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Multi-omics dataset to decipher the 
complexity of drug resistance in 
diffuse large B-cell lymphoma
Luc-Matthieu Fornecker1,2,3,4, Leslie Muller2, Frédéric Bertrand5, Nicodème Paul4,6,7, 
Angélique Pichot4,6,7, Raoul Herbrecht1,3,4, Marie-Pierre Chenard4,8, Laurent Mauvieux   3,4,9,  
Laurent Vallat3,4,9, Seiamak Bahram   4,6,7, Sarah Cianférani2,7, Raphaël Carapito4,6,7 & 
Christine Carapito2,7

The prognosis of patients with relapsed/refractory (R/R) diffuse large B-cell lymphoma (DLBCL) 
remains unsatisfactory and, despite major advances in genomic studies, the biological mechanisms 
underlying chemoresistance are still poorly understood. We conducted for the first time a large-scale 
differential multi-omics investigation on DLBCL patient’s samples in order to identify new biomarkers 
that could early identify patients at risk of R/R disease and to identify new targets that could determine 
chemorefractoriness. We compared a well-characterized cohort of R/R versus chemosensitive DLBCL 
patients by combining label-free quantitative proteomics and targeted RNA sequencing performed 
on the same tissues samples. The cross-section of both data levels allowed extracting a sub-list of 22 
transcripts/proteins pairs whose expression levels significantly differed between the two groups of 
patients. In particular, we identified significant targets related to tumor metabolism (Hexokinase 3), 
microenvironment (IDO1, CXCL13), cancer cells proliferation, migration and invasion (S100 proteins) 
or BCR signaling pathway (CD79B). Overall, this study revealed several extremely promising biomarker 
candidates related to DLBCL chemorefractoriness and highlighted some new potential therapeutic drug 
targets. The complete datasets have been made publically available and should constitute a valuable 
resource for the future research.

Diffuse large B-cell lymphoma (DLBCL) is the most frequent subtype of non-Hodgkin lymphoma (NHL) and is 
a clinically and biologically heterogeneous disease. The anthracycline-based regimen R-CHOP (rituximab, cyclo-
phosphamide, doxorubicine, vincristine and prednisone) is still considered as the standard of care for first-line 
treatment with approximately 60% of the patients achieving a complete response. The prognosis of patients with 
primary refractory or early-relapsed (R/R) disease is particularly poor with a median overall survival below one 
year. Because of the acquisition of chemoresistance, only a fraction of R/R patients can be cured with salvage 
therapies1.

Recent advances in molecular biology, genetics and high throughput –omics technologies have led to a bet-
ter understanding of the biology of this disease and the distinction of several subtypes of DLBCL2. Based on 
the cell-of-origin classification, the two major molecular subgroups are germinal center B-cell-like (GCB) and 
activated B-cell-like (ABC) DLBCL that notably differ in their clinical outcomes3. Cytogenetic studies have high-
lighted the major importance of MYC, BCL2 and BCL6 rearrangements4. In parallel, the mutational landscape 
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of DLBCL has been extensively studied, demonstrating the intratumoral heterogeneity and allowing the iden-
tification of recurrent somatic mutations, some of which provide promising opportunities for new drug devel-
opments5. However, the mechanisms underlying the resistance to treatment still remain poorly understood and 
robust biomarkers for the early identification of patients at risk of R/R disease are still lacking.

Mass spectrometry-based proteomics has benefited from an instrumental and methodological revolution over 
the last two decades. Today, global label-free quantitative proteomic studies enable the identification and quanti-
fication of thousands of proteins and provide new opportunities for an in-depth characterization of complex pro-
teomes6. As a complement to the static picture revealed by genome sequencing, the comprehensive analysis of the 
proteome that is dynamic provides crucial information on protein expression to decipher complex biological pro-
cesses. To date, no data are available in the literature focusing on the proteomic characterization of R/R DLBCL.

In this context, we conducted a large-scale differential proteomic investigation of R/R versus chemosensitive 
DLBCL patients in order to identify new potential biomarkers related to resistance to treatment and to better 
understand the biological mechanisms underlying chemoresistance. This proteomic investigation was combined 
with a quantitative transcriptomics experiment performed on the same samples to correlate genes expression and 
their impact at the proteomic level.

Results and Discussion
We performed for the first time a large-scale differential multi-omics study on DLBCL patient’s samples in order 
to search for new potential biomarkers that could help to early identify patients at risk of R/R disease and to better 
understand the biological mechanisms underlying chemorefractoriness. In the context of our current knowledge 
from the literature, a detailed study of some promising new biomarkers is provided below, demonstrating the high 
value of the present proteogenomic dataset.

Fresh-frozen tumour tissues were collected at the time of diagnosis, before any treatment, for 8 chemore-
fractory and 12 chemosensitive DLBCL patients who were uniformly treated in first-line with rituximab and an 
anthracycline-based chemotherapy regimen in a single institution. Patients were considered as chemorefrac-
tory if they had a stable or progressive disease after first-line (n = 6), or if they relapsed less than one year after 
having achieved a complete response (n = 2). Patients who achieved a complete response and did not relapse 
thereafter, with a minimal follow-up of at least 24 months after the end of treatment, were considered as chemo-
sensitive. Chemorefractory patients were most likely to have an aggressive disease according to the age-adjusted 
International Prognostic Index (aaIPI) with 87% aaIPI 2–3 in the chemorefractory group and 42% in the chemo-
sensitive group but the difference was not significant (p = 0.07). The two groups did not differ significantly regard-
ing age (p = 0.58), sex (p = 0.64) and Ann Arbor stage (p = 0.16) (Table 1). RNA could be extracted from the same 
tissue samples that were used for proteomics analysis for 17 patients (7 chemorefractory and 10 chemosensi-
tive). In both groups, the majority of patients were classified into Germinal Center B-Cell-like (GCB) molecular 
subtype (72% of the chemorefractory patients and 70% of the chemosensitive patients) as determined by rapid 
reverse transcriptase multiplex ligation-dependent probe amplification assay (RT-MLPA)7. The mean percentage 

Chemosensitive Chemorefractory p value

Age (years) 0.58*

   Median 55 57

   range 18–79 31–73

Sex, n (%) 0.64**

   Male 9/12 (75) 5/8 (63)

   Female 3/12 (25) 3/8 (37)

Ann Arbor Stage, n (%) 0.16**

   1–2 6/12 (50) 1/8 (13)

   3–4 6/12 (50) 7/8 (87)

aaIPI, n (%) 0.07**

   0–1 7/12 (58) 1/8 (13)

   2–3 5/12 (42) 7/8 (87)

Response to first-line, n (%) <0.01**

   Complete response 12/12 (100) 2/8 (25)

   Primary refractory 0/12 6/8 (75)

Number of treatment lines <0.01***

   Median 1 5

   Range 1–1 3–7

Cell of origin, n (%) 0.99**

   GC 7/10 (70) 5/7 (72)

   ABC 1/10 (10) 1/7 (14)

   Unclassifiable 2/10 (20) 1/7 (14)

Table 1.  Patients’ characteristics. Abbreviations: aaPIP, age-adjusted International Prognostic Index; GC, 
Germinal Center B-Cell-Like; ABC, Activated B-Cell-Like. *Student’s t-test; **Fisher’s exact test; ***Mann-
Whitney test.
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of tumor-cells, determined by morphological examination and immunohistochemistry, was 76%, and was ≥70% 
in 18/20 samples. A single case had a low percentage of tumor cells (20%) but this sample corresponded to a par-
ticular subtype of DLBCL (T-cell/histiocyte-rich large B-cell lymphoma). Patient’s characteristics are summarized 
in Table 1 and a detailed description of the 20 patients is provided in Supplementary Table 1.

Overall, the combined proteomics analysis of the 20 samples resulted in the identification of 4774 unique pro-
tein groups (proteins which cannot be unambiguously identified by unique peptides are grouped in one protein 
group and quantified together). Pairwise comparisons of all samples against each other resulted in a high Pearson 
coefficient correlation (average r = 0.89) demonstrating a high quantitative accuracy and a high similarity in 
the global proteomes. The statistical analysis with the peptide-level Robust Ridge Regression model (MSqRob) 
allowed the relative quantification of 3101 proteins between the two groups of patients, with 586/3101 (18.9%) 
being significantly differentially abundant with a false discovery rate <5%. Among these differentially abundant 
proteins, 246 were overexpressed in chemorefractory patients and 340 overexpressed in chemosensitive patients 
(Supplementary Table 2).

Transcriptomic analysis was performed on 17 samples (these 17 samples are indicated in Supplementary Table 1). 
It allowed the quantification of 17695 transcripts across the 17 samples. For the 4774 previously identified proteins, 
the transcript counterpart was also identified by RNAseq in 4338/4774 (90.8%). With an adjusted p-value < 0.1, 244 
transcripts were differentially abundant between the two groups of patients (Supplementary Table 3).

Among the 3101 quantified proteins with MSqRob, 2965/3101 (95.6%) were also quantified at the tran-
scriptomic level. The combination of transcriptomics and proteomics data thus resulted in 2965 transcripts/
proteins commonly quantified at both levels. When focusing on the 246 proteins overexpressed in chemorefrac-
tory patients, only 7 were not identified at the transcriptomic level (Supplementary Table 4) and 24 had a high 
fold-change (FC) at the proteomic level (log2FC (R vs S) >1) and low at the transcriptomic level (log2FC (R vs S) 
<1) (Supplementary Table 5). Conversely, 16 proteins had a low fold-change at the proteomic level (log2FC (R vs 
S) <1) and high at the transcriptomic level (log2FC (R vs S) >1) (Supplementary Table 5). When focusing on the 
340 proteins overexpressed in the chemosensitive patients, only 11 were not identified at the transcriptomic level 
(Supplementary Table 4) and 23 had a high fold-change at the proteomic level (log2FC (R vs S) <−1) and low at 
the transcriptomic level (log2FC (R vs S) >−1) (Supplementary Table 5). Conversely, only 5 proteins had a low 
fold-change at the proteomic level (log2FC (R vs S) >−1) and high at the transcriptomic level (log2FC (R vs S) 
<−1) (Supplementary Table 5).

By considering only the significantly differentially expressed proteins between the two groups of patients, only 
22/586 (3.8%) were found to be also differentially expressed at the transcriptomic level. In all but one case, the 
variation direction was similar between the two methods with 16/22 transcripts and proteins overexpressed in 
chemorefractory patients (log2FC (R vs S) >0), and 5/22 transcripts and proteins overexpressed in chemosensi-
tive patients (log2FC (R vs S) <0) (Table 2). Only one discordant case was observed with Complement C3 that was 
overexpressed in chemorefractory patient at the proteomics level but overexpressed in chemosensitive patients 
at the transcriptomics level. Among these 22 differentially expressed transcripts/proteins, 6 were selected and 
discussed below. The selection was based on a proteomic fold-change threshold (FC (R vs S) >1.5 or <−1.5) and 
a literature-based strong biological relevance in the context of treatment-resistance in DLBCL.

Indoleamine 2,3-dioxygenase 1 (IDO1) was overexpressed in chemorefractory patients (Fig. 1A). This enzyme 
is involved in the degradation of the amino acid tryptophan. L-kynurenine, one of the metabolites resulting from 
tryptophan degradation, has the ability to inhibit T-cell proliferation and to induce T-cell death, contributing 
to an immunosuppressive microenvironment8. Expression of IDO1 evaluated by immunohistochemistry was 
already found to be positive in one third of DLBCL cases and was associated with a worse response rate and 
a worse 3-year overall survival after first-line therapy with R-CHOP9. From a therapeutic point of view, IDO1 
represents a novel immune checkpoint target. Several IDO1 inhibitors (epacadostat (INCB024360), indoximod, 
navoximod (GDC-0919) or BMS-986205) are now available but failed to demonstrate a therapeutic efficacy 
as a monotherapy. However, several ongoing trials in various solid tumors (ovarian cancer, pancreatic cancer, 
squamous cell carcinoma of the head and neck, non-small cell lung cancer, metastatic renal-cell carcinoma for 
example) are currently evaluating IDO1 inhibitors in combination with other agents such as PD1 or PD-L1 inhib-
itors10,11. Although results from phase 2 studies were encouraging, such as with the combination of epacadostat 
and anti-PD1 in melanoma patients12, recent results from phase 3 studies failed to confirm these results13, sug-
gesting that further analysis are warranted to better define the subset of patients who are most likely to benefit 
from IDO1 inhibitors. No clinical trial is currently ongoing in order to evaluate the potential of IDO1 inhibitors 
in the context of R/R DLBCL.

We also demonstrated an overexpression of the chemokine C-X-C motif ligand 13 (CXCL13) in chemore-
fractory patients (Fig. 1B). CXCL13, the unique ligand of CXCR5, is an inflammatory chemokine that contrib-
utes to generate a pro-inflammatory microenvironment in angioimmunoblastic T-cell lymphoma14. Moreover, 
it has been shown to be an adverse prognosis factor in advanced colon cancer15. In colon cancer cells, the 
CXCL13-CXCR5 axis participates in tumour growth and invasiveness by activation of the PI3K/AKT signalling 
pathway16. Our results indicate that CXCL13 could also play a key role in the microenvironment of DLBCL.

Hexokinase 3 (HK3) is one of the four isoforms of hexokinase involved in the first step of the glycolysis path-
way, converting glucose into glucose-6-phosphate. Glucose metabolism of cancer cells highly differs from that of 
normal cells. In cancer cells, pyruvate generated by glycolysis is converted into lactate via a phenomenon called 
“aerobic glycolysis” (Warburg effect)17. Overexpression of hexokinase is crucial for cancer cells to produce enough 
ATP by aerobic glycolysis. Recently, hexokinase 2 was shown to be overexpressed in rituximab-resistant cell lines 
and to be associated with inhibition of mitochondrial-mediated apoptosis18. In our study, hexokinase 2 was iden-
tified with a high degree of confidence (by 49 unique peptides covering almost 50% of its sequence) while its 
expression was not affected between the two groups of patients both at proteomic (log2FC = 0.4, q-value = 0.115) 
and transcriptomic (log2FC = 0.7, adjusted p-value = 0.58) levels. Interestingly, hexokinase 3 was also identified 
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with a high degree of confidence (by 29 unique peptides covering 57% of its sequence), and its expression was 
significantly higher in chemorefractory patients at both proteomics (log2FC = 1.7, q-value < 0.001) and transcrip-
tomics levels (log2FC = 1.9, adjusted p-value = 0.028) (Fig. 1C). These results suggest that hexokinase 3 could play 
a key role in DLBCL chemorefractoriness.

Proteins S100 are involved in the regulation of proliferation, migration and invasion of cancer cells, and their 
dysregulation has been demonstrated in the majority of human cancers19. Fifteen S100 family members were 
identified in our study by proteomic analysis (S100A2, S100A4, S100A6, S100A7, S100A7A, S100A8, S100A9, 
S100A10, S100A11, S100A12, S100A13, S100A14, S100A16, S100B and S100P) and 4 were found to be signifi-
cantly overexpressed in chemorefractory patients: S100A4 (log2FC = 0.9, q-value = 0.003), S100A8 (log2FC = 1.7, 
q-value < 0.001), S100A9 (log2FC = 1.9, q-value < 0.001) and S100A11 (log2FC = 0.5, q-value = 0.007). Only 
S100A4 and S100A8 were significantly overexpressed at both transcriptomics and proteomics levels (Fig. 1D,E). 
S100A4 and S100A8 were already extensively studied in solid tumours and were found to be associated with 
tumour growth and metastasis20,21. However, few data are available in lymphoma with only S100A9 being 
described as associated with tumour growth and immune evasion22. Our data thus suggest that these proteins 
could be associated in DLBCL with a more aggressive disease and could participate in the development of resist-
ance to treatment. Based on our results, targeting S100 proteins may represent a therapeutic potential for the 
treatment of R/R DLBCL.

Finally, the B-cell antigen receptor complex-associated protein beta chain (CD79B) was significantly 
under-expressed in chemorefractory patients both at proteomic (log2FC = −1.7, q-value = 0.013) and transcrip-
tomic (log2FC = −1.3, adjusted p-value = 0.023) levels (Fig. 1F). CD79B is necessary for the function of the B-cell 
receptor and somatic genetic alterations in the CD79B gene participate in the constitutive activation of the NF-kB 
pathway, in particular for the ABC DLBCL subtypes. CD79B mutations have been reported in 23% of R/R ABC 
DLBCL23. However, few data are available which investigate the level of CD79B expression. This protein expres-
sion level could eventually affect the efficacy of the anti-CD79B antibody-drug conjugate (polatuzumab vedotin) 
that has recently emerged as a potential active drug in R/R DLBCL24.

We used the gene ontology (GO) (http://www.geneontology.org/) and PANTHER database25 to perform 
enrichment analysis based on the Gene Ontology – Biological Process (GO-BP) annotations in our proteomics 
dataset. This enrichment analysis indicated that proteins significantly overexpressed in chemorefractory patients 
were particularly enriched in GO-BP associated with inflammation and immune response, as well as the coagu-
lation cascade. At the opposite, proteins significantly overexpressed in chemosensitive patients were enriched in 
GO-BP associated with ribosome biogenesis and ribosomal RNA (rRNA) processing (Table 3).

Protein name Gene name

Proteomics Transcriptomics

Number of patients 
(n = 20)

log2FC 
(R vs S) q-value

Number of patients 
(n = 17)

log2FC 
(R vs S)

adjusted 
p-valueR (n = 8)

S 
(n = 12) R (n = 7)

S 
(n = 10)

C-X-C motif chemokine 13 CXCL13 3 2 2,9 0.006 7 10 1,6 0.019

Indoleamine 2,3-dioxygenase 1 IDO1 6 12 2,9 <0.001 7 10 1,7 0.061

Granzyme H GZMH 3 2 2,7 0.028 7 10 1,7 0.047

Protein THEMIS2 THEMIS2 7 9 1,2 0.015 7 10 1,3 0.067

Granzyme K GZMK 8 11 0,6 0.017 7 10 1,5 0.089

Complement C3 C3 8 12 0,3 <0.001 7 10 −1,4 0.060

Hexokinase-3 HK3 8 12 1,7 <0.001 7 10 1,9 0.028

Superoxide dismutase [Mn], mitochondrial SOD2 8 12 1,2 <0.001 7 10 1,6 0.039

Protein S100-A8 S100A8 8 12 1,7 <0.001 6 9 1,7 0.066

Protein S100-A4 S100A4 8 12 0,9 0.003 7 10 1,4 0.020

PRA1 family protein 3 ARL6IP5 8 12 0,5 0.009 7 10 0,9 0.089

rRNA 2′-O-methyltransferase fibrillarin FBL 8 12 −0,4 0.006 7 10 −0,8 0.070

40 S ribosomal protein S18 RPS18 8 12 −0,3 0.011 7 10 −1,1 0.076

40 S ribosomal protein S6 RPS6 8 12 −0,3 0.043 7 10 −0,9 0.033

40 S ribosomal protein S12 RPS12 8 12 −0,4 0.009 7 10 −0,9 0.089

Alpha-1-antitrypsin SERPINA1 8 12 1,1 0.007 7 9 1,8 0.039

Serpin B6 SERPINB6 8 12 1,2 <0.001 7 10 1,5 0.001

Phosphatidylinositol 3,4,5-trisphosphate-
dependent Rac exchanger 1 protein PREX1 8 12 0,8 0.006 7 10 1,1 0.067

Ceruloplasmin CP 8 12 0,6 <0.001 7 8 1,7 0.083

CD97 antigen CD97 8 12 0,5 0.003 7 10 1,2 0.074

B-cell antigen receptor complex-associated 
protein beta chain CD79B 5 10 −1,7 0.013 7 10 −1,3 0.024

Syntaxin-11 STX11 6 11 1,4 <0.001 7 10 1,2 0.070

Table 2.  Sub-list of 22 differentially abundant transcripts/proteins pairs at both transcriptomics and proteomics 
levels. Abbreviations: Log2FC, log2 fold-change; R, chemorefractory patients; S, chemosensitive patients.
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These results suggest that cancer-related inflammation and disturbed immune response may play an impor-
tant role and contribute to chemorefractoriness in DLBCL. The role of cancer-related inflammation in the devel-
opment and progression of tumors, as well as in patient outcomes, has been recognized since many years26. In 
addition to CXCL13 and S100A8 proteins, that were previously discussed, the other proteins from our data-
set that were found to be significantly overexpressed at proteomics and transcriptomics level in chemorefrac-
tory patients and involved in inflammation or immune response are Granzyme H, Granzyme K, Complement 
C3 and Alpha-1-antitrypsin. Our results also suggest that a local activation of coagulation may contribute to 
treatment-resistance and tumor progression, and are consistent with previously published works having already 
highlighted the role of blood coagulation in cancer progression. In particular, it has been shown that blood coag-
ulation enzymes in the tumor microenvironment played a role in solid-tumor progression and metastasis27,28.  
These results highlight the potential major role played by the microenvironment in tumor progression and 

Figure 1.  Top six differentially abundant proteins and genes between chemorefractory and chemosensitive 
patients. For each protein, dots represent the mean of the log2 intensities of all the peptides quantified for 
each patient in each group. For each gene, dots represent the log2 normalized read count distribution of the 
considered gene for each patient in each group.

Gene Ontology-Biological Process
Fold 
enrichment p value

Fisher’s Exact with FDR 
multiple test correction

Chemorefractory patients

Fibrinolysis 8.5 0.0001 <0.0001

Regulation of complement activation 4.1 <0.0001 0.0065

Platelet activation 3.5 0.0002 0.0198

Platelet degranulation 3.2 0.0001 0.0154

Inflammatory response 3.2 <0.0001 0.0001

humoral immune response 3.1 <0.0001 0.0051

Neutrophil degranulation 2.5 <0.0001 <0.0001

negative regulation of immune system process 2.5 0.0004 0.0034

activation of immune response 2.4 <0.0001 0.0018

Chemosensitive patients

Ribosome biogenesis 3.2 <0.0001 <0.0001

rRNA processing 3.4 <0.0001 <0.0001

Table 3.  Gene Ontology-Biological Process enrichment among the differentially expressed proteins using the 
PANTHER database system. Abbreviations: FDR, False Discovery Rate.
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drug-resistance in DLBCL. The strong interactions between cancer-cells and their surrounding microenviron-
ment have been already largely studied, and targeting the microenvironment offers now novel therapeutic per-
spectives in cancer29,30. In this study, proteomic and transcriptomic analysis were performed on whole tissue 
sections, thus allowing the analysis of DLBCL-cells and their microenvironment. One major drawback of this 
approach is that these two compartments cannot be analysed separately, but this type of approach could be con-
sidered as an opportunity, in the context of a biomarker discovery study, to provide the most exhaustive list of 
potential new biomarkers. However, in this context, validation studies are a crucial need in order to determine 
more precisely the relative contribution of both compartments that are tumor-cells and microenvironment. To 
achieve such an objective, immunohistochemistry could be considered as a method of choice.

In this study, we present the first high-throughput multi-omics study in DLBCL. Over the past two dec-
ades, genomics and transcriptomics have largely dominated in cancer research, in particular with the advent of 
next-generation sequencing (NGS) technologies. In 2000, gene-expression profiling allowed the clear distinction 
of two molecular DLBCL subtypes, namely Activated B-Cell (ABC) and Germinal Center B cell-Like (GCB) 
subtypes3. The development of NGS technologies resulted in the recent publication of exome sequencing in 1001 
DLBCL patients allowing to depict the nearly complete mutational landscape in DLBCL and the identification of 
150 driver genes31. This in-depth and extensive molecular characterization of DLBCL at genomic and transcrip-
tomic levels also recently led to the proposal of novel molecular classifications in DLBCL identifying subgroups of 
patients with distinct clinical behaviour and prognosis32,33. More recently, MS-based proteomics has emerged as 
an important tool for the characterization of DLBCL. Various methodological approaches have been used with an 
aim to exploring various aspects of the disease, such as pathogenesis, subtypes classification or therapeutic issues. 
Super-SILAC-based approaches have demonstrated the ability to distinguish DLBCL subtypes according to their 
cell of origin in patient-derived DLBCL cell lines as well as on tumor samples from patients34–36. So far, few pro-
teomics studies have addressed the drug-resistance challenge in DLBCL. This issue has been first addressed by a 
proteomic study (two-dimensional gel electrophoresis with MALDI-TOF/TOF-MS analysis) aiming to identify 
differential proteins expressed by DLBCL cells with high or low sensitivity to chemotherapy after in vitro expo-
sure to the CHOP regimen compounds. Nineteen differentially expressed proteins were identified between the 
two groups. Among these differentially expressed proteins, immunohistochemical analysis performed in DLBCL 
tissue samples from 98 patients confirmed a higher expression of Glutathione S-transferase (GSTP1) and Heat 
shock protein beta-1 (HSPB1), and a lower expression of Ezrin (EZR) and Pleckstrin (PLEK) in patients with 
relapse or progressive disease after CHOP chemotherapy37. In another study, by using a SILAC-based quanti-
tative proteomic approach on 10 DLBCL patients selected according to their response to treatment (5 patients 
with primary refractory disease or early relapse, and 5 patients considered cured), 87 proteins, among a total of 
3027 successfully quantified proteins, were differentially expressed between the two groups of patients with 21 
overexpressed in refractory patients. The authors could demonstrate an up-regulation of proteins involved in 
the regulation of the actin cytoskeleton in chemosensitive patients38. This work was pursued by using a tandem 
mass tag (TMT)-based quantitative proteomic approach performed on microdissected samples obtained from 
formalin-fixed paraffin-embedded tissues. This study allowed identifying 102 DA proteins and the authors could 
confirm the up-regulation of proteins involved in actin regulation in chemosensitive patients. Interestingly, they 
managed to highlight a potential role for ribosomal proteins in treatment-resistance as these proteins were largely 
represented in those found to be overexpressed in chemorefractory patients39. In comparison with these previ-
ously published works, our study points out the potential role of the microenvironment in drug-resistance in 
DLBCL. However, we observed one discrepancy between our study and the study published by Bram Ednersson 
et al. regarding the potential role of ribosomal proteins. In our study, ribosomal proteins and ribosome biogenesis 
appeared over-represented in chemosensitive patients, while it was the opposite in the work of Bram Ednersson 
et al. There is no obvious explanation, but it remains hazardous to make a direct comparison between two explor-
atory studies that differ in several technical and methodological aspects such as the tissue used for protein extrac-
tion (fresh-frozen vs formalin-fixed paraffin-embedded, whole-tissue vs microdissection), quantitative proteomic 
workflow (label-free vs super-SILAC) and statistical analysis. Nevertheless, these two studies point out a potential 
role for ribosome proteins in drug-resistance and, therefore, warrant continued research to clarify the role of 
these proteins in treatment-resistance of DLBCL.

In conclusion, this study revealed several extremely promising biomarker candidates associated with chemore-
fractoriness, related to tumour metabolism, microenvironment, BCR signalling pathway, hence highlighting new 
potential therapeutic drug targets. The combination of multilevel –omics datasets is very useful to reduce lists of 
thousands of candidates to a subset of significant targets, as well as to cross-validate candidates by different tech-
niques. Further studies will be necessary to validate these findings in a larger and independent cohort of patients. 
However, the present work already provides greater insights in the underlying mechanisms of chemoresistance in 
DLBCL, supported by a publically available dataset.

Materials and Methods
Patients selection.  Patients were selected among the fresh-frozen tissue-sample collection available from 
the “Centre de ressources Biologiques des Hôpitaux Universitaires de Strasbourg”. We retrospectively analyzed 
the treatment and outcome of each patient. Only patients for whom a tissue-sample collected at the time of 
diagnosis and treated in first-line with the combination of anti-CD20 monoclonal antibody and an anthracy-
cline-based regimen were selected. Patients were considered as chemorefractory if they had a stable or progressive 
disease after first-line, or if they relapsed less than one year after having achieved a complete response. Patients 
who achieved a complete response after first-line and did not relapse thereafter, with a minimal follow-up of at 
least 24 months after the end of treatment, were considered as chemosensitive.
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Samples handling.  All samples were obtained by a surgical resection or radiological-guided biopsy from a 
tumor mass. Proteomic and transcriptomic analysis were performed on the same specimens that were used for 
the diagnosis of the disease. After collection, all samples were stored at −80 °C, without conservative medium, 
until protein or RNA extraction. The neoplastic content in each sample was determined by a pathological review 
of all cases, based on morphology and immunohistochemistry for distinguishing B-cells and T-Cells.

Proteomics analysis.  Sample preparation.  Proteins were extracted from ~10 mg of fresh frozen tumor 
tissues in a lysis buffer containing 62.5 mM Tris HCl pH 6.8, 2% SDS and 10% glycerol. Protein concentration was 
determined with DCTM method (Bio-Rad) according to manufacturer’s instructions. For each sample, 20 µg of 
proteins were used for tube-gel preparation, as previously described40. Briefly, 7.5% acrylamide/Bis-acrylamide, 
and 0.25 µL TEMED were added for a final volume of 100 μL. Ammonium persulfate (2.50 µL) was added to ini-
tiate polymerization. After fixation with 50% ethanol/3% phosphoric acid, tube-gels were cut in 2 mm sections 
and each section in ~2 mm2 pieces. The gel pieces were washed and the cysteine residues were reduced by adding 
10 mM DTT for 30 min at 60 °C and 30 min at room temperature, and alkylated by adding 55 mM IAA for 20 min 
in the dark. The gel pieces were then washed three times by adding 50/50 (v/v) 25 mM NH4HCO3/acetonitrile 
(ACN). After two dehydrations with ACN, the proteins were cleaved in an adequate volume to cover all gel pieces 
with a modified porcine trypsin (Promega) solution at a 1:80 (w/w) enzyme:protein ratio. Digestion was per-
formed overnight at 37 °C. Tryptic peptides were extracted twice under agitation, first with 60% ACN in 0.1% FA 
for 1 h and then with 100% ACN for 1 h. The excess of ACN was vacuum dried, and the samples were resolubilized 
with H2O/ACN/FA (98/2/0.1 v/v/v).

NanoLC-MS/MS analysis.  The nanoLC-MS/MS analysis was performed on a nanoAcquity UPLC device 
(Waters Corporation, Milford, USA) coupled to a Q-Exactive Plus mass spectrometer (Thermo Fisher Scientific, 
Waltham, Massachusetts, USA). Peptide separation was performed on an ACQUITY UPLC BEH130 C18 column 
(250 mm × 75 μm with 1.7 μm diameter particles) and a Symmetry C18 precolumn (20 mm × 180 μm with 5 μm 
diameter particles, Waters). The solvent system consisted of 0.1% FA in water (solvent A) and 0.1% FA in ACN 
(solvent B). Samples (equivalent to 800 ng of proteins) were loaded into the enrichment column over 3 min at 5 μL/
min with 99% of solvent A and 1% of solvent B. The peptides were eluted at 450 nL/min with the following gradient 
of solvent B: from 1 to 35% over 120 min and 35 to 80% over 1 min. The 20 samples were injected in randomized 
order. The MS capillary voltage was set to 1.8 kV at 250 °C. The system was operated in Data Dependent Acquisition 
mode with automatic switching between MS (mass range 300–1800 m/z with R = 140,000, Automatic gain control 
(AGC) fixed at 3 × 106 ions and a maximum injection time set at 50 ms) and MS/MS (mass range 200–2000 m/z 
with R = 17,500, AGC fixed at 1 × 105 and the maximal injection time set to 100 ms) modes. The ten most abundant 
peptides were selected on each MS spectrum for further isolation and higher energy collision dissociation frag-
mentation, excluding unassigned and monocharged ions. The dynamic exclusion time was set to 60 s.

Data analysis.  Raw data obtained for each sample were processed using MaxQuant (version 1.5.5.1). Peaks were 
assigned with the Andromeda search engine with full trypsin specificity. The isoform-containing human database 
used for the search was extracted from the UniProtKB-SwissProt database (26 sept 2016, 42,144 entries). The 
minimum peptide length required was seven amino acids and a maximum of one missed cleavage was allowed. 
Methionine oxidation was set as a variable modification and peptides with modified methionines, as well as their 
unmodified counterparts, were excluded from protein quantification. Cysteine carbamidomethylation was set as 
a variable modification to account for the potential propionamide modifications of cysteine residues. Cysteine 
propionamidation was thus also set as a variable modification. For protein quantification, the “match between 
runs” option was enabled. The maximum false discovery rate was 1% at peptide and protein levels with the use of 
a decoy strategy. We used the “peptides.txt” files exported from MaxQuant for further statistical analysis with the 
peptide-level Robust Ridge Regression model (MSqRob) R-package41.

Statistical analysis was performed for all quantified proteins and transcripts, independently of the number of 
patients in whom the proteins and/or transcripts were quantified.

The mass spectrometry proteomics data have been deposited in the ProteomeXchange Consortium database 
with the identifier PXD00908942.

Transcriptomics analysis.  RNA isolation and sequencing.  Total RNA was isolated from fresh frozen 
tumor tissues with the with TRIzol reagent (Invitrogen, Carlsbad, California, USA). RNA extraction could not 
be performed for 3 patients (samples #5, #12 and #15 in supplementary Table 1) because of the low quantity of 
available tissue. RNA integrity was assessed with the Agilent total RNA Pico Kit on a 2100 Bioanalyzer instru-
ment (Agilent Technologies, Paolo Alto, USA). The sequencing library was prepared with the Ion AmpliSeq 
Transcriptome Human Gene Expression Panel (Thermo Fisher Scientific, Waltham, Massachusetts, USA) accord-
ing to the manufacturer’s protocol43. Briefly, after reverse transcription of total RNA, the cDNAs were amplified by 
multiplex PCR including a total of 20,812 amplicons. These amplicons were then partially digested, and after bar-
coded sequencing adapter ligation, the libraries were loaded at a concentration of 75 pM on an Ion PI IC 200 chip 
using the Ion Chef Instrument (Thermo Fisher Scientific, Waltham, Massachusetts, USA). Finally, the sequencing 
took place on an Ion Proton sequencer with the Ion PI IC 200 Kit, according to the manufacturer’s instructions 
(Thermo Fisher Scientific, Waltham, Massachusetts, USA).

Analysis of RNA-sequence reads.  The raw reads were processed by the Torrent Suite analysis pipeline and 
mapped to the human genome assembly hg19 AmpliSeqTranscriptome. The Torrent AmpliSeqRNA Plugin was 
used to generate raw read counts which were further used for differential analysis. An average of 3.5 million reads 
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were generated per sample with 93.25% reads on target and an average of 11,005 amplicons covered by at least 10 
reads. We applied the R Bioconductor package DESeq2 to identify genes that were differentially expressed. The 
gene selection was based on the adjusted p-value. All genes with an adjusted p-value lower than 0.1 were selected 
as differentially expressed44.

RNAseq raw data have been deposited in fastaq format in the EMBL-EBI ArrayExpress archive (https://www.
ebi.ac.uk/arrayexpress/) with the accession number E-MTAB-6597.

Ethical Committee.  Sample collection for further research analysis was approved by an Ethical Committee 
(“Comité de Protection des Personnes Est IV”, Strasbourg, France) and all patients provided an informed consent 
according to the Declaration of Helsinki.
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