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Abstract

Completing the genotype-to-phenotype map requires rigorous measurement of the entire

multivariate organismal phenotype. However, phenotyping on a large scale is not feasible

for many kinds of traits, resulting in missing data that can also cause problems for compara-

tive analyses and the assessment of evolutionary trends across species. Measuring the

multivariate performance phenotype is especially logistically challenging, and our ability to

predict several performance traits from a given morphology is consequently poor. We devel-

oped a machine learning model to accurately estimate multivariate performance data from

morphology alone by training it on a dataset containing performance and morphology data

from 68 lizard species. Our final, stacked model predicts missing performance data accu-

rately at the level of the individual from simple morphological measures. This model per-

formed exceptionally well, even for performance traits that were missing values for >90% of

the sampled individuals. Furthermore, incorporating phylogeny did not improve model fit,

indicating that the phenotypic data alone preserved sufficient information to predict the per-

formance based on morphological information. This approach can both significantly

increase our understanding of performance evolution and act as a bridge to incorporate per-

formance into future work on phenomics.

Introduction

A major goal of evolutionary biology is accurate prediction of the phenotype from the geno-

type. The emerging field of phenomics in particular aims to quantify every aspect of the pheno-

type of an organism–that is, every measurable trait–and ultimately to relate it back, through

several intermediate levels of biological organization, to the genome itself [1, 2]. However,

while our ability to sequence genomes has advanced enormously in recent years, our capacity

to characterize entire phenomes has not kept pace, particularly for phenotypes that are time
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consuming or otherwise difficult to quantify. Because some phenotypes are easier to measure

than others, certain types of traits are either entirely absent from existing phenomes, or are

described only in the most general terms [3]. Prime among these are those traits that describe

how organisms conduct dynamic, ecologically relevant tasks such as jumping, running, flying,

or biting, referred to collectively as whole-organism performance traits [4, 5].

Performance traits are key predictors of both survival and reproductive success in animals

and as such form a cornerstone of the study of adaptation [4–6]. Performance is typically stud-

ied within the context of the ecomorphological paradigm, a statistical framework which states

that morphology determines performance, which in turn affects fitness [7]. This paradigm has

guided performance research for nearly 40 years and has been successfully applied to under-

stand variation in morphology, performance, and fitness in a variety of animal species and

over multiple levels of biological organization [8]. However, properly measuring maximum

performance is time consuming, and doing so for suites of multiple performance traits in the

same animals has proven to be a significant challenge. Consequently, despite intense interest

in performance over the last several decades [6, 9–11], the entire whole-organism performance

phenotype, comprising all or even most of the performance abilities of which a given species is

capable, has therefore seldom been rigorously quantified [12]. Furthermore, even in cases

where animals within a sample can be measured for multiple performance traits, the resulting

datasets are rarely comprehensive, usually being limited to only two or three performance

traits, and are typically characterized by missing data [e.g. 13]. Individual datapoints might fail

to be collected for reasons ranging from logistical constraints and equipment failure to lack of

cooperation of the subject being measured or even lack of continued availability of a given sub-

ject or species. These missing individual-level data cause further problems at the population

and species levels for the analysis of evolutionary trends in particular. For example, compara-

tive analyses of multiple phenotypic traits across a phylogeny are sensitive to missing data

because even a single absent data point (i.e., mean value) for a given trait can force the exclu-

sion of an entire species, reducing the overall power of the analysis. Approaches to incomplete

comparative datasets based on imputing "placeholder" values, such as the PHYLOPARS

method, do allow for the execution of an analysis that would not otherwise run with missing

trait values [14, 15], but the accuracy of these methods is likely to be variable, frequently unver-

ifiable, and prone to error at worst, particularly for situations with large amounts of missing

data, or where missing data are not dispersed randomly across taxa.

One approach to addressing these issues is to predict data rather than measure it. The deter-

ministic relationship between morphology and performance in particular offers scope for the

prediction of unmeasured performance from individual morphology [16]. However, despite

both the utility of the ecomorphological paradigm and the clear general validity of the mor-

phology-to-performance relationship, modeling performance as a function of morphology

alone is not always straightforward. Performance expression can be moderated, enhanced, or

constrained by a variety of factors, including behavior [17]; energetic costs [14, 18–20]; elastic

storage mechanisms [21, 22]; and the often complex relationships among performance and

other facets of the integrated organismal phenotype [23–26]. Such constraints are especially

relevant when animals are required to conduct multiple, yet different performance tasks on a

day-to-day basis, many of which have conflicting morphological bases that cannot be opti-

mized simultaneously. This can lead to trade-offs among specific performance traits such that

specialization for one trait precludes high levels of expression in another [27, 28]. For example,

birds such as gannets that dive from great heights to capture prey up to 30m below the water

surface are often poor fliers because the ideal requirements for deep diving (high mass) and

flying (low mass) are opposite [29]. Although intuitive, similar trade-offs among suites of sev-

eral performance traits have proven difficult to uncover due in part to individual variation in
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performance expression [13, 30, 31]. The existence of many-to-one mapping, whereby the

same performance trait is produced by different morphological forms [32, 33], is a further

complication for accurately predicting whole-organism performance. Consequently, the

extension of this predictive scenario to a multivariate morphology-performance situation

involving numerous, potentially conflicting performance traits is yet more challenging. Collec-

tively, these constraints significantly limit our current ability to accurately predict multiple

performance traits from a given underlying morphology.

The requirement for large-scale performance phenotyping coupled with existing con-

straints on both the measurement and prediction of multivariate performance demands that

we adopt a new perspective on either performance measurement or inference. In the present

study, we develop a machine learning method to accurately predict the multivariate perfor-

mance phenotype from incomplete morphological datasets. Machine learning approaches are

increasingly used at the whole-organism level to identify and analyze patterns within extremely

large and detailed datasets often collected on only a handful of individuals. For example,

machine learning techniques are used to extract meaningful biological signals from “noisy”

patterns of individual movements recorded over long time periods using GPS trackers [34,

35], and to connect behavioral phenotypes to genetic sequences in populations of laboratory

mice [2]. Furthermore, these methods can also be used to fill in “gaps” in large, complex data-

sets by deriving appropriate decision-boundaries for extrapolation, and ultimately to produce

accurate predictions from novel data [36].

Here we adopt the latter approach, using machine learning to build an application to pre-

dict unmeasured maximum performance values at the level of the individual animal from a

large and fragmentary dataset on lizard morphology and performance drawn from 68 species

representing 8 different lizard families. Lizards are model organisms for the study of perfor-

mance in general, and locomotion in particular [37]. We therefore take advantage of the sub-

stantial existing data on various lizard morphologies and associated performance phenotypes

to train, test, and validate an machine learning model for imputing the multivariate perfor-

mance phenotype from existing data on morphology. Specifically, we built a “stacked”

machine learning model combining the outputs of several distinct regressor layers into a best-

performing model that accurately predicts 5 distinct performance traits, including one com-

plex, multicomponent trait (jumping ability) from 14 simple morphological measures across a

range of diverse lizard taxa. Furthermore, we show that the addition of phylogenetic informa-

tion on the relatedness of taxa in the model does not enhance model performance.

Materials and methods

We built our machine learning model (hereafter termed MVPpred: “Multivariate Performance

Phenotype Predictor”) in three steps: missing value imputation; feature selection and classifi-

cation; and stacking. Below we describe the nature of the training dataset, and outline briefly

the process of model development and validation.

Morphology and performance dataset

We assembled a training dataset comprising morphology and maximum performance data for

nearly 2,000 individual lizards from 68 species. Data were sourced from the authors’ personal

datasets, contributions from other lizard performance researchers, and from publicly available

data [38]. Performance data collected by different individuals and research groups are likely to

be comparable given that whole-organism performance has the benefit of having standard pro-

tocols for maximum performance measurement to ensure that maximum values are recorded

for each trait [39]. Morphology data are also commonly collected in a standardized manner,
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and here comprise measurements of head dimensions (head length, head width, and head

height); body size (snout-vent length [SVL] and body mass); individual limb elements (femur,

tibia, metatarsus, longest hind toe, humerus, radius, metacarpal, longest fore toe); and tail

length.

We considered 5 commonly-measured maximum performance traits that capture an array

of diverse lizard terrestrial performance capacities: sprint speed (shortest time to traverse a set

distance on a runway set at 45o or less to the horizontal because some lizard species tend to

hop on horizontal surfaces [40]); endurance (longest time an individual is able to keep pace at

a set, sub-VO2 max speed on a treadmill before becoming exhausted [41, 42]); climbing (short-

est time to traverse a set distance on a vertical runway [43, 44]); stamina (longest distance an

individual is able to run when chased at maximum speed around a circular racetrack before

becoming exhausted [45, 46]); jumping, (which is a composite variable comprising maximum

distance, acceleration, velocity, and power of a jump at a given angle measured via a force plate

or high-speed camera [47, 48]); and bite force (maximum force measured when a lizard is

induced to bite down in a standardized manner on bite plates connected to a force transducer

[49, 50]). However, because data were collected by different groups to test a variety of hypothe-

ses, these data are, for many species, incomplete in terms of either the measured morphology

or performance, or both. Furthermore, variation in the availability of data means that the

machine learning training dataset is highly unbalanced in terms of both taxonomic representa-

tion and the amount of data available for each taxon (Fig 1); in particular, lizards of the genus

Anolis are overrepresented relative to non-anoline lizards (see S23 Table for exact sample sizes

in S1 File). Any extrapolations or inferences of performance->morphology relationships from

such a sparse and fragmentary dataset using standard prediction methods such as model 1 or 2

regression are likely to be highly inaccurate; however, these data represent an ideal test case for

machine learning approaches, as well as being representative of real-world data that are avail-

able to functional morphologists.

Fig 1. Species names and sample size for each of the 68 taxa comprising the training and verification dataset.

https://doi.org/10.1371/journal.pone.0261613.g001
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Phylogenetic relationships

Comparative datasets comprising traits measured on multiple taxa must take into account the

evolutionary relationships among those taxa because related species share an evolutionary his-

tory and thus are not independent data points [51]. Moreover, shared ancestry provides infor-

mation that could be used to estimate missing data as phylogenetically closely related species

will resemble each other in terms of both morphology and function. We pruned the large squa-

mate phylogeny of Pyron et al. [52] to include only the species used in the current dataset (Fig

2). The evolutionary relationships among species were included in the base machine learning

model as a distance matrix. However, this inclusion did not improve the predictions (see sec-

tion A, “Two-step process” in the S1 File). Therefore, our final model is not affected by phylog-

eny; rather we used only the available morphology->performance dataset for training and

confirmed the prediction accuracy by cross-validation.

Handling missing values

We used the K-Nearest Neighbor (KNN) method to replace missing performance trait values

in two steps. In the KNN method, the Euclidean distance between a target sample (S)

Fig 2. Phylogenetic relationships among the 68 lizard taxa from 8 families included in the final model. Note that phylogeny had no effect

on the predictive accuracy of the final, stacked model.

https://doi.org/10.1371/journal.pone.0261613.g002
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belonging to a target feature (F; in this case, a performance phenotype or variable of interest)

and all other samples is calculated. The missing value for S is then replaced by the average

value of the K closest samples (i.e., those K with the lowest Euclidean distance). Initially, we

applied the KNN method within each taxon using K = 5; however, since the dataset contained

taxa with no values at all for certain features, we ultimately applied the method to the entire

dataset. We found performance trait-specific different values of K while searching values from

3 to 200, and selected the appropriate value of K based on root mean square error (RMSE; see

Table 1) for each performance feature (Table 2; the complete search outcome is presented in

S1 File).

Model performance evaluation

Our model consists of both a classification framework that predicts the taxon of a given sample

and a regression framework that predicts a given sample’s performance capacity. We measured

the performance of the overall model using standard 10-fold cross-validation, whereby the

data are divided into 10 sets of samples, 9 of which are used to train the prediction model

while the remaining set is used to test the prediction model. We evaluated model performance

using the Pearson Correlation Coefficient (PCC) and Mean Absolute Error (MAE) for the

regression component (Table 1).

Table 1. Derivation of indices used to evaluate model classification and prediction.

Name of Metric Definition

P True value of the performance feature

Pavg Mean of true values

Ppred Predicted value of the corresponding performance feature

Ppred_avg Mean of predicted values

N Number of samples

Pearson Correlation Coefficient (PCC)
P
ðP� PavgÞðPpred� Ppred avgÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðP� PavgÞ2

P
ðPpred� Ppred avgÞ2

p

Mean Absolute Error (MAE)
1

N

PN� 1

i ¼ 0

jP � Ppredj

Root Mean Square Error (RMSE)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

PN� 1

i ¼ 0

ðP � PpredÞ2
s

https://doi.org/10.1371/journal.pone.0261613.t001

Table 2. Optimum K-value search result (range 1 to 100), for various performance traits.

Feature Optimum K (based on RMSE) Root Mean Square Error (RMSE)

Jump power 165 7.47

Jump acceleration 29 1.98

Bite force 57 4.53

Jump velocity 16 0.07

Endurance 154 32.08

Sprint speed 84 0.65

Jump distance 46 0.05

Stamina 25 3.66

Angle 34 1.84

https://doi.org/10.1371/journal.pone.0261613.t002
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Regression framework

We used the available entire dataset to both train and validate our regression model. For stan-

dard training, we used 10-fold cross-validation (10 FCV), whereby we shuffled the dataset and

divided it into ten sub-datasets by sequentially selecting equal individual samples at random

without replacement.

We then evaluated the performance of the cross-validation using the Extra Tree Regressor

(ETR) [53]; Gradient Boosting Regressor (GBR) [54]; Random Forest Regressor (RFR) [55],

XGBoost Regressor (XGBR) [56], and Support Vector Regressor (SVR) [57].

i. Extra Trees Regressor (ETR): We have constructed the ET model with 1,000 trees, and the

quality of a split is measured by the Gini impurity index.

ii. Random Forest Regressor (RFR): we have used a bootstrapping approach to construct

1,000 trees in the forest.

iii. XGBoost Regressor (XGBR): In our configuration of XGBR, the values of parameters:

max_depth, eta, n_estimators, min_child_weight, subsample, scale_pos_weight, tree_-

method, and max_bin are set to 6, 0.1, 100, 5, 0.9, 3, hist and 500 respectively and the rest

of the parameters were set to their default value.

iv. Support Vector Regressor (SVR): For SVR, the RBF kernel parameter, γ, and the cost

parameter, C are optimized to achieve the best 10-fold cross-validation accuracy using a

grid search.

Stacking framework

We further enhanced the performance of MVPpred using the stacking technique [58]. Briefly,

the “no free lunch” theorem states that no single machine learning algorithm is best suited to all

scenarios and datasets due to the associated generalization error [58–60] because one machine

learning method would learn certain information from the dataset, whereas another would learn

something different, depending on the specific underlying statistical learning principle. Stacking

is an ensemble technique that combines information from multiple predictive models to gener-

ate a new model, and generally improves the prediction results through minimization of general-

ization error [61–63]. Here, the results (the difference between the predicted value and the

original value) of different regressors used in the base layer along with the dataset provided to

train the base layer are passed as a training dataset for the regressor used in the stacked meta

layer. We explored different combinations (see Table 3) of base and meta layer.

Results

Outcome of the regression framework

Of the tested performance features, we found that jump power yields the best PCC and

MAE (see Table 1 for the metric and Table 4 for the outcome) using R2 and optimized

Table 3. Configurations of the five stacked models.

Base Layer Meta Layer

SM1 XGBR, RFR, GBR, ETR ETR

SM2 XGBR, RFR, GBR, ETR GBR

SM3 XGBR, RFR, GBR, ETR RFR

SM4 XGBR, RFR, GBR, ETR XGBR

SM5 XGBR, RFR, GBR, ETR SVR

https://doi.org/10.1371/journal.pone.0261613.t003

PLOS ONE Machine learning predicts multivariate performance

PLOS ONE | https://doi.org/10.1371/journal.pone.0261613 January 21, 2022 7 / 15

https://doi.org/10.1371/journal.pone.0261613.t003
https://doi.org/10.1371/journal.pone.0261613


Support Vector Regressor with RBF-kernel. From Table 4, we can see that jump accelera-

tion was best predicted using the optimized SVR with RBF-kernel. The PCC (defined as a

measure of linear correlation between the predicted and the actual value–see Table 1) is

0.97, and MAE (defined as the absolute difference between the predicted and the actual

value) is 0.36 m/s2. The results for jump acceleration using different regression methods

are given in S7 Table of S1 File.

Outcome of the stacking framework

We chose regressors for the base layer and meta-layers of the five stacked models (SM1,

SM2, SM3, SM4, and SM5) based on Table 4. We used XGBR and SVR in the base layer of

all stacking models because they exhibited the best PCC and MAE. The results from differ-

ent stacking models for different features are summarized in Table 5 –however, the

detailed results are available in S5 to S21 Tables of S1 File. SM2 outperformed the other

three stacking models in all cases. PCC for these models ranged from 0.93 for jump dis-

tance to 0.99 for bite force, jump acceleration, and jump velocity, whereas MAEs were as

low as 0.003m for jump distance (with a mean jump distance in the dataset of 0.33m), and

as high as 1.73m for endurance (with a mean endurance value in the dataset of 213.71m)

(Tables 4 and 5). Because of this superior performance, we used the SM2 stacking model

throughout.

Table 4. Pearson correlation coefficient (PCC) and mean absolute error (MAE) of features. Jump acceleration exhibited the highest prediction accuracy (bolded). To

aid in the interpretation of MAE, we have also provided the mean value for each performance feature from the overall training dataset, as well as the associated standard

errors. Note that MAE has the same units as the associated performance trait.

Feature Regression method Mean (±SE) PCC MAE

Jump power (W/kg) SVR 45.94(±0.15) 0.77 1.21

Jump acceleration (m/s2) SVR 32.17(±0.05) 0.97 0.36

Bite force (N) GBR 7.74(±0.18) 0.94 1.35

Jump velocity (m/s) XGBR 1.57(±0.002) 0.95 0.02

Endurance (s) GBR 213.71(±0.65) 0.28 6.70

Sprint (m/s) RFR 1.35(±0.02) 0.88 0.23

Jump distance (m) ETR 0.33(±0.001) 0.84 0.01

Stamina (m) XGBR 16.53(±0.11) 0.83 1.42

Angle XGBR 36.44(±0.06) 0.75 0.527

https://doi.org/10.1371/journal.pone.0261613.t004

Table 5. Pearson correlation coefficient (PCC) and mean absolute error (MAE) of different stacking models for

various performance features.

Performance feature Stacked configuration PCC MAE

Jump power (W/kg) SM2 0.98 0.49

Jump acceleration (m/s2) SM2 0.99 0.17

Bite force (N) SM2 0.99 0.57

Jump velocity (m/s) SM2 0.99 0.01

Endurance (s) SM2 0.95 1.73

Sprint speed (m/s) SM2 0.98 0.11

Jump distance (m) SM2 0.93 0.003

Stamina (m) SM2 0.98 0.63

Angle SM2 0.97 0.20

Average 0.973 0.434

https://doi.org/10.1371/journal.pone.0261613.t005
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Final software

To predict a given performance feature, the final software uses the prediction of the other eight

performance features along with the morphological features as input. Our model is highly

accurate even in the absence of phylogenetic information describing the relatedness among

species. The final, stacked MVPpred model allows researchers to enter simple and easily

obtained morphological data for an individual lizard and obtain accurate predictions for each

of the 9 performance features pertaining to that individual. Furthermore, researchers could

conceivably do this for all individuals in a sample, yielding a population or species mean for

each trait that could then be used in comparative analyses. The results are available in S22

Table of S1 File.

Discussion

Measuring every phenotype of a given organism on the scale that phenomics demands may

not be possible, necessitating a demand for imputed or inferred data to at least some extent

[2]. This will require both a paradigm shift in how we view data that are inferred but not mea-

sured from real organisms, and an accompanying advancement in the methods that we use to

do so. We built, trained, and validated a machine learning model, which we call MVPpred, to

accurately estimate unmeasured maximum performance data from a large dataset on lizard

morphology and performance at the level of the individual animal. Our final stacked models

predicted maximum multivariate performance with high accuracy, and cross-validation of our

approach shows that the final, stacked MVPpred model significantly outperforms both simple

statistical prediction methods such as ordinary least squares regression and single machine

learning prediction methods in all cases. The prediction accuracy in terms of PCC of the

stacked models ranged from 0.93 to 0.99, with low MAE in all cases (ranging from 0.003 to

1.73). Overall, our model was able to generate accurate predictions, even for performance traits

that were poorly represented in the training dataset.

In addition to imputing the most likely maximum values of relatively simple performance

metrics such as sprint speed or bite force, we also successfully and accurately predicted a more

complex performance capacity. Jumping ability is itself a multivariate performance trait that

can be characterized in several different ways [16, 64]. Some researchers have assessed individ-

ual jumping ability through relatively simple metrics such as maximum jump distance [65],

whereas others have focused on describing both the kinetics and kinematics of jumping ability

through measurement not only of distance, but also the velocity, acceleration, power, and the

take-off angle of a jump [64, 66], all of which are interrelated and can trade-off against each

other to shape overall jump trajectories [47, 48]. Our model predicted missing data for five key

aspects of maximum jump performance (power, distance, acceleration, velocity, and angle),

and did so with> 95% accuracy in all cases, suggesting that these methods hold the potential

to predict other complex performance traits in different taxa as well.

Machine learning has been used to understand performance in the past. In particular,

sports scientists have previously applied similar methods to the performance of individual ath-

letes and events [36]; for example, Maszczyk et al. [67] used neural networks to predict the dis-

tance of javelin throws, and a similar approach was applied by Edelmann-Nusser et al. [68] to

the women’s 200m backstroke. Our study extends this approach to non-human animals in two

key ways. First, our model predicts multiple maximum performance abilities as opposed to

only one, including the five components of one complex performance ability (i.e., jumping).

Second, we do this across 68 different species from 8 different families of lizards comprising a

diversity of morphologies and ecological contexts. Our dataset was necessarily opportunistic

and consequently is highly unbalanced with regard to species representation, ranging from
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species represented by several hundred individuals (Anolis carolinensis), to others represented

by only a handful of lizards (e.g., Cordylus melanotus; see Fig 1). Such datasets are typically not

ideal for comparative studies aimed at identifying interspecific patterns [69, 70], making it all

the more remarkable that our model was able to make accurate predictions even for sparsely

sampled taxa. This combined multivariate and multispecies application will allow researchers

to predict not only individual maximum performance for the traits of interest, but also for

multiple traits across multiple species, granting increased flexibility in cases where missing

performance data that cannot otherwise be obtained might compromise phenomic or compar-

ative analyses.

Although accurately predicting maximum performance variables relating to existing data is

valuable in itself, our model goes further and also opens up potential new avenues of investiga-

tion. MVPpred produces accurate predictions even in the absence of a known phylogeny, hint-

ing at the potential universality of form-function relationships that might be obscured by

variation at different levels of biological organization [see [31, 71], and [13] for examples at the

within-species level]. However, although the aim of the current paper was to produce a model

that accurately predicts multiple performance capacities, and although we validated those pre-

dictions against real data, the MVPpred model in its current form offers little insight into the

causality underlying several of the predicted morphology->performance relationships. For

example, while traits such as sprint speed and the various jump performance variables have

clear deterministic relationships between limb morphology and the magnitude of the perfor-

mance phenotype that are based on simple mechanical principles (e.g. Bauwens and Garland

[72]), relationships between morphology and endurance are less clear cut. Endurance capacity

is a function of oxygen delivery and cardiovascular function, which are not directly reflected in

simple limb dimensions, and distribution of mass across the organism is more important than

mass itself in determining endurance capacity [73]. The biomechanical basis of our model to

accurately predict endurance from these morphological data is therefore not immediately

apparent, and likely stems from the ability of the model to compute and compare not only rela-

tionships between predictors and predicted variables, but relationships among predicted per-

formance variables as well. An important next step is therefore to interrogate our model to

uncover and understand these causal relationships as well as any latent predictors that might

exist. As such, models such as MVPpred also offer the possibility of a more complete under-

standing of form-function relationships at the whole-organism level as well and, potentially, a

new approach for testing and understanding such relationships. Yet another possibility pre-

sented by our model performance, particularly in its accuracy in predicting performance for

novel morphologies, is that an expanded and appropriately trained version of MVPpred could

in principle allow for the accurate prediction of performance abilities from the bones of extinct

organisms that have no living analogues. Similarly, our model could potentially represent a

foundation for expanding this predictive approach to encompass other taxa and modes of

locomotion beyond terrestrial lizards.

The accurate prediction of unmeasured data is a potentially valuable approach, but it also

comes with some necessary caveats. Firstly, MVPpred predicts only maximum performance

capacities. Although our focus on maximum performance here is consistent with much of the

whole-organism performance literature, animals do not always perform to their maximum

limits in nature [74], and there are many situations where it might be more useful or appropri-

ate to use all of the available performance data, not just the maximum values, or to explicitly

consider submaximal values [13, 75]. Second, despite both the power and generalizability of

machine learning approaches and the lack of influence of phylogeny on our results, our model

has only been formally validated with data from the 68 species represented in the training data-

set (see Fig 1 and S23 Table for the full species list in S1 File). This model should therefore be
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applied to individuals from other lizard species with caution, if at all. Expansion of the

MVPpred model to encompass other species could be achieved by incorporating morphology

and performance data pertaining to those species of interest.

In conclusion, MVPpred predicts multiple different whole-organism performance traits,

including aspects of a multivariate performance trait (jumping ability) with a high degree of

accuracy from even sparsely sampled data. Although we do not believe that this approach

either is or should become a replacement for rigorous collection of real data where such collec-

tion is feasible, our model is nonetheless a clear improvement on existing imputation methods

for missing performance data. The ability to accurately impute missing data across species is

likely to enable further progress in integrating whole-organism performance and phenomics;

understanding variation in form-function relationships; and ultimately in inferring unmea-

sured performance traits from novel morphologies.

Supporting information

S1 File. This word file presents the results of species-wise cross validation using the best

stacking model, wherein we test a given species’ performance by training the model with

data from other species. These results demonstrate good cross-species predictions where ade-

quate training and testing data are available, suggesting that the model is useful even in the

absence of phylogenetic information.
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