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Abstract: Oncolytic viruses have emerged as a novel class of anti-cancer therapeutics with one
virus already receiving United States Food and Drug Administration (FDA) approval (talimogene
laherparepvec) and many others undergoing testing in clinical trials. These viruses have direct
lytic effects on tumor cells as well as immunomodulatory functions to increase inflammatory cell
infiltrates in the tumor microenvironment. Despite all of the advances in cancer care, pancreatic cancer
remains a highly lethal malignancy. One of the main barriers to successful systemic treatment of the
disease is the fibrotic tumor stroma, as the unique extracellular matrix creates an environment that
promotes tumor growth and is resistant to chemotherapy and other anti-cancer agents. The pleiotropic
effects of Vitamin D have been widely studied, but recent research has now demonstrated it to be
an effective agent in modulating pancreatic cancer stroma to facilitate the enhanced delivery of
cytotoxic chemotherapy and immunogenicity in response to treatment. This review will explore
the combination of Vitamin D with oncolytic viruses and how this novel application of Vitamin D’s
ability to modulate pancreatic tumor stroma may result in a potential mechanism for increasing the
efficacy of oncolytic virotherapy in pancreatic cancer.
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1. Introduction

Oncolytic viruses are emerging therapeutics in the cancer treatment armamentarium. They are
naturally occurring or genetically modified viruses that infect, replicate in, and kill cancer cells
while minimizing damage to surrounding normal cells [1]. Multiple viral backbones are currently
employed in vector development and include adenoviruses, reoviruses, herpesviruses, vaccina
viruses, and coxsackieviruses [2]. Oncolytic viruses can be designed to selectively replicate in cancer
cells through the use of a tumor-specific promoter or through key deletions in viral genomes [3–5].
Furthermore, many viral backbones are capable of accepting transgene insertions that can be used
to facilitate real-time imaging (e.g., sodium iodide symporter [NIS]) to monitor viral infections
or used to locally deliver a high concentration of a particular cytokine to augment the oncolytic
effect (e.g., interferon alpha and granulocyte-macrophage colony-stimulating factor [GM-CSF]) [6–8].
The last decade has seen advances in vector design and development, which has culminated in the
FDA’s approval of the first oncolytic virus for use in humans (talimogene laherparepvec [T-Vec]) [9].
Spurred on by the success of T-Vec, many other oncolytic viruses are entering into clinical trials as
monotherapy agents or as part of a combination therapy regimen [2]. Despite promise in clinical
settings, it is clear that for most malignancies a cure will not be achieved with an oncolytic virus as
a monotherapy treatment. Oncolytic vectors have demonstrated synergy with chemotherapy and
radiation, and many new studies have shown promising effects when these viruses are combined with
immunotherapies [10,11]. In particular, the combination of oncolytic viruses and immune checkpoint
inhibitors is an active area of investigation with promising initial results [12–15]. The future of oncolytic
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virotherapy will be tied to combination therapy regimens where the unique aspects of the individual
components can work in concert to generate a more effective anti-cancer regimen.

When compared to many other solid tumors, the outcomes for pancreatic cancer patients remain
poor [16]. In the United States in 2015, it was the fourth most common cause of cancer death among
both men and women [16]. The overall five-year survival rate for all pancreatic cancers is approximately
7% [17]. Even for those patients able to undergo surgical resection, the five-year survival rates reported
from experienced centers are still below 30% [18]. Modern chemotherapeutic regimens have resulted
in modest survival improvements [19,20], but novel therapeutic regimens are needed for pancreatic
cancers. One of the main challenges to successful therapy has been overcoming the pancreatic tumor
stroma. A dense fibrotic reaction and altered extra-cellular matrix (ECM) creates a situation that
is conducive to growth of the tumor [21]. Vitamin D has shown particular promise as a stromal
modulator in pancreatic cancer. As Sherman et al. have established, the vitamin D receptor (VDR)
expressed in the pancreatic cancer stroma can be bound by VDR-ligands to reduce inflammation and
fibrosis in the tumor stroma, which results in increased delivery of cytotoxic therapies to the tumor [22].
As a consequence of the aforementioned findings, many new clinical trial protocols have incorporated
Vitamin D or one of its analogs into pancreatic cancer treatment regimens.

This review will explore the nature of Vitamin D and its pleiotropic effects, with particular
attention to treatment of pancreatic cancer, and will further explore the notion of enhanced oncolytic
viral efficacy following Vitamin D treatment.

2. The Basics of Vitamin D

Vitamin D refers to a group of secosteroid molecules of which calcitriol [1,25(OH)2D3] is the
biologically active form [23]. Calcitriol binds to the VDR, which is a member of the nuclear hormone
receptor superfamily [24]. The liganded VDR then goes on to form a heterodimer with the Retinoic X
Receptor (RXR) to exert transcriptional regulatory functions on target genes [25]. The VDR influences
over 700 genes and it is estimated that Vitamin D and its effectors influence up to 3% of the human
genome [26]. The VDR is expressed (to varying degrees) on most nucleated cells in the human body
with particularly high concentrations in intestinal epithelia, renal tubules, parathyroid and pituitary
tissue, pancreas, skin, immune system cells, and bone [27–29]. With VDR expression so widespread
throughout the human body, it is no wonder that the Vitamin D system has such pleiotropic effects
including anti-proliferative and anti-inflammatory effects, pro-differentiation, apoptosis, and the
inhibition of angiogenesis [28,30]. Vitamin D’s main role is classically described in calcium and
phosphate homeostasis, but it has also been implicated in the regulation of the cardiovascular and
immune systems as well as numerous facets of cancer biology [25].

Vitamin D’s relationship to cancer has been widely studied on both epidemiologic and cellular
levels. In the 1980s, researchers highlighted the association between geographic areas with reduced
exposure to natural light (a surrogate for Vitamin D levels) and an increased incidence of colorectal
cancers [31]. These findings prompted further analysis into the role that Vitamin D deficiency may play
in cancer risk and if Vitamin D supplementation could be used in cancer prevention [32]. Similarly,
one of the first reports of Vitamin D’s specific anti-cancer effects demonstrated that calcitriol inhibited
the growth of in vitro melanoma cells [33]. In that same year, calcitriol was shown to also promote the
differentiation of murine myeloid leukemia cells towards the macrophage lineage [34]. Since those
early reports, Vitamin D and its analogs have been studied in many other solid malignancies including
breast, prostate, and pancreatic cancers [35].

3. Vitamin D and the Stroma of Pancreatic Cancer

Within the pancreatic tumor stroma, the pancreatic epithelial cells, cancer-associated
fibroblasts, and pancreas stellate cells (PSC) create a microenvironment that is pro-tumor and
anti-chemotherapeutic [36]. The PSCs are of particular interest because they are normally in a quiescent
state, but can be activated during times of injury and stress and transform into myofibroblast-like
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cells [37]. They then continue to secrete ECM proteins that lead to the fibrotic stromal reaction
that is characteristic of pancreatic cancer [38]. Furthermore, activated PSCs have been shown to
enhance pancreatic cancer cell activation through the secretion of factors such as platelet-derived
growth factor and insulin-like growth factor 1 [22,39]. As the desmoplastic reaction continues and
the tumor progresses from pre-invasive to invasive disease, the immune cell infiltrate in the tumor
microenvironment undergoes marked changes [40]. Tumor-associated macrophages, myeloid-derived
suppressor cells (MDSC), and regulatory T cells are increasingly present and serve to create a locally
immunosuppressive environment [41]. MDSCs achieve this effect, in part, by inhibiting the activation
of CD 4+ and CD 8+ T cells as well as decreasing NK (natural killer) cell cytotoxicity [42]. Additionally,
matrix metalloproteinases (e.g., MMP-8 and MMP-9) derived from tumor associated neutrophils
(TAN) further contribute to the immunosuppressive nature of the tumor microenvironment [43].
The aforementioned dense fibrotic reaction and alterations in the tumor immune milieu have been
recognized as major contributors to the treatment failures of many current-generation pancreatic cancer
therapeutics [21,36,40].

Given their role in promoting the fibrotic tumor stroma and secretion of tumor-promoting factors,
activated PSCs represent an attractive therapeutic target. The Evans research group has analyzed
the effect of the VDR on PSCs and potential impact of VDR-mediated stromal remodeling in the
treatment of pancreatic cancer. Importantly, they showed that there are sustained levels of the VDR
in both normal and cancer-associated PSCs, which was previously not known to be the case for the
exocrine pancreas [22,44]. Using the VDR ligand (calcipotriol), they also established how the activated
VDR can regulate the activated PSCs on a transcriptional level. For example, they demonstrated
calcipotriol-dependent inhibition of numerous activation and cancer signatures including regulators
of angiogenesis such as Thsb1 [22]. Using the genetically engineered KPC pancreatic cancer mouse
model [45] and combination therapy with a VDR-ligand and gemcitabine, they showed decreased
tumor volumes with the combination therapy (when compared to either monotherapy), augmented
tumor vasculature, increased intratumoral gemcitabine concentrations, and altered gene expression
including an induction of Fabp4 (a PSC quiescence marker) [22]. The use of a VDR-ligand to reprogram
the pancreatic cancer stroma was a major breakthrough for pancreatic cancer research and has since
prompted Vitamin D analogs to be included in numerous ongoing clinical trials (Table 1).
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Table 1. Key pancreatic cancer clinical trials employing Vitamin D analogs.

Trial Identifier Study Name Study Phase Study Drugs Design Disease Status Estimated
Enrollment

NCT 03331562

A SU2C Catalyst® Randomized Phase II Trial of the PD1 Inhibitor
Pembrolizumab With or Without a Vitamin D Receptor Agonist
Paricalcitol in Patients with Stage IV Pancreatic Cancer Who Have
Been Placed in Best Possible Response

II Pembrolizumab, Paricalcitol Randomized Metastatic 24

NCT 03300921 A Phase Ib Pharmacodynamic Study of Neoadjuvant Paricalcitol in
Resectable Pancreatic Cancer Ib Paricalcitol Non-Randomized Resectable 20

NCT 03519308 A Pilot Study of Perioperative Nivolumab and Paricalcitol to Target
the Microenvironment in Resectable Pancreatic Cancer I Nivolumab, Nab-paclitaxel,

Gemcitabine, Paricalcitol Randomized Resectable 20

NCT 03520790 Vitamin D Receptor Agonist Paricalcitol Plus Gemcitabine and
Nab-paclitaxel in Patients with Metastatic Pancreatic Cancer I/II Gemcitabine, Nab-paclitaxel, Paricalcitol Randomized Metastatic 112

NCT 02030860
A Randomized Pilot/Pharmacodynamic/Genomic Study of
Neoadjuvant Paricalcitol to Target the Microenvironment in
Resectable Pancreatic Cancer

Pilot Gemcitabine, Nab-paclitaxel, Paricalcitol Randomized Resectable 15

NCT 03415854

A Phase II Pilot Trial of Paclitaxel Protein Bound Plus Cisplatin Plus
Gemcitabine and the Addition of Paricalcitol Upon Disease
Progression in Patients with Previously Untreated Metastatic
Pancreatic Ductal Adenocarcinoma (NABPLAGEMD)

II Gemcitabine, Nab-paclitaxel,
Cisplatin, Paricalcitol Single Group Metastatic 14

NCT 02754726
A Phase II Pilot Trial of Nivolumab + Albumin-Bound Paclitaxel +
Paricalcitol + Cisplatin + Gemcitabine (NAPPCG) In Patients with
Previously Untreated Metastatic Pancreatic Ductal Adenocarcinoma

II Nivolumab, Nab-paclitaxel,
Cisplatin, Gemcitabine, Paricalcitol Single Group Metastatic 10

NCT 03138720

A Phase II Study of Paclitaxel Protein Bound + Gemcitabine +
Cisplatin + Paricalcitol as Pre-operative Treatment in Patients with
Untreated Resectable, Borderline Resectable and Locally Advanced
Adenocarcinoma of the Pancreas

II Gemcitabine, Nab-paclitaxel,
Cisplatin, Paricalcitol Single Group

Resectable, Borderline
Resectable and

Locally Advanced
24

NCT 02930902

A Preoperative Phase 1B Study to Assess the Safety and the
Immunological Effect of Pembrolizumab in Combination with
Paricalcitol With or Without Chemotherapy in Patients with
Resectable Pancreatic Cancer

Ib Pembrolizumab, Paricalcitol,
Gemcitabine, Nab-paclitaxel Non-Randomized Resectable 30
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4. Oncolytic Viruses, Tumor Stroma, and Barriers to Successful Therapy

A distinguishing characteristic of oncolytic viruses is their ability to selectively replicate and
amplify within tumors, something that no other cancer therapeutic can do [46]. Assuming that the
virus can successfully infect a tumor cell, one of the key components to its potency and efficacy is
related to its ability to spread to and infect other cells within the tumor. Mathematical models analyzing
intratumoral injections of oncolytic viruses have determined that optimal tumor eradication occurs
with widespread and diffuse viral distribution upon infection [47]. However, one of the inherent
challenges with intratumoral delivery of viruses is that the viral spread is limited and often does not
extend far beyond the site of injection [48,49]. One of the key intrinsic physical barriers that limit the
spread of an oncolytic vector is the tumor ECM [48]. In pancreatic cancer and other solid tumors,
there is an altered ECM that is composed of growth factors, cytokines, tumor-associated vasculature,
immune cells, and fibroblasts [21]. In addition to the physical barrier created by the dense fibrotic
stroma, there is also an increased interstitial fluid pressure that further decreases an oncolytic virus’
ability to spread throughout the tumor [50]. Therefore, the number and rate of injections, along with
the volume of infusion, can greatly affect the initial viral distribution within a tumor following direct
injection [51].

Numerous approaches have been employed to increase viral spread within the tumor including
degradation of the ECM, increasing viral production and release, and induction of apoptosis [48,52].
Given the fibrotic nature of the pancreatic cancer tumor stroma, strategies for degrading or modulating
the ECM are of particular interest to many researchers. Kuriyama et al. analyzed the use of proteases
as a pretreatment in subcutaneous xenografts of glioblastoma tumors prior to the injection of a
recombinant non-replicating adenovirus [53]. Pretreatment consisted of trypsin or collagenase/dispase
with intratumoral viral injection the following day and subsequent analysis of transgene expression
(beta-galactosidase). Trypsin resulted in increased gene expression, but an equally important finding
of these experiments was that the dose and timing of the pretreatment affected the level of viral
transduction (high doses of protease actually decreased transduction efficiency) [53]. In addition,
other research groups have explored the use of hyaluronidase, matrix metalloproteinases, and relaxin
to overcome physical limitations to oncolytic viral therapy imposed by the ECM of particular
tumors [54–56].

Targeting the ECM has proven to be an effective strategy for improving viral spread throughout
the tumor, but the effectiveness of any particular enzymatic agent is relative to the specific makeup of
the ECM in the tumor for which it is being used [48]. Additionally, important consideration must be
given to the manner in which the therapeutic will be delivered, namely as a transgene encoded by the
oncolytic virus or given as a separate injection. If given as an injection, optimization of the timing and
dosing will be critical to maximize viral spread within any given tumor’s stroma.

While the ECM is one of the main barriers to the success of intratumoral viral delivery, there are
multiple additional factors that affect the success of systemic, intravenous delivery of oncolytic vectors.
Neutralizing antibodies, the complement cascade, sequestration in the liver/spleen, and sub-optimal
extravasation from tumor-associated blood vessels must be taken into consideration[2,57]. For example,
many patients have a high rate of neutralizing antibodies due to previous vaccinations and
environmental exposures [58]. Following the second and additional exposures to an oncolytic
virus, there is often an augmented immune response which has necessitated the development of
multiple mechanisms to limit viral neutralization [46]. Serotype switching, host immunosuppression,
viral shielding with polymer coating or PEGylation, and the use of carrier molecules to deliver viruses
directly to the tumor bed are examples of currently employed strategies [59–61].

Despite the limitations to both intratumoral and intravenous delivery of oncolytic viruses, multiple
vectors have been evaluated in clinical trials for pancreatic cancer patients or are currently undergoing
testing (Table 2) [62–66].
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Table 2. Key oncolytic virotherapy clinical trials in pancreatic cancer.

Trial Identifier Study Phase Virus Type Virus Name Virus Dose, Schedule Virus Route Transgene/Modifications Study Regimen Status/Results

− I/II Adenovirus ONYX-015 2 × 1010 – 2 × 1011 vp,
multiple injection

IT E1B deletion Weekly viral injections (total of 8),
gemcitabine given with last 4 doses

10 of 21 patients had a
partial response or stable
disease, PMID: 12576418

NCT 02705196 I/IIa Adenovirus LOAd703 5 × 1010 – 5 × 1011 vp,
multiple injection

IT TMZ-CD40L, 4-1BBL
Gemcitabine + nab-paclitaxel given in

28 day cycles, Virus injected on Day 15 of
1st cycle and every 2 weeks (6 doses total)

Recruiting

NCT 02045589 I Adenovirus VCN-01 1 × 1011 – 1 × 1013 vp,
multiple injection

IT human PH20
hyaluronidase

Viral injections (every 28 days, total of 3)
alone or in combination with gemcitabine or

nab-paclitaxel

Completed, no
published results

NCT 03252808 I Herpesvirus HF-10 1 × 106 – 1 × 107 TCID50/mL,
multiple injection

IT Naturally lacking UL56
expression

Virus administered at 2 week intervals in
conjunction with chemotherapy

(gemcitabine, Nab-paclitaxel, or TS-1)
Recruiting

NCT 00402025 I Herpesvirus Talimogene
laherparepvec (T-Vec)

104 – 107 pfu/mL,
multiple injection

IT GM-CSF Virus injected every three weeks (3 doses
total), dose-escalation study

Completed, no
published results

NCT 02620423 Ib Reovirus Pelareorep (Reolysin) 4.5 × 1010 TCID50,
multiple nfusion

IV -
Virus (Day 1, 2 of 21 day cycle),

Chemotherapy [Gemcitabine, irinotecan, or
5-FU] (Day 1), Pembrolizumab (Day 8)

Completed, no
published results

NCT 01280058 II Reovirus Pelareorep (Reolysin) 3 × 1010 TCID50,
multiple infusion

IV - Carboplatin/paclitaxel (Day 1 of 21 day
cycle), Virus (Day 1−5)

No improvement in PFS
when compared to

chemotherapy control
arm, PMID: 27039845

NCT 02714374 Ib Vaccinia Virus GL-ONC1 (GLV-1h68) 1 × 109 – 5 × 109 pfu,
single/multiple infusion(s)

IV

Renilla
luciferase-Aequorea

green fluorescent protein
(RUC-GFP)

Single and multiple dose cohorts, multiple
dose cohorts receive daily virus injection (5

total doses) prior to surgery
Active, not recruiting

vp: viral particle; pfu: plaque forming unit; IT: intratumoral; IV: intravenous; TCID50: 50% Tissue culture infectious dose; PFS: progression-free survival; GM-CSF: Granulocyte-macrophage
colony-stimulating factor; TMZ: trimerized membrane-bound isoleucine zipper.
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5. Vitamin D Use in Oncolytic Virotherapy

Vitamin D has been implicated as one of the substances that may help to regulate the body’s
response to viral infection (especially to enveloped viruses) [67]. In some instances, it has been
associated with a negative effect on viral replication via the induction of antimicrobial peptides
including cathelicidin (LL-37) and human beta defensin 2 [67,68]. Human cathelicidin has been shown
to negatively affect and decrease the viral replication of certain rhinovirus, lentivirus, vaccinia virus,
herpes simplex virus (HSV-1), and adenoviruses [69–72]. Interestingly and importantly, upon treatment
with LL-37, the degree of viral replication was not consistent across different adenovirus (Ad) serotypes.
LL-37 demonstrated a statistically significant reduction in the titer of Ad 19, while there was only
a non-significant trend towards decreased replication in other serotypes including Ad 3, Ad 5,
and Ad 8 [71]. Through the induction of gene expression of certain antimicrobial peptides, Vitamin D
may have an effect on viral replication, but the degree of such an effect is specific to the type of virus
and the serotypes within a given viral family.

Vitamin D has also been employed as part of a vector system designed to selectively replicate
in prostate and renal cell cancers. Hsieh et al. reported a replication-competent adenoviral vector
(based on Ad 5) employing a human osteocalcin promoter (used to drive the adenoviral E1A and E1B
genes) which contains a Vitamin D responsive element [73]. Here, the aforementioned virus selectively
replicated in osteocalcin-expressing prostate cancer cells, and there was over a five-fold increase in
viral replication when combined with Vitamin D [73]. Importantly, there was no evidence of decreased
viral replication with the addition of Vitamin D to the cell cultures [73]. Additionally, Vitamin D has
also been used to regulate the same human osteocalcin promoter-driven oncolytic adenovirus when it
was loaded into human mesenchymal stem cells and used to treat renal cell carcinoma [74].

Vitamin D’s effect on viral replication is variable, but the aforementioned experiments using an
adenovirus employing a human osteocalcin promoter (with a Vitamin D responsive element) provide
evidence that successful viral infection and replication is not precluded by the presence of Vitamin D in
culture. Future experiments will be needed to determine the vector system best suited to combination
therapy with Vitamin D, as well as timing and dosing of the individual components.

6. Checkpoint Inhibition, Oncolytic Immunotherapy, and Pancreatic Cancer

As our understanding of pancreatic cancer’s unique immunosuppressive and pro-tumor
microenvironment has grown, so has the potential to incorporate novel immunomodulatory
therapeutics into the treatment regimens. Historically, pancreatic ductal adenocarcinomas have not
responded well to monotherapy with immune checkpoint inhibitors when tested in clinical trials [75,76]
and this is at least in part due to the poor immunogencity and decreased immune cell infiltrates of
these tumors [77]. Vitamin D functions not only as a stromal reprogrammer, but it also modulates the
immune system and plays a role in T cell activation, which may alter the tumor microenvironment
to make checkpoint inhibitors more efficacious [78,79]. Multiple clinical trials (Table 1) are currently
exploring the combination of immune checkpoint inhibitors and Vitamin D analogs (with and without
other chemotherapeutics) for the treatment of pancreatic cancer.

Similarly, the field of oncolytic immunotherapy is evolving as the understanding of the post-viral
infection immune milieu increases. Viral inoculation causes an influx of antigen-presenting cells,
activated T cells, natural killer cells, and cytokines into the tumor microenvironment [11]. This type
of modulation can transform an immunologically “cold” tumor with few immune cells into a “hot”
tumor with an abundance of circulating immune effectors [80,81]. Furthermore, oncolytic virus
infections can cause increased levels of PD-L1 (programmed death receptor ligand 1) expression on
tumor cells [82,83]. Currently, there is one clinical trial that incorporated oncolytic virotherapy and
checkpoint inhibition for patients with metastatic pancreatic ductal adenocarcinoma (NCT02620423).
Here, intravenous Reolysin [Pelareorep] (a live, replication competent reovirus) was tested in
combination with pembrolizumab in a phase Ib study that demonstrated a tolerable side effect profile
and anti-tumor activity with three out of five patients having a partial response or stable disease [84].
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Oncolytic viruses can serve as a type of immunotherapy to transform the tumor microenvironment
and augment the local immune lymphocytic infiltrate. Immunologically “hot” tumors with upregulated
expression of immune markers are more responsive to therapy with checkpoint inhibitors and serve
as a rationale for combining these agents with oncolytic viruses [85]. Vitamin D will likely work in
concert with these viruses to further prime the tumor to be more susceptible to novel combination
therapies with checkpoint inhibitors.

7. Conclusions

Oncolytic virotherapy is a valuable member of the cancer treatment armamentarium. Despite the
growth in this field and other cancer therapeutics, the five-year overall survival rate for pancreatic
cancer still remains below ten percent. Vitamin D’s role in modulating the pancreatic cancer stroma
has inspired a wave of clinical trials incorporating Vitamin D analogs into the treatment regimen.
VDR-stromal reprogramming weakens the capacity of the PSCs to support cancer growth via stromal
remodeling, alters the PSC phenotype to a more quiescent nature, and ultimately reduces fibrotic
content and increases tumor vasculature [11]. One of the biggest barriers to the spread of oncolytic
viruses is the ECM and the fibrotic stroma of pancreatic tumors is particularly restricting. Through the
aforementioned mechanisms, Vitamin D can increase the delivery of cytotoxic chemotherapeutics to
the tumor cells to augment cancer-killing capabilities. The combination of Vitamin D and oncolytic
virotherapy may be able to overcome the dense pancreatic cancer stroma to demonstrate the potential
efficacy of this novel combination therapy. As one of Vitamin D’s pleiotropic effects is to modulate the
immune system, it may have a role in sensitizing tumors to other immunotherapies such as checkpoint
inhibitors. Future avenues of investigation should explore the potential in the combination of oncolytic
viruses, Vitamin D, and checkpoint inhibitors.
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