
Differentiation of Zebrafish Melanophores Depends on
Transcription Factors AP2 Alpha and AP2 Epsilon
Eric Van Otterloo1., Wei Li2., Gregory Bonde1, Kristopher M. Day1, Mei-Yu Hsu3, Robert A. Cornell1,2*

1 Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa, United States of America, 2 Interdisciplinary Graduate Program in Genetics, University of

Iowa, Iowa City, Iowa, United States of America, 3 Department of Pathology, Program in Dermatopathology, Brigham and Women’s Hospital, Boston, Massachusetts,

United States of America

Abstract

A model of the gene-regulatory-network (GRN), governing growth, survival, and differentiation of melanocytes, has
emerged from studies of mouse coat color mutants and melanoma cell lines. In this model, Transcription Factor Activator
Protein 2 alpha (TFAP2A) contributes to melanocyte development by activating expression of the gene encoding the
receptor tyrosine kinase Kit. Next, ligand-bound Kit stimulates a pathway activating transcription factor Microphthalmia
(Mitf), which promotes differentiation and survival of melanocytes by activating expression of Tyrosinase family members,
Bcl2, and other genes. The model predicts that in both Tfap2a and Kit null mutants there will be a phenotype of reduced
melanocytes and that, because Tfap2a acts upstream of Kit, this phenotype will be more severe, or at least as severe as, in
Tfap2a null mutants in comparison to Kit null mutants. Unexpectedly, this is not the case in zebrafish or mouse. Because
many Tfap2 family members have identical DNA–binding specificity, we reasoned that another Tfap2 family member may
work redundantly with Tfap2a in promoting Kit expression. We report that tfap2e is expressed in melanoblasts and
melanophores in zebrafish embryos and that its orthologue, TFAP2E, is expressed in human melanocytes. We provide
evidence that Tfap2e functions redundantly with Tfap2a to maintain kita expression in zebrafish embryonic melanophores.
Further, we show that, in contrast to in kita mutants where embryonic melanophores appear to differentiate normally, in
tfap2a/e doubly-deficient embryonic melanophores are small and under-melanized, although they retain expression of
mitfa. Interestingly, forcing expression of mitfa in tfap2a/e doubly-deficient embryos partially restores melanophore
differentiation. These findings reveal that Tfap2 activity, mediated redundantly by Tfap2a and Tfap2e, promotes
melanophore differentiation in parallel with Mitf by an effector other than Kit. This work illustrates how analysis of single-
gene mutants may fail to identify steps in a GRN that are affected by the redundant activity of related proteins.
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Introduction

An important participant in the gene-regulatory-network (GRN)

that governs the differentiation of melanocytes from neural crest

precursors (i.e., the melanocyte GRN) is the class III receptor

tyrosine kinase Kit. In mouse embryos, binding of this growth-

factor receptor by its ligand, stem cell factor (SCF), promotes the

growth, survival, migration, and possibly terminal differentiation

of melanocytes [1]. Mouse embryos homozygous for hypomorphic

alleles of Kit completely lack melanocytes (embryos homozygous

for Kit null alleles die prior to pigmentation) [2–6]. While ligand-

bound Kit stimulates many signal transduction pathways, its

effects on melanocyte growth and differentiation appear to occur

via the Ras/Raf/Map Kinase pathway. Activity of this pathway

results in phosphorylation of Microphthalmia transcription factor

(Mitf); phosphorylation of Mitf regulates its activity and stability

[7,8]. Within melanoblasts, Mitf promotes a) cell-cycle exit, by

activating expression of the p21WAF1, a cyclin-dependent kinase

inhibitor [9], b) cell survival, by upregulating the expression of

BCL2 [10], and c) melanin synthesis, by activating expression of

Tyrosinase (Tyr), Tyrosinase-related protein 1 (Tyrp1), and Tyrosinase-

related protein 2 (Tyrp2, also known as Dopachrome tautomerase, Dct)

[11–14]. Thus, Kit signaling is essential for normal melanocyte

development, at least in part via its ability to stimulate Mitf

activity. Of note, KIT levels are reported to be lower in metastatic

melanoma cell lines than in benign nevi, and forced expression of

KIT in these cells has been shown to induce apoptosis [15]. These

findings highlight the importance of understanding the regulation

of Kit expression within the melanocyte lineage.

While there is evidence that the KIT gene is dependent on direct

stimulation by the Transcription Factor Activator Protein 2 alpha

(TFAP2A) in melanoma, analyses of mutant model organisms

indicate a more complex regulatory scenario within embryonic

melanocytes. TFAP2A and other members of the TFAP2 family

control cell fate specification, cell differentiation, cell survival and

cell proliferation within neural crest, skin, breast epithelium, and

other embryonic cell types and stem cells [16,17]. Gel shift

experiments showed that TFAP2A can bind an element 1.2 kb
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upstream of the KIT transcription start site, and expression driven

by this enhancer in melanoma cells is lost when the TFAP2

binding sites are deleted [18]. Moreover, forced expression of the

TFAP2A DNA binding domain, which presumably unseats

endogenous TFAP2A and thus acts as a dominant negative AP2,

prevents expression of KIT in these cells [18]. Mice lacking the

Tfap2a gene do not live long enough to develop melanocytes, due

to failure of body wall closure [19,20]. However, in embryos with

Wnt1-CRE-mediated deletion of Tfap2a specifically within the

neural crest, melanocytes are absent from the belly [21].

Interestingly, this phenotype resembles that of heterozygous, not

homozygous, Kit loss-of-function mutants, suggesting that loss of

Tfap2a leads to a reduction rather than complete loss of Kit

expression. Zebrafish have two orthologues of mammalian Kit,

known as kita and kitb; only kita is expressed in the melanophore

lineage [22]. In kita homozygous null mutants (i.e., kita mutants)

relative to their wild-type counterparts, embryonic melanophores

are reduced in number by about 40%, migrate less, and eventually

undergo apoptosis [23]. In zebrafish tfap2a homozygous null

mutants (i.e., tfap2a mutants), kita expression is reduced and

embryonic melanophores exhibit reduced migration [24,25].

However, in contrast to the melanophores in kita mutants, those

in tfap2a mutants do not appear to die, at least as long these

animals survive [23,26]. The simplest explanation for this

difference is that kita expression in melanophores is initially

dependent on tfap2a but later becomes independent of it. How can

the dominant negative AP2 block Kit expression while loss of

Tfap2a only diminishes or delays it? Because many Tfap2 family

members have the same DNA binding affinity, it is possible that

another such family member cooperates with Tfap2a to activate

Kit expression.

Here we show that Tfap2e, a homolog of Tfap2a with the

equivalent DNA binding specificity, is expressed in zebrafish

melanoblasts and in cultures of primary human melanocytes. With

single and double knockdown studies, we show that while Tfap2e

is not required for the development of embryonic melanophores, it

functions redundantly with Tfap2a in maintaining kita expression

in embryonic melanophores. Interestingly, in contrast to the

situation in kita mutants, the melanophores in embryos doubly

deficient for tfap2a/e fail to differentiate. These results imply that

Tfap2 activity has targets other than kita that are important for

melanophore development. We find that forced expression of mitfa

partially restores melanophores in embryos lacking tfap2a and

tfap2e, implying that the targets of Tfap2a/e function to stimulate

Mitfa activity or act in parallel with it. These findings reveal

unexpected roles for Tfap2 activity in the melanocyte GRN.

Results

tfap2e is expressed in zebrafish melanoblasts and
cultured human melanocytes

To determine if a second Tfap2 family member is expressed in

the melanoblast lineage, we identified orthologues of Tfap2b,

Tfap2c, Tfap2d, and Tfap2e in a database of expressed sequence

tags (www.ensembl.org), amplified partial clones of at least 1 kb

from each to make a probe for in situ hybridization, and examined

the expression of each in embryos that ranged in stage from

0.5 hours post fertilization (hpf), revealing maternal expression, to

48 hpf. Expression patterns of tfap2b and tfap2c have previously

been reported [27,28]. We did not detect expression of tfap2b,

tfap2c, or tfap2d in melanoblasts or melanophores (Figure S1), so we

did not pursue these orthologues in the context of melanophore

development.

In 8-cell zebrafish embryos, maternal tfap2e transcripts were

detected by both in situ hybridization and semi-quantitative RT-

PCR (not shown). At 24 hpf, tfap2e expression was detected in

several regions of the brain, including presumed olfactory bulb, as

in mouse embryos [29,30] (Figure 1A), and also within dispersed

cells in the trunk that we assumed to be a subset of migrating

neural crest cells (Figure 1B and 1D). At this stage, tfap2e

expression was detectable in early-differentiating melanophores

close to the ear (Figure 1C), suggesting that the dispersed, non-

melanized cells expressing tfap2e were melanoblasts. To test this

possibility, we probed homozygous mitfa null mutant embryos (i.e.,

mitfab692), which are devoid of melanoblasts [31], and found that

tfap2e expression was absent from the dispersed cells in the trunk

(Figure 1E-1G). This result was consistent with expression of tfap2e

in melanoblasts. However, because mitfa is co-expressed with xdh

and fms, two markers of xanthophore precursors [32], it was

conceivable that tfap2e was expressed in the xanthophore lineage,

in an Mitfa-dependent fashion. To test whether tfap2e is expressed

in xanthophores, we processed embryos to simultaneously reveal

expression of tfap2e mRNA and Pax7 protein, a marker of the

xanthophore lineage [33]. We did not detect overlap of the two

signals, which implies that tfap2e is not expressed in xanthophores

(Figure 1H). In wild-type embryos at 36 hpf, tfap2e expression was

present in the forebrain and presumed optic tectum, and

expanded in the hindbrain relative to earlier stages (Figure 1I

and 1J). However, at this stage expression was not detected in

melanophores (Figure 1K). At 48 hpf, high-level tfap2e expression

was also observed in the retina (Figure 1L).

To assess if melanocyte-specific expression of TFAP2E is

conserved in humans, we performed quantitative RT-PCR on

cDNA generated from various human cell lines. We detected

higher levels of TFAP2E message in three independent isolates

of primary melanocytes, consistent with microarray data

indicating expression of TFAP2E in melanocytes and melanoma

cell lines [34]. Expression in melanocytes was 2–10 fold higher

Author Summary

Neural crest-derived pigment cells, known as melanocytes,
are important to an organism’s survival because they
protect skin cells from ultraviolet radiation, camouflage the
organism from predators, and contribute to sexual
selection. Networks of regulatory proteins control the
steps of melanocyte development, including lineage
specification, migration, survival, and differentiation. Gaps
in our understanding of these networks hamper progress
in effective prevention and treatment of diseases of
melanocytes, including metastatic melanoma and vitiligo.
Studies conducted in tissue-culture cells and mouse
embryos implicate regulatory proteins including the
transcription factor TFAP2A, the growth factor receptor
KIT, and the transcription factor MITF as being important
for multiple steps in melanocyte development. Abnormal-
ities in TFAP2A, KIT, and MITF expression in melanoma
highlight the importance of this pathway in human
disease. Here we show that a gene closely related to
TFAP2A, tfap2e, is expressed in zebrafish embryonic
melanocytes and human melanocytes. We provide evi-
dence that Tfap2e cooperates with Tfap2a to promote
expression of zebrafish kita in embryonic melanocytes.
Further we show that an effector of Tfap2a/e activity other
than Kita is required for melanocyte differentiation and
that this effector acts upstream or in parallel with Mitfa
activity. These findings reveal unexpected complexity
to the gene-regulatory network governing melanocyte
differentiation.

Tfap2 Promotes Melanophore Differentiation
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than in a keratinocyte cell line, and approximately 50–100 fold

higher than in a lymphocyte cell line (Figure 1M). In summary,

tfap2e is expressed in zebrafish melanoblasts and in human

melanocytes.

In tfap2a mutant embryos, kita expression is reduced in
early melanophores but normal at later stages

As discussed in the Introduction, KITA has been reported to be

a direct target of TFAP2A, and a dominant negative AP2 variant

Figure 1. Characterization of tfap2e expression during embryogenesis. Wild-type zebrafish embryos, unless otherwise indicated, fixed at the
stage indicated and processed to reveal tfap2e expression by RNA in situ hybridization. All embryos in this and subsequent figures are oriented with
anterior to the left. (A) Dorsal view of the head showing tfap2e expression in presumed olfactory placode (arrowheads), medial telencephelon
(asterisk), and hindbrain (arrows). (B) Lateral view of the trunk, showing tfap2e expression in cells migrating from the dorsal neural tube. (C) Lateral
view just caudal to the ear. tfap2e expression is seen in newly-pigmented melanophores (arrows). (D) Higher-magnification view of the tfap2e-
expressing cells of the trunk that are shown in panel B. (E–G) tfap2e expression in mitfab692 homozygous mutant embryos, in (E) dorsal and (F,G)
lateral views. E) Expression of tfap2e in the head is virtually normal, (F, G) while its expression in the trunk is virtually absent. (H) Lateral view of a wild-
type embryo processed to reveal tfap2e mRNA and Pax7 protein, a marker of xanthophores. tfap2e expression (arrow) does not overlap with a-Pax7
immunoreactivity (arrowheads). (I,J) Dorsal head views. I) At 36 hpf, tfap2e expression is visible in the olfactory placode (arrowheads in I), in bilateral
clusters in the telencephalon (asterisk); J) in the optic tectum (arrows), and in rhombomeres (arrowheads in J). K, L) Dorsal views of the head. K) At
36 hpf expression of tfap2e in melanophores is no longer detectable. L) At 48 hpf tfap2e expression is detected in the retina (asterisks). (M)
Quantitative RT-PCR shows that expression of TFAP2E in 3 independent primary human melanocytes (Mel 1–3) is about 2–10 fold higher than in
keratinocytes (Ker), while its expression in Jurkat cells (lymphocytes, Lym) is about 10 fold lower than in keratinocytes. Scale bars: (A, B, E, F, H, I, K),
100 mm; (C, D, G, J), 50 mm.
doi:10.1371/journal.pgen.1001122.g001

Tfap2 Promotes Melanophore Differentiation
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was found to block KIT expression in cultured cells [18]; however

the status of kita expression in tfap2a mutants has not been fully

investigated. In zebrafish tfap2a mutants or tfap2a MO-injected

embryos at 28 hpf, kita expression in the melanophore lineage is

reduced to undetectable levels as assessed by in situ hybridization

[24,25]. However because melanophores undergo cell death in kita

mutants but do not do so in tfap2a mutants, it has been proposed

that kita is expressed in the melanophore lineage of tfap2a mutants

at a later stage [24]. To test this prediction, we crossed

heterozygote tfap2a null mutants (i.e., lockjaw, tfap2ats213) and

identified homozygous mutant offspring (hereafter, tfap2a mutants)

at 28 hpf by virtue of their pigmentation phenotype. We fixed a

fraction of these embryos at 28 hpf, and incubated the remainder

in water containing phenylthiourea (PTU) to prevent melanin

synthesis, until 36 hpf. We then processed all embryos to reveal

kita expression. In tfap2a mutants at 28 hpf, kita expression in

melanophores was undetectable by in situ hybridization

(Figure 2C), as previously reported. However, at 36 hpf, kita

expression was clearly visible in cells present in the dorsum of these

embryos (Figure 2E). Thus normal kita expression in melanoblasts

at 28 hpf is dependent on tfap2a, but later becomes independent of

it. To explain these observations we hypothesized that Tfap2e

compensates for the loss of Tfap2a and activates kita expression by

36 hpf.

To test whether Tfap2e maintains kita expression in tfap2a

mutants, we first assessed tfap2e expression in tfap2a mutants, and

found that it was expressed on schedule in migrating neural crest,

as in wild-type embryos (Figure S2). Next we injected embryos

with a morpholino (MO) targeting the tfap2e exon 3 splice donor

site (i.e., tfap2e e3i3 MO) (Figure 2A). To confirm the efficacy of

this MO towards its intended target, we harvested RNA from

embryos injected with the tfap2e e3i3 MO, generated first-strand

cDNA, and performed PCR using primers in exon 1 and exon 4.

Sequencing of the major aberrant splice product revealed that the

e3i3 MO causes deletion of exon 3 in its entirety, resulting in a

frame shift and a severe truncation of the predicted protein that

eliminates the DNA binding domain (Figure 2A). By semi-

quantitative PCR, this MO appears to inhibit normal splicing of

the majority of tfap2e transcripts at 36 hpf, but to act with greatly

reduced efficiency at 3 days post fertilization (dpf) (Figure 2A). By

24 hpf, wild-type zebrafish embryos injected with tfap2e e3i3 MO

showed evidence of cell death in the central nervous system (CNS),

i.e., patches of opacity in the brain and spinal cord, but no other

gross morphological defects; possibly this was due to non-specific

toxicity of the MO to the embryo. Despite this cell death, the

melanophores that developed in such embryos looked normal and

were normally distributed (see below and Figure S3). tfap2e e3i3

MO-induced CNS cell death was reduced by co-injection of p53

MO, implying that Tfap2e has a role in cell survival in the CNS,

or that the tfap2e e3i3 MO has non-specific toxicity towards the

nervous system, which is true of many MOs (Figure S3) [35]. To

preserve the morphology of embryos, in all experiments discussed

hereafter we have included p53 MO with tfap2e e3i3 MO.

Interestingly, in tfap2a mutants injected with the tfap2e e3i3 MO

(hereafter, tfap2a/e doubly-deficient embryos), kita was absent from

the dorsum at 36 hpf, although kita expression was readily

detected in the cloaca and pharyngeal pouches (Figure 2G and

not shown). These findings imply that in absence of Tfap2a,

Tfap2e promotes kita expression in the melanophore lineage.

Simultaneous reduction of Tfap2a and Tfap2e inhibits
melanophore development

Because of the sustained loss of kita expression in tfap2a/e doubly-

deficient embryos, we expected that the phenotype in these embryos

would be similar to that of kita homozygous null mutants, although

perhaps not as severe because MO-mediated inhibition of gene

expression is transient and partial; instead, however, we detected a

much more severe phenotype. At 36 hpf, compared to the

embryonic melanophores in their non-mutant siblings (Figure 3A),

those in kita null mutants (i.e., kitab5) (Figure 3B) appeared normally

melanized, but were reduced to about 60% of their normal numbers

(because of a presumed defect in cell division) and did not migrate as

extensively as their wild-type counterparts [23,36]. In control MO-

injected tfap2a mutants (Figure 3C), embryonic melanophores

exhibited these same phenotypes. In tfap2e MO-injected sibling

embryos (Figure 3D) there was no apparent melanophore

phenotype. However, in tfap2a/e doubly-deficient embryos there

were far fewer melanophores than present in control MO-injected

tfap2a mutant embryos. Compared with control MO-injected tfap2a

mutants, tfap2a/e doubly-deficient embryos had fewer pigmented

melanophores in the dorsum and almost no visible melanophores on

the lateral sides of the trunk or on the yolk sac (Figure 3E); this

difference was still apparent at 84 hpf (not shown). In summary,

whereas wild-type embryos injected with the tfap2e MO developed

normally until at least 4 dpf, tfap2a/e doubly-deficient embryos

displayed melanophore defects more severe than those of tfap2a or

kita mutants. These findings suggest that Tfap2a and Tfap2e have

partially redundant function in zebrafish melanophore develop-

ment, and that this function exceeds the simple maintenance of kita

expression.

To confirm the specificity of the tfap2e e3i3 MO-induced

melanophore phenotypes, we co-injected mRNA encoding a

glucocorticoid-fused version of Tfpa2a (tfap2aGR), whose nuclear

transport is dexamethasone-inducible, or lacZ as a control, into

embryos injected with MOs targeting tfap2a, tfap2e, and p53

(hereafter also termed tfap2a/e doubly-deficient embryos). Dexa-

methasone was added to both groups at 70% epiboly to avoid

gastrulation defects caused by tfap2a over-expression [28].

Embryos were then scored for the rescue of under-melanized

melanophores, seen in tfap2a/e doubly-deficient embryos, at

36 hpf. We found that tfap2aGR mRNA effectively rescued

melanophores in tfap2a/e doubly-deficient embryos, whereas lacZ

did not (Figure S4G and S4H). As an alternative approach for

testing specificity, we purchased two additional independent tfap2e

MOs—one targeting the exon 2 splice donor site (i.e., e2i2 MO)

and the other the translation start site of the tfap2e gene (i.e., AUG

MO) (Figure 2A). Injection of either the tfap2e e2i2 MO or the

tfap2e AUG MO into wild-type embryos had no effect on

melanophore development, although both induced some degree

of nervous-system cell death. Upon injection of either the tfap2e

e2i2 MO or tfap2e AUG MO into embryos derived from tfap2a

mutant heterozygous parents, about one fourth of embryos

exhibited the melanophore phenotype seen with the tfap2e e3i3

MO (Figure S4A-S4F); co-injection of p53 MO did not alter the

melanophore phenotypes although it reduced nervous system cell

death (not shown). These multiple tests of specificity strongly argue

that the melanophore phenotypes we observe in tfap2e MO-

injected embryos result from inhibition of tfap2e expression and not

from off target effects.

Inhibition of tfap2e does not further reduce melanophore
specification in tfap2a mutants

The reduced number of melanophores in tfap2a/e doubly-

deficient embryos relative to tfap2a mutants could reflect a role for

Tfap2a/e activity in the specification of melanoblasts or, alterna-

tively, in either survival or differentiation of melanophores. To

distinguish among these possibilities, we examined the expression of

mitfa, an early marker of the melanoblast and xanthoblast lineages

Tfap2 Promotes Melanophore Differentiation
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[31,32]. At 29 hpf, mitfa-expressing cells are visible in the head and

trunk of wild-type embryos injected with a control MO (Figure 4A).

The number of mitfa-expressing cells is reduced by about half in

tfap2a mutant embryos injected with a control MO (Figure 4B); this

reduction results at least in part from the absence of kita in such

mutants at this stage, because melanophores are reduced by this

amount in kita mutants [23], as are mitfa-expressing cells (our

unpublished observations). In tfap2e MO-injected, wild-type embry-

os, the number of mitfa cells is not grossly different from that in

control MO-injected, wild-type embryos (Figure 4C). Interestingly,

in tfap2a/e doubly-deficient embryos, the number of mitfa-expressing

cells did not appear to be further decreased relative to that in control

MO-injected tfap2a mutants (Figure 4D). To confirm these

impressions, we counted mitfa-expressing cells over the hind yolk

(see Materials and Methods) at 24 hpf, and compared the results for

tfap2a mutants injected with control MO versus those injected with

Figure 2. Expression of kita in melanophores is dependent on Tfap2a and Tfap2e. (A) Top, schematic of the tfap2e gene, showing the
target sites of the MOs used in this study; middle, schematic indicating the effects of the tfap2e e3i3 MO on the tfap2e transcript (Roman numerals
refer to exons, other numbers refer to amino acids). TA, transactivation domain. DBD, DNA binding domain. The e2i2 MO overlaps the exon 2 splice
donor site, the e3i3 MO overlaps the exon 3 splice donor site, and the AUG MO overlaps the translation start site, as indicated in red. P1 and P2 are the
primers used for RT-PCR. tfap2e e3i3 causes precise deletion of exon 3, leading to a frame shift and premature stop codon near the beginning of exon
4. Bottom right, Ethidium bromide-stained gel of PCR products generated from cDNA harvested from tfap2e e3i3 MO injected embryos at the indicted
stages. The MO has largely lost efficacy by 72 hpf. (B–G) Lateral views of embryos processed to reveal kita expression. (B,C) At 30 hpf, kita expression
is readily detected in the dorsum of B) a sibling embryo but not C) a tfap2a mutant. (D, E) At 36 hpf kita expression is detectable in discrete cells in
the dorsum of D) sibling embryos (arrows), E) tfap2a mutants (arrows), and F) sibling embryos injected with tfap2e MO, but is undetectable in G), the
dorsum of tfap2a mutants injected with a tfap2e MO; kita expression is still detected in the cloaca of this last group (arrow). MOs are co-injected with
p53 MO in this and subsequent figures, to prevent cell death in the nervous system (see text). B) Scale bars: 100 mM (applies to B–G).
doi:10.1371/journal.pgen.1001122.g002

Tfap2 Promotes Melanophore Differentiation
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tfap2e MO; we found no significant difference (See Figure 4 legend

for numbers). In addition, we used fluorescence-activated cell sorting

(FACS) to count GFP-positive cells in dissociated mitfa:egfp transgenic

embryos injected with MOs, and this analysis supported our findings

from histology [37]. Thus, GFP-expressing cells were similarly

reduced in tfap2a MO-injected and tfap2a/e doubly-deficient mitfa:egfp

embryos (i.e., to about 40% of the number in controls), although the

number of differentiated melanophores in tfap2a/e doubly-deficient

embryos was clearly reduced relative to that in tfap2a MO injected

embryos (Figure 4E, histogram). These findings imply that Tfap2

activity, provided by the redundant actions of Tfap2a and Tfap2e, is

involved in a step of melanophore development that occurs

subsequent to specification of the mitfa-positive lineage.

Tfap2a/e activity is required for melanophore
differentiation

To determine which step in melanophore development depends

on Tfap2 activity, we analyzed the expression of genes involved in

melanophore differentiation: tyr, tyrp1b and dct [12]. In tfap2a mutant

embryos at 29 hpf, the number of cells expressing each of these

melanophore markers was reduced by about half relative to that in

siblings, consistent with the previously described decrease in

melanophores in tfap2a mutants (Figure 5A, 5E, 5I and 5C, 5G,

5K) [24,25]. In tfap2e MO-injected embryos, the number of cells

expressing each of these genes appeared to be normal (Figure 5B,

5F, and 5J), while in tfap2a/e doubly-deficient embryos their

numbers were further reduced relative to that in tfap2a mutant

embryos (Figure 5D, 5H, and 5L). To quantify this effect, we

counted cells in embryos processed for in situ hybridization. We

discovered that the reduction in gene expression was not equal in all

cases. The number of cells expressing dct was most clearly and most

consistently reduced in tfap2a/e doubly-deficient embryos, i.e., by

approximately 47% relative to the number in tfap2a mutant

embryos (Figure 5A-5D, and 5M). The reduction in tyrp1b and tyr

expressing cells was more variable, with an average reduction of

approximately 30% and 23%, respectively (Figure 5E-5L, and 5M).

The results described above indicate that when the expression of

tfap2a and tfap2e is reduced, melanoblasts express mitfa but fail to

progress to a stage at which they express normal levels of

melanophore differentiation genes, such as dct, tyrp1b, and tyr. To

test this model more quantitatively, we injected mitfa:egfp transgenic

embryos [37] with either tfap2a MO or both tfap2a MO and tfap2e

MO, dissociated them at 29 hpf, sorted and collected GFP-

expressing cells, and measured the levels of various transcripts by

quantitative RT-PCR (Figure 5N). Using this method, we saw a

trend similar to that observed in the histology analysis: in GFP-

positive cells sorted from tfap2a/e MO-injected embryos relative to

those sorted from tfap2a MO-injected embryos, dct expression was

reduced by approximately 45%, tyrp1b expression was reduced by

17%, and unexpectedly, tyr expression was not reduced. Taken

together with the cell counts, these results reveal that Tfap2

activity, redundantly provided by Tfap2a and Tfap2e, promotes

the differentiation of embryonic melanophores.

Loss of Tfap2a/e activity does not result in a cell-fate
switch or early cell death

We tested the possibility that the loss of differentiated

melanophores in tfap2a/e doubly-deficient embryos results from

Figure 3. tfap2e morpholino has no effect in wild-type embryos, but disrupts melanophore differentiation in tfap2a mutants. (A–E)
Lateral views of live embryos at 36 hpf. (A) A sibling embryo injected with a negative control MO (controlMO), with normal melanophores. (B) A kitab5

homozygous mutant, in which melanophores remain in the trunk dorsum (black asterisk) and near the otic vesicle (white asterisk), but are normally
melanized. (C) A tfap2ats213 homozygous mutant injected with a control MO (tfap2a2/2,controlMO), exhibiting fewer melanophores than siblings and
wild type embryos. (D) A sibling embryo injected with tfap2e e3i3 MO (tfap2eMO), with melanophores that are normal with respect to both number
and differentiation. The pictured melanophore appears to be more spindly than control counterparts, but this was not a reproducible effect. (E) A
tfap2e MO-injected, presumed tfap2a mutant embryo (tfap2a2/2/tfap2eMO), showing fewer melanin-producing melanophores than in tfap2a mutants
(82 of 312 injected embryos from an incross of heterozygous tfap2a mutant fish resembled the pictured embryo). (F) Histogram presenting the
average number (6 standard error, SE) of pigmented melanophores per tfap2a2/2/controlMO and tfap2a2/2/tfap2eMO embryo at 36 hpf and 50 hpf.
n = 10 embryos, asterisks indicate a p value ,0.05. Scale bars: 100 mm.
doi:10.1371/journal.pgen.1001122.g003
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a fate switch of melanophores to xanthophores, because mitfa is co-

expressed with c-fms, a marker of xanthophore precursors [32]. We

injected embryos with a control MO, tfap2a MO, tfap2e MO, or

tfap2a/e MOs, and at 36 hpf processed them to reveal expression

of anti Pax7 IR, a marker of xanthophores [33] (Figure 6A-6C and

not shown). While the numbers of xanthophores in these groups

did not differ significantly (Figure 6D), melanophore differentia-

tion was clearly affected in tfap2a/e doubly-deficient embryos.

These findings suggest that loss of Tfap2 activity in the

melanophore lineage does not result in a cell fate switch.

We also assessed whether melanophores in tfap2a/e doubly-

deficient embryos undergo cell death, i.e. despite the presence of

p53 MO. First, we co-injected embryos with MOs targeting tfap2a

and tfap2e and with an mRNA encoding Bcl2, an inhibitor of

apoptosis [38]. Injection of bcl2 mRNA reduced the number of

cells expressing a marker of programmed cell death in control

embryos at 25 hpf (Figure 6E and 6F), but had no effect on the

melanophore phenotype in tfap2a/e doubly-deficient embryos

(Figure 6G and 6H). Secondly, embryos were incubated in

acridine orange (AO), which is taken up by dying cells, from

16 hpf to 30 hpf and assessed for the presence of AO-containing

cells in the dorsal neural tube and migratory neural crest. Relative

to control MO-injected wild-type embryos, control MO-injected

tfap2a mutants had an elevated number of such cells, but these

numbers were not detectably increased in tfap2e MO-injected

tfap2a mutants (data not shown). These findings suggest that loss of

Tfap2 activity in melanophores does not result in either a switch in

cell fate specification or promotion of cell death, but more likely in

inhibition of normal melanophore differentiation.

Tfap2a/e activity is cell-autonomously required for
melanophore differentiation

In tfap2a mutants and MO-injected embryos, embryonic

melanophores initially appear somewhat under-melanized

[24,25]. The tfap2a gene is expressed both in skin and neural

crest, and we have reported evidence based on transplant studies

that Tfap2a has both cell-autonomous and cell non-autonomous

effects on melanophore differentiation [25]. Because tfap2e is

expressed in melanoblasts but not skin, we assumed that the even

poorer differentiation of melanophores in tfap2a/e doubly-deficient

embryos is primarily a consequence of a cell autonomous role for

Tfap2 activity. To confirm this prediction, we created genetic

chimeras by carrying out transplantations at the blastula stage.

Specifically, we transplanted cells from 4 hpf wild-type donors,

Figure 4. Numbers of mitfa-expressing cells are equivalent in tfap2a/e doubly-deficient and tfap2a deficient embryos. (A–D) Lateral
trunk views of 29 hpf embryos of the indicated genotypes, injected with either control MO or tfap2e e3i3 MO, as indicated, and processed to reveal
mitfa expression. Relative to the sibling embryo shown in (A), the tfap2a2/2 mutant embryo injected with a control MO (B) clearly has fewer cells
expressing mitfa. (C) A tfap2eMO injected sibling embryo, with normal number of mitfa expressing cell numbers. (D) A tfap2a2/2/eMO embryo. The
number of mitfa expressing cells is similar to that seen in tfap2a2/2 mutants (N = 10 embryos, tfap2a2/2 287.265.8, tfap2a2/2/eMO 275.466.1,
p = 0.18). The loss of mitf-expressing cells in tfap2a2/2 and tfap2a2/2/eMO embryos is particularly prominent in the ventral portion of the tail. (E)
Counts of GFP-expressing cells, scored by FACS, in dissociated 24 hpf mitfa:GFP transgenic embryos that were uninjected, injected with tfap2a MO,
tfap2e MO, or tfap2a/e MO, as indicated. Numbers indicate the average (6SE) percentage of the GFP-expressing cells at 24 hpf; p values from a
Student t-test are indicated. Bars one and two compare the percentage of mitfa-EGFP-positive cells from 24 hpf uninjected mitfa-EGFP transgenic
embryos (n.50 embryos, 3 independent repeats) and 24 hpf tfap2eMO embryos (n.50 embryos, 3 independent repeats). Bars three and four
compare the percentage of mitfa-EGFP-positive cells from 24 hpf tfap2aMO embryos (n.50 embryos, 3 independent repeats) and 24 hpf tfap2aMO/
eMO embryos (n.50 embryos, 3 independent repeats). Student t-test analysis indicates that there is no significant difference between the numbers of
mitfa-EGFP-positive cells in tfap2a-deficient embryos and tfap2a/e-deficient embryos (p = 0.65). (A) Scale bar, 100 mm, applies to all panels.
doi:10.1371/journal.pgen.1001122.g004

Tfap2 Promotes Melanophore Differentiation

PLoS Genetics | www.plosgenetics.org 7 September 2010 | Volume 6 | Issue 9 | e1001122



which had been injected with a biotin-dextran as a lineage tracer,

into 4 hpf hosts injected with tfap2a/e MO. We then reared the

transplanted hosts to 48 hpf, and processed them for biotin

staining to reveal the donor-derived cells. Melanophores lacking

lineage tracer were indistinguishable from those seen in the

untransplanted tfap2a/e MO-injected controls (Figure 7C-7F,

arrows), whereas those positive for the lineage tracer were clearly

darker, similar to wild-type controls (Figure 7A and 7B), indicating

an increase in the level of melanin. In addition, they displayed a

more normal morphology (Figure 7E and 7F, arrowheads). These

findings indicate that normal melanophores can develop from

wild-type cells that are flanked by tfap2a/e-deficient epidermis.

This supports a cell-autonomous requirement for Tfap2a/e

activity in melanophore differentiation.

Forced mitfa expression partially restores melanophores
in tfap2a/e doubly-deficient embryos

Several signals are known to modulate Mitf transactivation

activity [39,40]. If Tfap2a/e is required for the expression of a

component of such a signaling pathway, Mitfa activity might be

reduced in tfap2a/e doubly-deficient embryos despite levels of mitfa

mRNA being similar to those in tfap2a mutants. Alternatively, the

Tfap2a/e effector required for melanocyte differentiation might be

Figure 5. tfap2a/e doubly-deficient embryos have defects in melanophore differentiation. (A–L) Lateral views of 29 hpf embryos
processed to reveal (A–D) dct, (E–H) tyrp1b, and (I–L) tyr expression. (A, E, I) Sibling embryos have greater numbers of cells expressing these markers
than do (C, G, K) tfap2a mutants; (D, H, L) in tfap2a2/2/eMO embryos a further reduction is apparent. This enhanced reduction is most apparent for dct
expression. (B, F, J) Sibling embryos injected with the tfap2e MO resemble uninjected sibling embryos. Scale bars: 100 mm. (M) Histogram showing
average number of dct-positive, tyrp1b-positive, and tyr-positive cells in the whole embryo at 29 hpf. First pair of bars, dct-positive cells in uninjected
tfap2a2/2 embryos (n = 10 embryos), vs. in tfap2a2/2/eMO embryos (n = 20 embryos); second pair of bars, tyrp1b-positive cells in the uninjected
tfap2a2/2 embryos (n = 10 embryos) vs. in tfap2a2/2/eMO embryos (n = 20 embryos). Final pair of bars, tyr-positive cells in uninjected tfap2a2/2

embryos (n = 10 embryos) vs. in tfap2a2/2/eMO embryos (n = 10 embryos). Student t-test analyses indicate that the differences among cells expressing
the indicated markers are statistically significant for tfap2a-deficient embryos vs. tfap2a/e-deficient embryos (for dct, p = 1.461029; for tyrp1b,
p = 1.561028; for tyr, p = 0.02). (N) mRNA expression levels of differentiation markers in cells sorted from mitf:egfp embryos injected with the tfap2a/e
MO (normalized to b-actin) relative to those in cells sorted from embryos injected with the tfap2a MO alone (normalized to b-actin) (* = p,0.05).
doi:10.1371/journal.pgen.1001122.g005
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Figure 6. Contribution of cell fate specification and cell death to melanophore defects in tfap2a/e doubly-deficient embryos. (A–C)
Lateral views of 36 hpf embryos stained with a-Pax7 to mark xanthophores. A similar number of a-Pax-7 IR positive cells is apparent in wild-type
embryos injected with (A) a control MO, (B) the tfap2a MO, and (C) the tfap2a MO/tfap2e MO. (D) Average values for the number of a-Pax-7 IR positive
cells counted above the hind yolk, n = 10 embryos per group. (E, F) Lateral views of 25 hpf embryos processed with the TUNEL reaction. (E) In an
embryo injected with tfap2a/e MO alone there are many more TUNEL-positive cells than in (F) an embryo co-injected with an mRNA encoding a bcl2-
gfp mRNA. (This effect was quantified in a parallel experiment, in which bcl2GFP mRNA was co-injected with control MO, embryos fixed at 24 hpf, and
the number of TUNEL-positive cells counted: control MO, 97.7615.5; control MO + bcl2-gfp 54.4612.3, Avg6SE, p = 0.03). (G–H) Lateral views of live
32 hpf embryos. (G) In an embryo injected with the tfap2a/e MO alone, or (H) in an embryo co-injected with bcl2-gfp mRNA, melanophores appeared
similarly poorly differentiated. Insets in G and H, higher magnification views of melanophores in the respective embryos. Scale bars: (A–C, E–H)
100 mM; (Insets in G–H) 50 mM.
doi:10.1371/journal.pgen.1001122.g006
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co-activated by Mitf. In either of these scenarios, forced mitfa

expression might rescue melanophore differentiation in tfap2a/e

doubly-deficient embryos. We injected tfap2a/e doubly-deficient

embryos with a plasmid in which the sox10 promoter drives mitfa

expression (sox10:mitfa) [41], and found sox10:mitfa-injection in-

creased the number of tfap2a/e doubly-deficient embryos with

differentiated melanophores (compare Figure 8B to Figure 8C, 8D).

We observed an increase in the number of darkly-pigmented

melanophores in tfap2a/e doubly-deficient embryos injected with

sox10:mitfa compared to in tfap2a/e doubly-deficient embryos alone

(Figure 8E). We also quantified the mean gray value of single

melanophores in these embryos (as a measure of pigment density),

within a defined region, using ImageJ software. We found that there

was a significant reduction in the pigment density of tfap2a/e doubly-

deficient embryo melanophores, compared to control MO-injected

embryo melanophores, and that this density was restored in doubly-

deficient embryos co-injected with sox10:mitfa (Figure 8F).

Since sox10 is expressed throughout the neural crest, we

considered the possibility that sox10:mitfa might induce a

conversion of neural crest to the melanoblast lineage, and that if

this were to occur in neural crest that expressed another Tfap2

family member, normally differentiated melanophores might

emerge in tfap2a/e doubly deficient embryos. However, arguing

against this alternative model, we did not detect an increase in the

number of melanophores in control-MO injected embryos co-

injected with the sox10:mitfa plasmid (Figure 8E). Moreover, in this

alternative model, tfap2b is the best candidate Tfap2 family

member, as it is expressed in Rohon Beard sensory neurons [27],

which are closely related to trunk neural crest [42,43]. However,

we found that even in embryos triply depleted of tfap2a/b/e using

MOs, co-injection of sox10:mitfa plasmid elevated the number of

normal-looking melanophores (our unpublished observation).

Together these observations support the model that over-

expression of mitfa can compensate for the role in melanophore

Figure 7. Tfap2a/e activity in melanophore differentiation appears to be cell-autonomous. (A–B) Dorsal views of a 48 hpf wild-type
uninjected embryo, showing numerous, highly pigmented melanophores. (C–D) Dorsal views of a 48 hpf tfap2aMO/eMO embryo. Numbers of
melanophores, and the amount of melanin per melanophore, are reduced relative to control embryos. (E–F) Dorsal views of a 48 hpf chimera
generated by transplanting cells from a wild-type donor injected with biotin dextran into a tfap2aMO/eMO host, shown E) prior and F) subsequent to
processing to reveal biotin. Arrowheads in E indicate normal looking melanophores. (F) Melanophores with two different morphologies are visible in
this chimera. Normal-looking melanophores contain biotin (brown biotin label is most evident in the nuclei, arrowheads), indicating they are donor
derived, while pale melanophores (arrows) lack biotin indicating they are host derived (In 4 embryos scored, 17 of 17 normal-looking melanophores
were biotin-labeled). Scale bars: (A, C, E), 100 mm; (B, D, F), 50 mm.
doi:10.1371/journal.pgen.1001122.g007
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differentiation normally played by Tfap2a/e, implying that the

effector of Tfap2a/e-type activity necessary for melanophore

differentiation acts upstream or in parallel with Mitfa.

Discussion

The phenotype of tfap2a/e double-knockdown embryos
reflects multiple roles of Tfap2 activity in the
melanophore lineage

Here we have presented two new findings relevant to the gene-

regulatory-network (GRN) that governs the differentiation of

zebrafish embryonic melanophores. First, kita expression in

embryonic melanophores is positively regulated by Tfap2e, at

least when Tfap2a levels have been reduced. Expression of tfap2a is

present throughout the neural crest starting at the neurula stage,

while the expression of tfap2e starts at approximately the time of

neural crest delamination and appears to be restricted to

melanoblasts [24,25]. The relative timing of tfap2a and tfap2e

expression explains why kita expression (in melanophores) in tfap2a

mutants is reduced at 28 hpf, but present at later stages; Tfap2e

compensates for the absence of Tfap2a but only after 28 hpf. The

presence of TFAP2E expression in human melanocytes suggests

Figure 8. Melanophore differentiation in tfap2a/e doubly-deficient embryos is partially restored by forced expression of mitfa. (A–C)
Lateral views of 32 hpf embryos, with anterior to the left. Insets are magnified images of the regions in white boxes. (A) A wild-type embryo injected
with a control MO, exhibiting normal melanophores. (B) A wild-type embryo injected with tfap2aMO/eMO, exhibiting poorly melanized melanophores.
(C) Wild-type embryo injected with tfap2aMO/eMO and co-injected with sox10:mitfa plasmid; melanophores appear closer to normal in this embryo. (D)
A histogram presenting percentage of embryos from the various groups with normal melanophores; n = 68 (control MO), 91 (tfap2a/e MO), 89
(tfap2a/e MO + sox10:mitfa), totaled from 3 independent experiments. Scale bars: 50 mM. (E) Histogram presenting average cell counts (6SE) of
melanophores in embryos from various groups. Notice an increase in the number of melanophores in tfap2a/e MO embryos co-injected with
sox10:mitfa compared to tfap2a/e MO alone (N = 10 embryos per group, asterisks indicate a p value ,0.05). (F) Histogram representing average mean
gray value (6SE), calculated with ImageJ analysis of photomicrographs of melanophores in indicated groups. Injection of tfap2a/e MO causes a
reduction in the mean gray value of melanophores compared to that for control MO-injected wild-type embryos. This value is increased to wild-type
levels upon co-injection of sox10:mitfa into tfap2a/e MO embryos (N = 10 embryos per group, approximately 70–80 melanophores per group,
asterisks indicate p values ,0.05).
doi:10.1371/journal.pgen.1001122.g008
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that TFAP2A and TFAP2E have redundant or partially

redundant function in mammalian melanocytes, as in fish

melanophores. If so it would explain the observation, mentioned

in the Introduction, that the coat color phenotype in mice with

neural crest-specific deletion of Tfap2a is less severe than that of Kit

homozygous null mutants [21].

The second unexpected finding is that Tfap2 activity (provided

by Tfap2a and Tfap2e) promotes the differentiation of embryonic

melanophores. This was revealed by reduced expression of the dct

and tyrp1b mRNAs, as well as of melanin—changes that are evident

in tfap2a mutants and more pronounced in tfap2a/e doubly-deficient

embryos. Does Tfap2 activity also direct neural crest cells to join the

melanophore sublineage? There is precedent for such a possibility,

because Tfap2 activity provided by Tfap2a and Tfap2c appears to

direct ectodermal precursors to join the neural crest lineage [28,44].

In tfap2a single mutants, neural crest induction appears to occur

normally, but mitfa-expressing cells, which are primarily melano-

blasts, are reduced in number. This reduction may reflect a role for

Tfap2 in melanophore specification or alternatively a reduction of

Kita-mediated proliferation of melanoblasts. Whatever the expla-

nation for reduced melanoblasts in tfap2a mutants, simultaneous

reduction of tfap2a and tfap2e leads to a further reduction of

melanophore numbers without a further reduction of mitfa-

expressing cells, arguing Tfap2 promotes differentiation of mela-

noblasts to melanophores. While a reduction of melanophores

without a reduction in mitfa-expressing cells might have been

consistent with a cell fate change of melanophores to xanthophores

(because markers of melanoblasts and xanthoblasts are briefly co-

expressed [32]), xanthophore numbers are equivalent in tfap2a

deficient and tfap2a/e doubly-deficient embryos, arguing against

such a fate transformation. Does Tfap2 also promote survival of

melanophores? We did not detect evidence of cell death of

melanophores shortly after their differentiation in tfap2a/e doubly-

deficient embryos. We predict that in embryos permanently

deprived of both Tfap2a and Tfap2e melanophores would die as

a consequence of the absence of Kita. However, because

melanophores persist for several days in kita mutants, and this is

longer than MOs are effective (see Figure 2A), it will be necessary to

isolate a tfap2e mutant to test this prediction. Together these

observations reveal that Tfap2 activity has multiple roles in

melanophore development, including promoting melanophore

differentiation.

Another result that will be important to revisit when a tfap2e

mutant is available is the apparent heightened Tfap2-dependence

of dct expression relative to tyr expression. Consistent with

differential regulation of these related genes, in mice, Dct

expression appears prior to Tyr expression, and this has also been

suggested to be the case in zebrafish [45,46]. However, because we

knock-down tfap2e expression with an MO, the stronger effect on

dct expression relative to on tyr expression may simply reflect loss of

MO effectiveness over time. There may be a similar explanation

for the inconsistent findings regarding tyr expression between the

RNA in situ hybridization and the quantitative RT-PCR analyses.

The cell dissociation protocol required for quantitative RT-PCR

introduces a delay in the analysis of gene expression relative to that

obtained using the RNA in situ hybridization protocol, giving

further time for the MO to lose efficacy. Nevertheless, these results

reveal that Tfap2 activity, redundantly provided by Tfap2a and

Tfap2e, promotes the differentiation of embryonic melanophores.

Tfap2 and Mitfa may co-activate melanophore
differentiation genes

How does Tfap2 activity, mediated by Tfap2a and Tfap2e,

effect melanophore differentiation? In tfap2a/e doubly-deficient

embryos, melanophore differentiation fails but can be rescued by

forced expression of mitfa. One model to explain these findings is

that Mitfa and Tfap2 normally co-activate genes important for

melanophore differentiation, but in the absence of Tfap2, elevated

levels of Mitfa can suffice to do so (Figure 9A). Thus, Tfap2 family

members may directly activate genes involved in melanin

synthesis, such as dct, tyrp1b, and possibly tyr, all of which are

known to be Mitfa targets [47–49]. Consistent with this possibility,

recent studies have identified conserved DNA elements adjacent to

the dct and tyrp1b genes that have melanocyte enhancer activity

[13], and some of these contain putative Tfap2 binding sites.

Simultaneous inhibition of tyrp1a and tyrp1b blocks melanization of

zebrafish melanophores, suggesting that tyrp1a/b may partially

mediate Tfap2a/e activity within these cells [50]. A variation of

this model is that, rather than Tfap2 itself functioning as a co-

activator with Mitfa, the protein product of a gene stimulated by

Tfap2 does so. For instance, Tfap2 activates expression of estrogen

receptor alpha (ERa) [51,52]. ERa, together with p300, interacts

with Mitf to strongly activate the Dct promoter [53].

Tfap2 may indirectly promote Mitfa transactivation
activity

It is also possible that the effector of Tfap2 activity is an enzyme

that alters the activity, translation, or longevity of the Mitfa protein

(Figure 9B). Thus, perhaps mitfa RNA levels are the same in tfap2a

deficient vs. tfap2a/e deficient embryos, but Mitfa activity is reduced

in the latter. For instance, the Tfap2-effector may be a receptor

tyrosine kinase (RTK) whose activity results in posttranslational

activation of Mitfa, i.e. similar to a proposed role of Kit [7,8].

Supporting such a possibility, Kita itself is necessary for

differentiation of embryonic melanophores in zebrafish in certain

experimental conditions [54] [23]. A variety of RTKs are

candidates for the Tfap2 effector in melanophore differentiation,

including Erbb3 [55,56], IGF1R [57], FGF receptor [58], c-Ret

[59], and c-MET [60]. Two G-protein coupled receptors, which

Figure 9. Potential models for how Tfap2 activity may function
within the melanophore lineage. (A) In the first model, Tfap2 is a
cofactor with Mitfa, and directly activates melanophore differentiation
gene(s), such as dct. (B) In the second model, Tfap2 activity (provided by
Tfap2a and Tfap2e) is upstream of an unknown factor (X), leading to
modification of Mitfa, such as phosphorylation (denoted by ‘‘P’’), and
increased transactivation activity of Mitfa at target differentiation
gene(s). In either scenario, forced expression of mitfa compensates for
the loss of Tfap2 activity.
doi:10.1371/journal.pgen.1001122.g009
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like RTKs can stimulate the MAP Kinase pathway, are also

candidates. First, Endothelin receptor b (Ednrb signaling)

promotes melanocyte differentiation in mammals, in part by

activating MAP Kinase signaling and Mitfa [61–64]. While

embryonic melanophores differentiate normally in zebrafish ednrb1

mutants [65], uncharacterized ednrb homologues are present in the

zebrafish genome (e.g., on chromosome 9) and may function in

embryonic melanophores. Second, Melanocortin 1 receptor

(Mc1r) is necessary for normal levels of pigmentation in zebrafish

[66] and in mammals [67], and MC1R expression may be directly

regulated by TFAP2A, because it has been shown that TFAP2A

binds DNA adjacent to the MC1R gene in HeLa cells (chromatin

immunoprecipitation results) [68]. Finally, Tfap2 could normally

repress expression of an Mitfa phosphatase, alter processing of the

mitfa transcript, change Mitfa translation or change Mitfa protein

stability. All these scenarios would result in similar mitfa mRNA

levels in situ but weaker Mitfa activity when Tfap2 levels are

reduced, and would potentially be by-passed by over-expression of

mitfa mRNA. The direct targets of Tfap2 in melanocytes are

currently under investigation.

Materials and Methods

Fish maintenance
Zebrafish embryos and adults were reared as described

previously [69], in the University of Iowa Zebrafish Facility.

Embryos were staged by hours or days post fertilization at 28.5uC
(hpf or dpf) [70]. Homozygous mutant embryos were generated

from heterozygous adults harboring a presumed null allele of

tfap2a (lockjaw, tfap2ats213) [26], mitfa (mitfab692) [31], or kita (kitab5)

[23], as indicated.

Generation of cDNAs and morpholinos
First-strand cDNA was synthesized from total RNA harvested

from embryos at 4 hpf and 24 hpf as described [25]. A 1.4 kb full-

length zebrafish tfap2e cDNA was amplified from the wild-type

cDNA using the following primers: forward, 59-GGA TTC ATG

TTA GTC CAC TCC TAC TC-39, reverse, 59-TTA TTT GCG

GTG CTT GAG CT-39. This cDNA includes the entire open

reading frame and was inserted into the pCR4-TOPO vector

(Invitrogen, Carlsbad, CA). A 1.3 kb fragment of zebrafish tyrp1b

cDNA was amplified from the wild-type 24 hpf cDNA using the

following primers: forward, 59-GAG AGC GGA TGA TAT AAG

GAT GTG G-39, reverse, 59-GCC CAA TAG GAG CGT TTT

CC-39. This cDNA was inserted into pSC-A vector (Stratagene,

La Jolla, CA).

In designing a tfap2e construct in which expression is disrupted,

the exon 2 splice donor site and the exon 3 splice donor sites had

to be inferred from comparison of the cDNA to the corresponding

genomic sequence (http://uswest.ensembl.org/Danio_rerio/Info/

Index). MOs complementary to these sites were ordered: tfap2e

e2i2 MO, 59-ATA CAA GAG TGA TTG AAC TCA CCT G-39;

tfap2e e3i3 MO, 59-CAC ATG CAG ACT CTC ACC TTT CTT

G-39 (Gene Tools, Philomath, OR). In addition, a MO targeting

the tfap2e translation start site (AUG MO) was designed, 59-GCT

GGA GTA GGA GTG GAC TAA CAT C-39. MOs were

reconstituted to 5 mg/ml in water and stored at room temperature

(25uC). Immediately before use, they were diluted to 0.5 mg/ml in

0.2 M KCl. MOs (4–8 nl of diluted stock) were injected into the

yolk underlying the blastomeres of embryos at the 1–4 cell stage.

Upon injection of 3 ng or more of either MO, we saw evidence of

non-specific toxicity, i.e., patches of opacity in the brain and spinal

cord that did not develop when 5 ng of a p53 MO (59-GCG CCA

TTG CTT TGC AAG AAT TG-39) was injected [71]. To assure

strong penetrance while preventing non-specific toxicity, we used

3 ng/embryo of tfap2e e3i3 MO plus 5 ng/embryo of p53 MO to

generate tfap2a2/eMO embryos. For double MO experiments

(tfap2aMO/tfap2eMO), 3 ng of tfap2e e3i3 MO, 5 ng tfap2a e2i2 MO

(59-GAA ATT GCT TAC CTT TTT TGA TTA C-39) and 5 ng

of p53 MO were injected together. To test the efficacy of the tfap2e

MOs, we used a pair of primers flanking a 305 bp fragment

between exon 2 and exon 4 of tfap2e for RT-PCR (forward, 59-

CAC CAC GGC CTG GAT GAT ATT-39; reverse, 59-AGG

ACT CCT CCA AGC AGC GA-39). Additionally, where noted, a

control MO (controlMO) was used for comparison (59-CCT CTT

ACC TCA GTT ACA ATT TAT A-39).

Generating chimeric embryos
To create genetic chimeras, we injected donor embryos with

5 nl of 1% lysine-fixable biotinylated-dextran, 10,000 MW

(Sigma, St. Louis, MO). At the sphere stage (4 hpf), about 100

cells were withdrawn from each donor embryo using a manual-

drive syringe fitted with an oil-filled needle (Fine Science Tools,

Vancouver, BC), and about 20 cells were inserted into each of

several host embryos at the same stage. In placing these cells, we

aimed for a position near the animal pole, to target clones to the

ectoderm [72]. Host embryos were allowed to develop to 48 hpf,

fixed, images taken, and then processed using an ABC kit (Vector

Labs, Burlingame, CA) and DAB to reveal biotin as previously

described [73], and subsequently photographed.

Analysis of gene expression
The following restriction fragments were used to generate DIG-

labeled antisense RNA probes (Roche Diagnostics, Mannheim,

Germany) for whole mount in situ hybridization: tfap2e, NotI/T3;

tyrp1b, BamHI/T3; dct, EcoRI/T7 [74]; mitfa, EcoRI/T7 [31].

Standard procedures were followed as previously described [75].

For total cell counts, 10–20 embryos were analyzed per group (see

figure legend).

For immunohistochemistry, a monoclonal anti-Pax7 antibody [33]

was used at a 1:25 dilution (supernatant obtained from the

Developmental Studies Hybridoma Bank at the University of Iowa,

USA). The primary antibody and an anti-DIG antibody were added

during routine whole mount in situ hybridization. Following

development of whole mount in situ hybridization with NBT/BCIP,

the embryos were blocked and then incubated with an Alexa-488

conjugated goat-anti-rabbit secondary antibody, as previously

described [76]. After several washes, the embryos were mounted in

50% glycerol/PBST, and photographed. Cell counts were performed

on ten embryos per group, along the entire length of the hind yolk.

Dissociation of zebrafish embryos and FACS
Live embryos were reared to an appropriate stage, homogenized

with a pestle, and dissociated with PBS containing trypsin and

EDTA for 30 minutes at 33uC. After dissociation, cells were

resuspended in PBS plus 3% fetal bovine serum (FBS). EGFP-

positive cells were counted using a Becton Dickinson FACScan. For

cell sorting, cells were dissociated as previously described, and

subsequently sorted, on a Becton Dickinson FACS DiVa, directly

into buffer RLT and b-mercaptoethanol for subsequent RNA

isolation (RNeasy Plus Mini Kit, QIAGEN, Valencia, CA).

FACScan cell counting, FACS DiVa cell sorting, and data analyses

were conducted at the University of Iowa Flow Cytometry Facility.

Quantitative RT-PCR
The isolation and culture of normal melanocytes and keratino-

cytes was performed as described previously, Mel 1 and Ker
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[77,78], Mel 2,3 [79] (see Figure 1M). Total messenger RNA was

isolated using an RNeasy Plus Mini Kit (QIAGEN, Valencia, CA),

along with on-column DNase digestion according to the

manufacturer’s instructions. Lymphocytes (Jurkat cells, clone E6-

1) were obtained (ATCC, Manassas, VA), and total RNA was

isolated using the PerfectPure RNA Kit (following manufacturer’s

instructions, 5 PRIME Inc., Gaithersburg, MD). RNA concen-

trations were determined using a NanoDrop spectrophotometer

(Thermo Scientific) and diluted to equal concentrations. For

complementary DNA (cDNA) reactions, approximately 200 ng of

total RNA was added to 0.5 mg random hexamers, plus 2.5 ml of

10 mM dNTPs (Invitrogen; Carlsbad, CA), and brought to 30 ml

with nuclease-free water. Reactions were heated to 65uC for 5

minutes, and cooled to 4.0uC for 5 minutes in a PTC-200 Peltier

Thermo Cycler (MJ Research; Ramsey, MN). We then added

19 ml of a master mix containing 10 ml of 5x First-Strand buffer

(Invitrogen), 5 ml of 0.1 M dithiothreitol, 20 units of RNasin

(Promega, Madison, WI), and nuclease-free water to a volume of

19 ml. Reactions were incubated at 25uC for 10 minutes, and then

at 37uC for 2 minutes. Then 1 ml of Moloney-murine leukemia

virus Reverse Transcriptase (New England Biolabs, Ipswich, MA)

or 1 ml nuclease-free water was added to each reaction. Reactions

were carried out at 37uC for 2 hours, followed by incubation at

75uC for 15 minutes. PCR reactions (25 ml) were prepared with

approximately 10 ng of cDNA, using the SYBR Green kit

(Applied Biosystems, Foster City, CA) following the manufactur-

er’s instructions. The following primers were used at a final

concentration of 200 nM in separate PCR reactions: human

TFAP2E (forward: 59-AAT GTG ACG CTG CTG ACT TC-39;

reverse: 59-GGT CCT GAG CCA TCA AGT CT-39); or human

GAPDH (forward: 59-AGG TCG GAG TCA ACG GAT TTG-39;

reverse: 59-GTG ATG GCA TGG ACT GTG GT-39). Quanti-

tative real-time PCR in Low 96-well plates (Bio-Rad, Hercules,

CA) was conducted using a Bio-Rad thermal cycler (CFX96 Real-

Time PCR Detection System) and following the default protocol.

Primers were designed to flank large exon-intron boundaries to

avoid the potential amplification of contaminating genomic DNA.

Also, RNA samples not reverse-transcribed (-RT) were used as a

negative control. The 2DDCT method was used to determine

relative levels of gene expression between samples (normalized to

GAPDH) [80]. Experiments were performed in triplicate and mean

and standard error were calculated. Following real-time PCR,

melt-curve analysis was performed to determine reaction specific-

ity. Similar methods were used for qRT-PCR of sorted cells, with

the exception that approximately 20 ng of RNA was used for

cDNA synthesis. The following primers were used at a final

concentration of 200 nM in separate PCR reactions: tyr (forward:

59-GGA TAC TTC ATG GTG CCC TT-39; reverse: 59-TCA

GGA ACT CCT GCA CAA AC-39); tyrp1b (forward: 59-TAT

GAG ACA CTG GGC ACC AT-39; reverse: 59-CAC CTG TGC

CAT TGA GAA AC-39); dct (forward: 59-CCT CGA AGA ACT

GGA CAA CA-39; reverse: 59- CAA CAC CAA CAC GAT CAA

CA-39); and b-actin (forward: 59-CGC GCA GGA GAT GGG

AAC C-39; reverse: 59-CAA CGG AAA CGC TCA TTG C-39).

Again, the 2DDCT method was used to determine relative levels of

gene expression between samples, first normalizing both samples

to b-actin, and then comparing relative gene expression levels in

tfap2a/e doubly-deficient cells to those in tfap2a deficient cells.

TUNEL staining
Apoptotic cell death was revealed in whole embryos by terminal

transferase dUTP nick-end labeling (TUNEL) as described [81].

The terminal transferase reaction was terminated by incubation at

70uC for 30 min, and embryos were processed with anti-FITC-

alkaline phosphatase antibody and developed with NBT/BCIP, as

for an RNA in situ hybridization.

Rescue experiments
For tfap2aGR mRNA rescue experiments, approximately 5 nL

of 0.075 mg/mL tfap2aGR or lacZ encoding mRNA, transcribed in

vitro (mMessage mMachine kit, Ambion, Austin, TX) was injected

into one of four cells of embryos previously injected with tfap2a/e/

p53 MOs (similar concentration as indicated before). Embryos

were raised until they reached approximately 75% epiboly, at

which point dexamethasone (dissolved in EtOH) was added to the

fish water at a final concentration of 40 mM. For DNA rescue

experiments, 5 nL of a 0.025 mg/ml plasmid encoding 4.9 Kb of

the sox10 promoter driving full length mitfa [41] was injected at the

one cell stage, followed by co-injection of various MO combina-

tions (control MO and p53 MO or tfap2aMO,tfapeMO). Embryos

were then raised until approximately 36 hpf and fixed in 4%

paraformaldehyde overnight. Finally, embryos were rinsed in

PBST, mounted in 3% methylcellulose, and photographed.

ImageJ analysis
To analyze the mean gray value of melanophores, embryos

were first fixed at the appropriate stage in 4% paraformaldehyde

overnight. Embryos were then rinsed in PBST and mounted in 3%

methylcellulose, and images of single melanophores were taken

near the otic vesicle at 40x. All lighting conditions remained

constant throughout image capturing. 6–10 melanophores were

imaged per embryo, and 10 embryos were analyzed per group

(roughly 70–80 melanophores per group). Images were converted

to a 32 bit gray image and then processed using the auto threshold

function in ImageJ software (Version 1.40 g, National Institutes of

Health, Bethesda, MD), creating an outline of the melanophore

being analyzed. After application of the auto threshold function, a

selection was created of the pixels highlighted, and a measurement

reporting mean gray value for the given area was taken. An inverse

of the selection was then created, highlighting the background

(area not occupied by the melanophore), and a similar measure-

ment was taken, reporting the mean gray value of the surrounding

background. The difference was then calculated between the mean

gray value of the melanophore and the surrounding background,

resulting in the normalized mean gray value of the melanophore.

Averages were then calculated for all melanophores measured per

group, and standard deviation was calculated.

Cell counts
For mitfa-positive and TUNEL-positive cell counts, the entire

region overlying the hind yolk was counted. For melanophore cell

counts in sox10:mitfa rescue experiments, the total number of

melanophores in the embryo body (excluding yolk and hind yolk)

were counted. Embryos were fixed in 4% paraformaldehyde

overnight, washed in PBST, and mounted in 3% methylcellulose

for counts. Embryos were mounted and then counted blindly by

an independent observer.

Supporting Information

Figure S1 Expression of tfap2d is absent from developing

melanophores. Lateral views of wild-type zebrafish embryos, fixed

at the stage indicated and processed to reveal tfap2d expression by

RNA in situ hybridization. (A) At 24 hpf, an embryo shows tfap2d

expression within specific regions of the midbrain, (B) which

persists until 36 hpf. Importantly, tfap2d expression is not detected

within the trunk of these embryos. Embryos were treated with low

levels of PTU to decrease melanin production to allow better
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visualization of potential expression within melanophores. Scale

bar: 50 mM.

Found at: doi:10.1371/journal.pgen.1001122.s001 (4.16 MB TIF)

Figure S2 Expression of tfap2e in tfap2a mutants. Lateral views of

zebrafish embryos, fixed at the stage indicated and processed to

reveal tfap2e expression by RNA in situ hybridization. (A) A sibling

embryo at 28 hpf with tfap2e expression within melanoblasts,

located throughout the trunk of the embryo, as described earlier.

(B) A tfap2a mutant, in which tfap2e expression is detected within

melanoblasts near the dorsum of the embryo; it is evident that

fewer than normal numbers of tfap2e-expressing cells (presumed

melanoblasts) have migrated ventrally. (C) Sibling and D) tfap2a

mutant embryos at 34 hpf; tfap2e expression is detected in the

posterior trunk of both sibling and mutant embryos, although

fewer tfap2e-expressing cells have migrated ventrally in the tfap2a

mutant. Embryos were treated with low levels of PTU to better

visualize expression within melanophores. Scale bar: 25 mM.

Found at: doi:10.1371/journal.pgen.1001122.s002 (6.76 MB TIF)

Figure S3 p53 MO blocks nervous system necrosis but does not

affect melanophore development. Lateral views of live zebrafish

embryos at 36 hpf. Insets show higher magnification of melano-

phores contained in white boxes. (A) A wild-type embryo shows

normal melanophore development, similar to embryos injected

with tfap2e e3i3 MO (B,C). (B) The embryo injected with tfap2e MO

also displays signs of central nervous system cell death (i.e., patches

of opacity in the brain and spinal cord, white asterisk), which is

reversed (C) by co-injection of a p53 MO.

Found at: doi:10.1371/journal.pgen.1001122.s003 (7.25 MB TIF)

Figure S4 Specificity of tfap2a/e doubly-deficient melanophore

defects. (A–F) Lateral views of live zebrafish embryos at 36 hpf.

Insets show higher magnification of melanophores contained in

the white boxes. (A–E) Sibling embryos injected with A), control

MO, (C) tfap2e e2i2 MO, or (E) tfap2e AUG MO; all of these

embryos exhibit normally pigmented melanophores. (B) A tfap2a

mutant embryo injected with a control MO, with a reduction in

melanophore numbers and melanophore migration, and slightly

less than normal melanization. (D,F) tfap2a mutant embryos

injected with (D) a tfap2e e2i2 MO or (F) a tfap2e AUG MO. These

embryos display a further reduction in darkly pigmented

melanophores, throughout the embryo. (G,H) Dorsal views of

embryos at 36 hpf, anterior to the left. Embryos were first injected

with tfap2a/e MO, followed by injection of mRNA encoding either

(G) lacZ or (H) a dexamethasone-inducible version of tfap2a

(tfap2aGR). Following injections, embryos were incubated in

dexamethasone (Dex). The embryo injected with tfap2aGR shows

rescue of pigmented melanophores whereas that injected with lacZ

did not. Scale bars: 25 mM.

Found at: doi:10.1371/journal.pgen.1001122.s004 (7.40 MB TIF)
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