like H2O2, regulate cellular physiology

through direct oxidation of cysteine residues in target proteins, or

via inactivation of resident scavenger/chaperone proteins

(Nguyen and Sok, 2003; Dustin et al., 2020). Redox signaling

through “redox-relays” utilizes the H2O2 reactive peroxiredoxin

(PRX) family of enzymes as intermediates for transferring

oxidation to target proteins through inter-disulfide exchange

(Sobotta et al., 2015; Stocker et al., 2018a; Stocker et al.,

2018b; Kim and Jang, 2019). The reversible oxidation of

proteins plays a central role in regulating cell signaling

cascades that govern all facets of cellular responses

(Holmstrom and Finkel, 2014).

Similar to oxidation, protein phosphorylation is a reversible

post-translational modification that typically occurs on serine,

threonine, and tyrosine residues (Rao et al., 2013).

Phosphorylation of target proteins occurs when the gamma-

phosphate of ATP is transferred to the hydroxyl group of an

amino acid and this is accomplished by a set of proteins known as

kinases (Endicott et al., 2012). The phosphate group can be

removed by phosphatases, and this will return the residue back to

the hydroxyl group, thus making this process reversible (Barford

et al., 1998). In certain cell signaling cascades, these two reversible

post translational modifications can converge to cooperatively

promote signaling or compete to downregulate signaling

(Chiarugi et al., 2003; Giannoni et al., 2005; Grintsevich et al.,

2017; Londhe et al., 2020). Evolutionarily there are conserved

cysteine residues proximal to a Ser/Thr/Tyr residue in various

eukaryotic kinases that regulate activity, thus further

demonstrating the dynamics between oxidation and

phosphorylation (Byrne et al., 2020). A key example of this is

the activation of kinases via oxidation of cysteine residues in the

active site and the inactivation of protein tyrosine phosphatases

via oxidation of active site cysteines (Ostman et al., 2011; Dustin

et al., 2020), leading to prolonged phosphorylation of a target

protein. A primary example is the oxidation of the epidermal

growth factor receptor (EGFR) at Cys797 leading to enhanced

tyrosine kinase activity (Paulsen et al., 2011). Inactivation of the

phosphatase and tensin homologue (PTEN) phosphatase occurs

during muscle differentiation when there is an increase in the

oxidation of PTEN, leading to decreased activity which causes an

upregulation of the PI3K/AKT/mTOR pathway since these target

proteins are able to remain phosphorylated for a longer period of

time (Kim et al., 2018). A critical gap in the understanding of

control over dynamic oxidation/phosphorylating events is the

source, location and duration of ROS governing these processes

(Meng et al., 2002; Ostman et al., 2011; Londhe et al., 2020).

ROS can be generated from a variety of sources both

externally and internally to the cell. Such internal sources are

derived from NADPH oxidases (NOXs) as well as mitochondria

via the electron transport chain (ETC). Cellular ROS has also

been shown to be produced via the endoplasmic reticulum (ER)

(Cao and Kaufman, 2014), peroxisomes (Sandalio et al., 2013),

and various enzymatic reactions; however, the main sources of

subcellular ROS are derived from the NOXs and mitochondria.

The NOX family can be separated into two categories: NOXs and

dual oxidases (DUOXs) both of which are membrane bound

enzymes that typically extend from the cytosolic face to the

extracellular space with ROS generation (superoxide (O2
-) and

H2O2) towards the exterior of the cell (Panday et al., 2015)

(Figure 2). ROS generation by these enzymes is regulated by

NADPH, protein cofactors, various stimuli, such as bacterial

infection, calcium, and post-translation modifications

(phosphorylation), to produce ROS, specifically O2
− and H2O2

for the NOXs and H2O2 for the DUOXs (Panday et al., 2015).

Subcellular localization of specific NOX isoforms has also been

identified with NOX4 being localized to the mitochondria

(Shanmugasundaram et al., 2017), nucleus, ER, and directly

interacting with focal adhesions (FAs) (Block et al., 2009), as

well as NOX2 being localized to the plasma membrane

(Anilkumar et al., 2008). FAs are multiprotein segments of a

cell responsible for cell attachment by connecting the cytoplasm

to the extracellular matrix (ECM). Strategic localization to these

subcellular compartments is shown to provide a burst of ROS

needed for microbial killing and to inhibit local phosphatases,

which contributes to cell migration or increased insulin signaling

(Wu et al., 2005; Chen et al., 2008). During FA maturation,

NOX4 has been shown to provide the ROS needed for the

oxidation of two cysteine residues in actin which is critical in

the binding of vinculin, a FA protein that links integrins to the

actin cytoskeleton (Vukelic et al., 2018). DUOX specific H2O2 is

also important for epithelial cell migration and rearrangement of

the cytoskeleton, which will be discussed later in this review.

NOX enzymes have also been shown to contribute to a

gradient of H2O2 in zebrafish tissues in response to injury.

Following tail fin amputations, a 30 µm wide H2O2 gradient
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extending from the wound margin into the tissue has been

observed (Niethammer et al., 2009; Jelcic et al., 2017). This

NOX associated H2O2 gradient acts as a chemoattractant for

inflammatory cell recruitment to aid in repair of the injury.

More localized requirements for ROS have also been observed

in the repair of the plasma membrane following plasma

membrane injury (PMI), which will be discussed more

later (Horn et al., 2020). Thus, NOX-dependent ROS

gradients on both the micro and macro level contribute to

the regulation of cell signaling cascades to aid in repair of

tissues.

Unlike the NOXs which are membrane bound, the mitochondria

are dynamic as they undergo cycles of fission and fusion, as well as are

trafficked throughout the cytoplasm (Lopez-Domenech et al., 2018;

Horn et al., 2020) (Figures 2, 3). Mitochondria provide a major

cellular source of ROS via the ETC (Inoue et al., 2003). mROS are

generated in the mitochondrial matrix and IMS by ETC complexes I

and III, respectively, as a result of the single electron reduction ofO2 to

produce O2
− which can be converted to H2O2 (Murphy, 2009).

Manganese Superoxide Dismutase (MnSOD), located in the

mitochondrial matrix, catalyzes the reaction of O2
− to H2O2, thus

changing the type of ROS, but not fully reducing it to H2O (Inoue

et al., 2003). Complete reduction of H2O2 to H2O in the

mitochondrial matrix is accomplished by mitochondrial

glutathione peroxidase 4 (GPX4) (Handy et al., 2009) and

peroxiredoxin 3 (PRX3) (Newick et al., 2012). Therefore, mROS

diffusion out of the mitochondrial matrix will be dependent on the

amount of ROS produced in time and space and the activity of

resident ROS scavenging enzymes. mROS contribute to redox

signaling through canonical cysteine oxidation of target proteins

and through retrograde signaling to the nucleus (Tan and Finkel,

2020).

Both ATP and ROS are rapidly consumed at sites proximal to

their source, largely due to the abundance of antioxidant enzymes

present in the cell (Jones, 2010; Jelcic et al., 2017; Alshaabi et al.,

2021) (Figure 2). An additional level of regulation is achieved

through the compartmentalization of oxidant and antioxidant

systems, allowing cells to utilize redox-dependent systems for

physiological signaling and damage responses while protecting

redox-sensitive cell compartments (Go and Jones, 2008; Pak

et al., 2020). Recent studies in yeast described a mitochondria-

to-cytosol H2O2 gradient where the mitochondrial H2O2 is

rapidly consumed by the cytosolic antioxidant peroxiredoxin,

thus the downstream signaling effects of mitochondrial H2O2

occurs proximal to its site of production (Carmona et al., 2019; de

Cubas et al., 2021). Other studies show a strong correlation

between mitochondrial matrix H2O2 levels and cellular growth

rate (Morgan et al., 2016). Similar findings have also been

described in mammalian cells and the subcellular localization

of mitochondria has also been correlated with spatial cytosolic

H2O2 levels (Alshaabi et al., 2021). These collective studies

support an inside-out (mitochondrial-cytosolic) redox-

signaling gradient from mitochondria.

In support of mitochondria H2O2 contributing to signaling in

cancer cell metastasis, published reports have shown that

mitochondria with experimentally decreased ETC function

contributed to metastatic phenotypes; results showed an

increase in migratory and invasive activity (Porporato et al.,

2014). Their findings showed that in their “supermetastatic” and

“superinvasive” cell lines there are defects in the TCA cycle

characterized by increased succinate production. The unequal

pairing of the TCA cycle with the ETC led to an increase in

mROS; a notable increase in superoxide production was detected.

The increase of succinate and superoxide suggests that more

electrons could be transferred to ETC complex II by succinate,

resulting in an overloaded ETC. Use of the mitochondria-

targeted superoxide scavenger mitoTEMPO resulted in a

decrease in tumor cell metastasis (Porporato et al., 2014). This

FIGURE 2
Local proximity of NOX ROS and mitochondrial ROS/ATP. (A) ROS is produced by NOX enzymes in the extracellular space proximal to the
plasma membrane, signaling at the cytoplasmic face of the plasma membrane is dependent on local ROS concentration and ROS scavenging. (B)
Mitochondrial ROS (mROS) and ATP are rapidly consumed at the site of production; therefore, the density of thesemitochondrial outputs is localized
to sites of mitochondrial density. (C)Clustering ofmitochondria at subcellular sites contributes to a localized increase in ROS and ATP levels. (D)
ROS-induced-ROS and mitochondrial–NOX crosstalk regulates the activity of each entity and the amount and duration of ROS production. Still
unclear is how the proximity of NOX and mitochondria might regulate this process.

Frontiers in Molecular Biosciences frontiersin.org04

Shannon et al. 10.3389/fmolb.2022.925755

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.925755


work reinforces the suspected role of mitochondria in cancer

aggressiveness and progression. Mutations in mitochondrial

DNA (mtDNA) can result in ETC dysfunction, specifically

relating to mutations in complex I where both mtDNA and

nuclear DNA are required for its formation (Ishikawa et al.,

2008). It is important to note that many carcinogenic chemicals

are known to bind to mtDNA (Chen et al., 2004; Budnik et al.,

2013). It was determined that mtDNA with mutations causing

complex I dysfunction increased metastatic phenotypes in

transformed cells but did not induce tumor formation in

murine models (Ishikawa et al., 2008). Defective complex I

function results in ROS accumulation in tumor cells. The

mutations to complex I lead to the up-regulation of three

genes with heavy implications in metastatic potential: MCL-1,

HIF-1α, and VEGF (Ishikawa et al., 2008). The specific role and

location of mitochondria in driving these supermetastatic

processes is not clear, but likely local mitochondrial

recruitment is required (Altieri, 2019).

Although not fully understood, crosstalk between

mitochondria and NOX enzymes has been proposed by a

mechanism termed “ROS-induced ROS release” (Zorov et al.,

2000). ROS-dependent oxidation of mitochondrial ATP-

sensitive potassium channels (Queliconi et al., 2011) and full

enzymatic activity of NADPH oxidases is required for

angiotensin II mediated mROS production (Doughan et al.,

2008). Alternatively, mROS have been shown to activate

NOX1 following serum withdrawal in human embryonic

kidney 293T cells (Lee et al., 2006). Still missing from these

studies is the role of subcellular mitochondrial positioning in

mediating the initiation and execution of ROS-induced ROS

release (Figure 2D). Better understanding the localization and

abundance of mitochondria and subcellular ATP and ROS can

FIGURE 3
Leading edge mitochondria and redox signaling contribute to cytoskeleton rearrangement and cell migration. (A) (Left) Restriction of
mitochondria to the perinuclear space leads to loss of peripheral ATP and ROS levels and correlates with smaller and less stable focal adhesions.
(Right) Mitochondria that are strategically localized and recruited to the cell periphery have an extended gradient of ATP andmROS and is correlated
with larger andmore stable focal adhesions. (B) (Left) LowROS levels at the cell periphery promotes actin severing through cofilin activation and
increased protein tyrosine phosphatase activity leading to reduced phosphorylation of FAK, p130cas, vinculin and Src. (Right) Elevated ROS levels at
the cell periphery promotes actin polymerization and branching through redox-dependent inactivation of cofilin. Inactivation of PTP’s by ROS
promotes increased FAK, p130cas, vinculin and Src phosphorylation.
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lead to deciphering local cell signaling cascades in mediating

mitochondria and NOX ROS-induced ROS release.

Mitochondrial trafficking dynamics

In mammalian cells mitochondria are strategically

positioned throughout the cytoplasm to meet local energy

requirements (Hollenbeck, 2005). This movement is

orchestrated by the microtubule motor proteins kinesin and

dynein (Fransson et al., 2006; Lopez-Domenech et al., 2018)

and allows the mitochondria to move anterograde (to

periphery) and retrograde (towards the nucleus),

respectively. The actin cytoskeleton and myosin proteins

also play a role in mitochondrial trafficking and anchoring,

although this is believed to support short movements (Sheng,

2014). The microtubule motor proteins are linked to

mitochondria via the TRAK1/2 (Milton) adapter proteins

which connect to the outer mitochondrial membrane bound

adaptor protein Miro1 or Miro2 (Debattisti et al., 2017; Li et al.,

2021). When Miro1 is knocked out from many cell types this

results in mitochondria becoming restricted around the

nucleus compared to when Miro1 is present, and the

mitochondria are strategically and dynamically re-localized

throughout the cytoplasm (Ahmad et al., 2014; Schuler

et al., 2017; Alshaabi et al., 2021) (Figure 3A). We recently

have shown that the subcellular positioning of mitochondria by

Miro1 directly impacts intracellular gradients of ATP and

mROS (Schuler et al., 2017; Alshaabi et al., 2021)

(Figure 3A). Additionally, disruption of the microtubule

cytoskeleton with Taxol causes restriction of mitochondria

around the nucleus comparable to Miro1 deletion and

similar disruption to subcellular H2O2 gradients. Re-

expression of Miro1 can rescue these gradient defects

(Alshaabi et al., 2021). Loss of Miro2 does not elicit

dramatic changes to mitochondrial trafficking in

differentiated cells and therefore has been of less focus

(Nguyen et al., 2014).

Another process that impacts mitochondrial trafficking is

fission and fusion. To mitigate the effects of damaged

mitochondria, a healthy and damaged mitochondrion may

fuse together which can be trafficked to areas of the cell in

high energy demand (Detmer and Chan, 2007). Mitochondria

can also undergo fission which will cause one mitochondrion to

split into two and this may support increased trafficking. The role

of fission and fusion on mitochondrial trafficking is still unclear;

however, fusion can be directly affected by AMP-activated

protein kinase (AMPK), a cytoplasmic energy sensor.

Therefore, mechanistically providing the cell with information

when energy is low in various parts of the cell which in turn

signals mitochondria to fragment and be transported to that area

(Cunniff et al., 2016; Toyama et al., 2016). Overall, energy sensing

plays a role in mitochondrial structure and location.

Mitochondria are also stopped and anchored at specific

subcellular sites where mitochondrial functions are required. At

sites of high energy demand in neuronsmitochondria stopmoving,

partly by the protein syntaphilin which binds mitochondria to the

microtubules (Kang et al., 2008). Mitochondrial movement is also

halted in axons at sites of increased calcium (Ca2+) (Yi et al., 2004).

EF-hands present in the Miro1 protein (Smith et al., 2020) are

thought to play a role in this sensing, but there is also evidence that

mitochondria can be halted at sites of increased Ca2+ whenMiro1 is

lost (Nguyen et al., 2014). ROShave also been shown to regulate the

speed of mitochondrial trafficking, presumably through the

p38 MAPK pathway (Debattisti et al., 2017). Mitochondria also

respond to increased levels of extracellular glucose, where

O-GlcNAc transferase (OGT) performs the glucose-dependent

O-GlcNAcylation on key serine residues of the adaptor protein

Milton which stopsmitochondrial motility (Pekkurnaz et al., 2014).

Similarly, by inhibiting the glucose transporter FGT-1 in

Caenorhabditis elegans, there was a decreased mitochondrial

recruitment to the basal membrane to help drive anchor cell

(AC) invasion, which is responsible for the development of the

reproductive system (Garde et al., 2022).

Another energy dependent process, the activation of AMPK,

has been shown to contribute to the recruitment of mitochondria

to the leading edge of migrating cells. When AMPK is selectively

activated at the leading edge of the cell, mitochondria are

trafficked to this specific area accompanied by increased ATP

concentration and membrane ruffling, a direct readout of cell

migration (Cunniff et al., 2016). Inhibition of mitochondrial

activity with acute exposure to the complex I inhibitor, rotenone,

blocked membrane ruffling. Local specific and temporal AMPK

inactivation, using pharmacological and optogenetic approaches,

caused decreased mitochondrial movement to the leading edge as

well as decreased cell migration and invasion (Cunniff et al.,

2016). These studies provide evidence that when the ATP: ADP

ratio is spatially decreased, AMPK becomes activated to drive

mitochondria to the site of interest to produce more ATP needed

for various downstream signaling at the periphery of the cell.

Mitochondrial fission through DRP1 activation is also mediated

by AMPK activity in response to ETC inhibition (Toyama et al.,

2016). Collectively, numerous metabolic dependent and

independent processes converge to mediate the subcellular

trafficking, anchoring, and severing of mitochondria to

provide local mitochondrial byproducts to areas in demand.

Leading edge mitochondria can rearrange
the cytoskeleton

As described above, subcellular H2O2 gradients have been

shown to regulate cell signaling. Below we will discuss this in the

context of phosphorylation dynamics, cytoskeleton remodeling

and cell migration. ROS, in particular H2O2, can act on

numerous signaling pathways controlling cell migration
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including receptor activation, kinase and phosphatase activity,

FA dynamics, membrane reorganization and transcription factor

activation (Hurd et al., 2012; Truong and Carroll, 2013)

(Figure 3). During cell migration and invasion, the

mitochondria have been found to localize to the leading edge

of the cell to help drive cytoskeleton rearrangements (Madan

et al., 2021). Anchor Cell (AC) invasion of the basement

membrane (BM) in C. elegans requires mitochondrial

recruitment to the invasive edge of the AC to drive

invadopodia formation (Garde and Sherwood, 2021; Garde

et al., 2022). Filamentous actin (F-actin) is responsible for the

structure of the invadopodia and is increased by the presence of

mitochondria at the invasive edge which provides a local source

of ATP (Kelley et al., 2019). Localized ATP at the leading edge of

the cell is necessary for the activation of the Arp2/3 complex

which serves as a nucleation site for actin filaments. Arp2/3 is

activated upon phosphorylation at Thr237/238 in Arp2 and this

allows for increased lamellipodia at the leading edge of the cell

through the branching of actin filaments (LeClaire et al., 2008).

Therefore, the presence of mitochondria at the leading edge of

the cell supports increased ATP concentrations to drive protein

phosphorylation for the reconstruction of the cytoplasm.

As critical as phosphorylation events, protein oxidation plays

a key role in the stability of actin filaments. Oxidation of actin

filaments specifically in cell protrusions has recently been

described using the ratiometric H2O2 biosensor HyPer7 fused

to the actin binding peptide LifeAct. Using this probe,

protrusions with elevated H2O2 levels were more stable

compared to protrusions with lower H2O2 levels (Pak et al.,

2020). This means that mitochondria can serve at least two

purposes at the edge of the cell: 1) in providing the ATP

needed for Arp2/3 activation for F-actin formation 2) in

providing sufficient ROS needed to maintain F-actin stability.

Similarly, mitochondria are required at the site of plasma

membrane injury (PMI) to provide the necessary means for

plasma membrane repair (PMR). At the site of PMI in mouse

embryonic fibroblasts (MEFs), mitochondria fragment and this

supports signaling to aid in repair, cells that lack the required

machinery for mitochondrial fission (DRP1) fail to repair (Horn

et al., 2020). The small GTPase, DRP1, oligomerizes around the

mitochondrial outer membrane and is necessary for pinching of

one mitochondrion into two via fission (Rosdah et al., 2020). The

DRP1 adaptor protein MiD49 is involved in mitochondrial

fission and when this is absent from the cell they fail to

repair, and the mitochondria are not able to sustain increased

calcium intake at the site of injury (Horn et al., 2020).

Fragmented mitochondria cause an increase in F-actin

abundance at the site of injury which aids in repairing the

plasma membrane; however, unfragmented mitochondria fail

to effectively heal the plasma membrane. Localized mROS

production also contribute to plasma membrane repair

through activation of RhoA and actin polymerization (Horn

et al., 2017). These DRP1-dependent responses only occur

proximal to the site of membrane damage. DRP1 is also

upregulated in many cancer cells, including metastatic breast

cancer cells (Zhao et al., 2013). DRP1-dependnet fission is

thought to support fragmentation of mitochondria for

subcellular transport (Giovarelli et al., 2020). Silencing of

DRP1 in breast cancer cells decreases mitochondrial fission,

cell migration and invasion (Zhao et al., 2013). Loss of

DRP1 also accompanied a reduction in the number of

mitochondria in the leading edge of these cells. DRP1 also

supports the directional migration of breast cancer cells,

supporting the movement of mitochondria to the anterior

membrane in the direction of cell migration (Desai et al.,

2013). Thus, mitochondrial fission and location are important

in F-actin dynamics and cell migration.

Cell migration and invasion in vivo requires degradation and

remodeling of the extracellular matrix (Bonnans et al., 2014). The

primary set of enzymes known to degrade the extracellular

matrix are the matrix metalloproteinases (MMPs) (Loffek

et al., 2011). MMPs are also regulated via reversible oxidation

and phosphorylation. Increasing intracellular H2O2 levels via

MnSOD, the mitochondrial superoxide dismutase, as well as

increasing mROS via rotenone and antimycin A increases the

activity of the MMPs (Hazan et al., 2000). The expression levels

of MMP-1 is increased by intracellular ROS concentrations;

therefore, both the activity and expression levels are increased

in the presence of elevated ROS (Shin et al., 2015). Cell migration

and invasion are also correlated with the activity of MMPs in

breast cancer cells (Ren et al., 2015). Oxidation activates MMPs;

however, phosphorylation inactivates them, and it is believed that

protein kinase C (PKC) is the kinase responsible for their

inactivation (Sariahmetoglu et al., 2007; Williams and

Coppolino, 2011). It is not fully understood if oxidation or

phosphorylation is dominant when both species are present,

thus these two post translational modifications do not crosstalk

with each other, per se, but they do have opposing functions on

MMPs. Therefore, mitochondria are critical in the regulation of

MMPs which influence cell migration and invasion via reshaping

the extracellular milieu.

mROS can alter localized phosphorylation
status

The relationship between the positioning of mitochondria

within the cell and the downstream effects on cell migration,

invasion, and membrane repair are starting to be revealed;

however, these processes are not fully understood (Cunniff

et al., 2016; Schuler et al., 2017; Horn et al., 2020; Garde and

Sherwood, 2021). Mitochondrial positioning directly maps to

area of increased ATP as well as H2O2 which makes intracellular

trafficking of these organelles critical for the function of the cell.

When mitochondria are concentrated to the perinuclear area this

causes a decrease in ATP and H2O2 concentrations in the cell
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periphery and an increased in perinuclear H2O2 levels; however,

this is rescued when mitochondrial trafficking to the periphery is

rescued (Schuler et al., 2017; Alshaabi et al., 2021).

Few relationships between mitochondrial positioning

and the effects of their byproducts, ATP and H2O2, on

proteins have yet to be fully understood. Two targets to

have altered function based on Miro1-mediated

mitochondrial positioning are vinculin, which is a

cytoplasmic protein involved in the binding of actin in

focal adhesions, and p130cas, which serves as a substrate

for several tyrosine kinases (Peng et al., 2011) (Figure 3B).

When mitochondria are restricted around the nucleus due to

deletion of Miro1 (Miro1−/−) in MEFs there is decreased

H2O2 in the cell periphery (Alshaabi et al., 2021) (Figure 3A).

This correlates with lower vinculin and p130cas

phosphorylation at tyrosine residues Y100 and Y410,

respectively, residues critical for activity (Pellicena and

Miller, 2001; Golji et al., 2012). When Miro1 is re-

expressed via stable expression of Myc-tagged Miro1 in

MEFs the mitochondria are redistributed throughout the

cytoplasm causing an increase in H2O2 in the periphery,

accompanied by increased phosphorylation of vinculin and

p130cas (Alshaabi et al., 2021). Going alongside this, it has

been shown that elevated H2O2 levels in metastatic bladder

cancer cells increases the phosphorylation and membrane

recruitment of p130cas through oxidation of the

PTPN12 phosphatase, driving the metastatic phenotype

(Hempel et al., 2013). Mitochondrial and NOX-dependent

sources of ROS have both been implicated in regulation of

these processes stated above, but due to the intimate

crosstalk between mitochondria and NOX enzymes

(Daiber, 2010), deciphering the precise contribution from

each source has been challenging (Figure 2D).

Similarly, during cell migration, there is an increase in ROS in

cell protrusions which is needed for the oxidation of cofilin at

C139 and C147 (Cameron et al., 2015). Cofilin is a cytoplasmic

protein that is responsible for the severing of F-actin.When oxidized

at C139 and C147 cofilin becomes inactivated (Figure 3B).

Oxidation resistant mutants of cofilin were shown to reduce

breast cancer attachment, migration, and invasion (Cameron

et al., 2015). Cofilin is also regulated via phosphorylation and

when phosphorylated at S3 it renders the protein inactive

(Agnew et al., 1995; Moriyama et al., 1996; Sumi et al., 1999).

Since ATP and H2O2 are abundant in areas of high mitochondrial

density (Schuler et al., 2017; Alshaabi et al., 2021) it is realistic that

either or both molecules could regulate cofilin activity, however, it is

unclear which molecule is preferentially utilized frommitochondria.

All the proteins listed above: vinculin, p130cas, and

cofilin are all important in FA formation which aids in

cell attachment and migration. Focal adhesion kinase

(FAK) is a key kinase found in FA formations and it is

known to be activated via phosphorylation; however, its

phosphorylation is attenuated by inhibition of redox

signaling in the cell periphery (Chiarugi et al., 2003)

(Figure 3B). FAK dephosphorylation/inactivation can be

positively regulated via integrin-induced ROS which

inhibits low molecular weight protein tyrosine

phosphatase (LMW-PTP), therefore keeping FAK

activated for longer (Chiarugi et al., 2003; Scales and

Parsons, 2011). Subcellular ROS has also been shown to

activate FA proteins such as FAK, paxillin, and p130cas,

which all are integral in FA maturation and cell adhesion

(Gozin et al., 1998). Disruptions in the trafficking of

mitochondria and changes in local H2O2 and ATP levels

correlate with perturbations in FA dynamics (Schuler et al.,

2017). Leading edge changes in mROS also contribute to Src

and FAK signaling driving breast cancer cell migration.

Downregulation of SIRT3 in breast cancer cells supports

increased mROS signaling that increases Src-dependent

phosphorylation of FAK (Tyr576/577) and p130Cas

(Y410) at the leading-edge membrane (Lee et al., 2018).

SIRT3 mediated changes in Src and FAK phosphorylation

were also sensitive to addition of endogenous antioxidants.

While performing scratch-migration assays, it was observed

that SIRT3 levels were the lowest in cells at the leading edge

of the scratch, compared to non-migrating cells at distal

sites, indicating migrating cells downregulate

SIRT3 expression to support increased mROS mediating

Src and FAK phosphorylation (Lee et al., 2018).

FAK and Src activities are closely intertwined since they

participate in overlapping signaling response. Oxidative

stress, elicited by PI3 kinase, in Caco-2 colon epithelial

cells, caused increased activity and phosphorylation of FAK

at Y397, Y577, and Y925 as well as c-Src activity and

phosphorylation at Y418 (Basuroy et al., 2010). This

resulted in increased cell migration, but by expressing a

dominant negative c-Src the oxidant induced cell migration

was prevented; therefore, it was found that both oxidants and

an active c-Src were needed to rapidly increase cell migration

via FAK (Basuroy et al., 2010). Similarly in vascular

endothelial cells, FAK is activated and phosphorylated in

the presence of H2O2 in a time and dose dependent

manner (Vepa et al., 1999). The increased FAK activity also

corresponded with enhanced actin stress fibers because of

cytoskeleton reorganization.

During cell attachment there is an integrin-induced

release of ROS at the plasma membrane which oxidizes

Src, therefore increasing Src activity by dephosphorylating

Y527. Src activity has been linked to increased cell invasion

and tumor onset; however, when antioxidants are used or an

oxidant null Src (C245A and C487A) is expressed then Src

activity decreases as well as cell invasion and tumor

progression (Giannoni et al., 2005) (Figure 3B). Oxidation

of Src via ATP-mediated activation of DUOX1-dependent

H2O2 production increases Src activity which activates the

epidermal growth factor receptor (EGFR) to activate
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downstream signaling pathways (Truong and Carroll, 2012;

Heppner et al., 2016). DUOX-1 activity is also important for

epithelial cell migration during repair via activation of EGFR

(Gorissen et al., 2013). Still unclear is the role of

mitochondria is these processes which presumably is

important given the regulation of DUOX enzymes by ATP

and Ca2+.

Gap in knowledge/Summary

The regulation of redox-dependent signaling by

mitochondrial or NOX-dependent ROS production is well-

established and new targets are continuously being

uncovered. The crosstalk between these ROS sources, with

distinct differences in subcellular localization, dynamics,

substrates, and targets is still unclear. The dynamic nature

of the mitochondria and the ability to produce both ATP and

ROS at specific subcellular sites provides an additional layer of

control to redox and phospho-signaling by mitochondria. The

contribution of local mitochondrial populations and how

disruption of the subcellular architecture of mitochondria

may impact NOX activity is unclear. We hypothesize that

disruption of intracellular ATP and ROS gradients via loss of

Miro1 mediated mitochondrial positioning, or other

mitochondrial disruptions, would alter NOX-dependent

redox signaling and redox-dependent phosphorylation

cascades. Critical gaps still exist regarding the role of

localized mitochondria in regulating these signaling events

during cell migration and other localized responses (ie.

membrane repair). Herein, we have briefly summarized the

literature that supports the subcellular trafficking of

mitochondria in the regulation of redox and phospho-

signaling events supporting cell migration, linking

mitochondrial dynamics to the spatial and temporal

control over redox and phospho-signaling cascades.
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