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Abstract
The DerSimonian–Laird (DL) weighted average method for aggregated data
meta-analysis has been widely used for the estimation of overall effect sizes. It is
criticized for its underestimation of the standard error of the overall effect size in
the presence of heterogeneous effect sizes. Due to this negative property, many
alternative estimation approaches have been proposed in the literature. One of
the earliest alternative approacheswas developed byHardy and Thompson (HT),
who implemented a profile likelihood instead of the moment-based approach
of DL. Others have further extended this likelihood approach and proposed
higher-order likelihood inferences (e.g., Bartlett-type corrections). In addition,
corrections factors for the estimatedDL standard error, like theHartung–Knapp–
Sidik–Jonkman (HKSJ) adjustment, and the restricted maximum likelihood
(REML) estimation have been suggested too. Although these improvements
address the uncertainty in estimating the between-study variance better than
the DL method, they all assume that the true within-study standard errors are
known and equal to the observed standard errors of the effect sizes. Here, we
will treat the observed standard errors as estimators for the within-study vari-
ability and we propose a bivariate likelihood approach that jointly estimates the
overall effect size, the between-study variance, and the potentially heteroskedas-
tic within-study variances.We study the performance of the proposedmethod by
means of simulation, and compare it to DL (with and without HKSJ), HT, their
higher-order likelihood methods, and REML. Our proposed approach seems to
have better or similar coverages compared to the other approaches and it appears
to be less biased in the case of heteroskedastic within-study variances when this
heteroskedasticty is correlated with the effect size.
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1 INTRODUCTION

The DerSimonian–Laird (DL)method (DerSimonian & Laird, 1986) has been and still is widely used to estimate an overall
effect size from aggregated data (AD) meta-analysis studies. Their pooled effect size is a weighted average of the observed
effect sizes, where the weights are the inverse variances of the effect sizes (including both the within- and between-study
variability). The between-study variance component is estimated with a moment estimator. The DL method was shown
to be negatively biased for standardized differences when the number of studies is small (Malzahn et al., 2000) and it
does not account for the uncertainty in estimating the between-study variability (Hardy & Thompson, 1996), potentially
leading to liberal confidence intervals for the overall effect size (Veroniki et al., 2019).
Alternativemethods have been proposed in the literature to improve theDLmethod (DerSimonian&Kacker, 2007; Lan-

gan et al., 2019; Petropoulou andMavridis, 2017; Veroniki et al., 2019; Viechtbauer, 2005). One of the first approaches is the
profile likelihood approach of Hardy and Thompson (HT) in 1996, where the effect sizes are assumed normally distributed
and potentially heterogeneous, but with knownwithin-study variances. The overall effect size and the between-study vari-
ance component are then estimated jointly. The authors constructed a confidence interval for the overall effect size that is
based on the chi-square distribution of a likelihood ratio statistic (Hardy & Thompson, 1996). It has been shown that this
profile likelihood approach has a closer to nominal coverage probability than the DL method (Tanizaki, 2004; Veroniki
et al., 2019).
However, the likelihood ratio statistic is only asymptotically chi-square distributed, and for small sample sizes the

approximation might be poor (Barndorff-Nielsen & Hall, 1988). For this reason, Noma (2011) proposed a Bartlett-type
correction for the likelihood ratio statistic (Noma, 2011). In addition, the author proposed constructing confidence lim-
its using the efficient score statistic and a Bartlett-corrected efficient score function (Cox & Hinkley, 1974; Guolo, 2012).
These three methods for confidence intervals of the overall effect size showed conservative coverage probabilities, espe-
cially when the number of studies is small, while the DL and the HT methods had liberal coverage probabilities (Cox &
Hinkley, 1974).
The Bartlett-type correction of the likelihood ratio statistic is only appropriate for exponential families (Guolo, 2012).

The commonly assumed random effects meta-analysis model is a member of the exponential family in the unlikely
case of equal within-study variances (Guolo, 2012). Guolo (2012) therefore applied an approximation to the Bartlett-type
correction introduced by Skovgaard (2001). This Guolo–Skovgaard (GS) approximation produced conservative coverage
probabilities in the case of a small number of studies, but its performance improved when the number of studies increases
(Guolo, 2012). In one comparative study, the Bartlett-type correction method and the GS correction method were found
to produce similar results (Veroniki et al., 2019).
Alternatively, several correction factors for the estimated standard error of the DL pooled estimator has been suggested

(Hartung&Knapp, 2001; Sidik & Jonkman, 2005). These factors attempt to increase the standard error, although in special
cases the correction factor can be less than one (Jackson et al., 2017; Partlett and Riley, 2017). The most familiar correction
factor uses a weighted sums of squares for the DL pooled estimator, which has been referred to as the Hartung–Knapp–
Sidik–Jonkman (HKSJ) correction. This factor has been frequently recommended over the DL approach (e.g., In ’t Hout
et al., 2014; Langan et al., 2019).
Finally, many alternative estimators for the between-study variance have been suggested as an alternative to the choice

of DL to increase the coverage of the asymptotic confidence intervals. These variance estimators include, among others,
Cochran’s ANOVA or Hedges–Olkin estimator, Paule–Mandel iterative moment-based estimator, and the restricted max-
imum likelihood (REML) estimators (e.g., DerSimonian & Kacker, 2007; Langan et al., 2019; Petropoulou and Mavridis,
2017). These alternatives often perform better thanDL estimator, with the REML estimator frequently preferred over other
estimators (Langan et al., 2019; Veroniki et al., 2016), in particular when the clinical outcome for participants in the studies
is continuous.
All of the methods discussed so far, assume that the within-study standard deviation is given by the observed standard

error of the effect size, while the true within-study variability is unknown in practice. This may lead to bias when some
form of correlation between the effect size and the standard error exists (Malzahn et al., 2000). We will assume that the
observed standard error is an estimator of the true within-study variability having a chi-square distribution function in
line with Cochran (1937). We will introduce a bivariate likelihood approach for estimation of the overall effect size, the
between-study variance, and the within-study variances for studies with heteroskedastic continuous clinical outcomes.
Using two case studies and a simulation study, we compare our method to DL, HT, the Bartlett-type correction method,
the GS correction method, HKSJ correction, and REML.
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In Section 2, we describe the different approaches from the literature and our proposed bivariate likelihood approach.
The approaches are illustrated on two real case studies that were published in the literature before. Section 3 describes the
simulation model we used. It simulates meta-analysis studies with both heterogeneous effect sizes and heteroskedastic
within-study standard errors. There is evidence that heteroskedastic errors are common in practice (e.g., Caron et al.,
2020; Nilsson et al., 2019; Stevens et al., 2018), but are seldom simulated (Schmidt et al., 2019; van den Heuvel et al., 2021).
The results of the simulation study are provided in Section 4 and a discussion is provided in Section 5.

2 STATISTICALMETHODS

An ADmeta-analysis from studies with continuous clinical outcomes usually consists of a set of𝑚 effect sizes (e.g., mean
differences, correlation coefficients), accompanied with their standard errors and their degrees of freedom (Cochran,
1937, 1954), that is, we observe the triplet (𝑌𝑖, 𝑆𝑖, 𝑑𝑓𝑖) for study 𝑖 = 1, 2, … ,𝑚. It is typically assumed that the effect size 𝑌𝑖
is distributed according to the meta-analysis model

𝑌𝑖 = 𝜃 + 𝑈𝑖 + 𝜀𝑖, (1)

with 𝜃 the true or overall effect size, 𝑈𝑖 ∼ 𝑁(0, 𝜏2) a random effect that is making the effect sizes heterogeneous, 𝜀𝑖 ∼
𝑁(0, 𝜎2

𝑖
) a residual, and all random effects mutually independently distributed. The 𝜏2 is the variance component for the

between-study variability and𝜎2
𝑖
is the variance component of thewithin-study variability. In the literature, it is commonly

assumed that the within-study variability 𝜎2
𝑖
is known and given by 𝑆2

𝑖
, but we believe that 𝑆2

𝑖
is at best an estimator of

𝜎2
𝑖
. We will therefore treat 𝑆2

𝑖
as an estimator for 𝜎2

𝑖
and provide a joint likelihood for 𝑌𝑖 and 𝑆2𝑖 for the estimation of all

model parameters.
In Section 2.1, we describe the original DL method and the HKSJ correction. In Section 2.2, the existing (restricted)

maximum likelihood-based methods with their finite-sample corrections are presented. Finally, our bivariate method
for estimating the overall effect size 𝜃 is presented in Section 2.3. For all these methods, we also describe how
the 95% confidence intervals are constructed. Section 2.4 presents two case studies from literature where all meth-
ods are being demonstrated. One study investigates a mean difference, while the other study combines Spearman’s
correlation coefficients.

2.1 The DLmethod

The DL method first estimates the between-study variance component 𝜏2 with the moment estimator given by

�̂�2𝐷𝐿 = max

[
0,

𝑄 − (𝑚 − 1)∑𝑚

𝑖=1
𝑤𝑖 −

∑𝑚

𝑖=1
𝑤2
𝑖
∕
∑𝑚

𝑖=1
𝑤𝑖

]
, (2)

where 𝑤𝑖 = 1∕𝑆2𝑖 , 𝑄 is Cochran’s Q-statistic given by 𝑄 =
∑𝑚

𝑖=1
[(𝑌𝑖 − �̄�)

2∕𝑆2
𝑖
] (DerSimonian & Laird, 1986), and �̄� is the

weighted average given by �̄� =
∑𝑚

𝑖=1
(𝑌𝑖∕𝑆

2
𝑖
)∕

∑𝑚

𝑖=1
(1∕𝑆2

𝑖
). Then the pooled estimator �̂�𝐷𝐿 of the overall effect size 𝜃 is

calculated using the estimator �̂�2𝐷𝐿. The DL pooled estimator is given by

�̂�𝐷𝐿 =

[
𝑚∑
𝑖=1

𝑌𝑖(�̂�
2
𝐷𝐿 + 𝑆

2
𝑖
)−1

]
∕

[
𝑚∑
𝑖=1

(�̂�2𝐷𝐿 + 𝑆
2
𝑖
)−1

]
. (3)

A (1 − 𝛼) × 100% confidence interval on 𝜃 may be determined by �̂�𝐷𝐿 ± 𝑡𝑚−1,𝛼∕2𝑆𝐷𝐿, with 𝑡𝑑,𝑞 the 𝑞th upper quantile
of the 𝑡-distribution with 𝑑 degrees of freedom and 𝑆2𝐷𝐿 = [

∑𝑚

𝑖=1
1∕(�̂�2𝐷𝐿 + 𝑆

2
𝑖
)]−1 the estimated variance of the pooled

estimator �̂�𝐷𝐿 having 𝑚 − 1 degrees of freedom. Note that it has been more common in the literature to use the normal
quantile instead of the quantile of the 𝑡-distribution for the DL approach (Brockwell & Gordon, 2007; Jackson et al.,
2010; Thorlund et al., 2011), but we believe that DerSimonian and Laird were not explicit on this topic (DerSimonian &
Laird, 1986) and therefore did not rule out our preferred choice. In the presence of heterogeneous effect sizes (𝜏2 > 0),
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the precision of the pooled estimator �̂�𝐷𝐿 depends on the number of studies and confidence intervals based on normal
quantiles lead to an undercoverage. This has beenwell-established in the work of Cochran (Cochran, 1954), who proposed
to use the 𝑡-distribution with𝑚 − 1 degrees of freedom instead of the normal distribution, in particular in the presence of
heterogeneity (see also Mzolo et al., 2013). Higher degrees of freedom should be used when no heterogeneity in the effect
sizes is present (Cochran, 1954).
The use of a 𝑡-distribution is common when the corrected standard error of HKSJ is used (Hartung & Knapp, 2001;

Sidik & Jonkman, 2005). The standard error 𝑆𝐷𝐿 is then multiplied with a data-driven scaling factor 𝐶𝐹 = [
∑𝑚

𝑖=1(𝑌𝑖 −

�̂�𝐷𝐿)
2∕((�̂�2𝐷𝐿 + 𝑆

2
𝑖
)(𝑛 − 1))]1∕2 (see Sidik & Jonkman, 2005). This scaling factor invokes the 𝑡-distribution for construction

of confidence intervals on 𝜃, although the distribution of 𝐶𝐹 ⋅ 𝑆𝐷𝐿 is not well understood (Jackson et al., 2017). We will
also study this corrected standard error since it has been proposed as the preferredmethod in the literature (e.g., In ’t Hout
et al., 2014), but we will use the maximum value of one and this correction factor instead (max{1, 𝐶𝐹}). Using a correction
factor that could potentially be lower than one has been criticized (Jackson et al., 2017; Partlett and Riley, 2017). Note that
a comparison of coverages of confidence intervals between the use of this corrected standard error and the traditional DL
method with the quantile of the 𝑡-distribution has never been investigated, due to the preference for the normal-based
confidence interval for DL.
To obtain the estimates �̂�2𝐷𝐿 and �̂�𝐷𝐿 and the confidence limits on 𝜃 from data in our simulation study, we programmed

the method in SAS, since most [R] packages seem to have incorporated a normal quantile for the traditional DL, for
example, “meta” (Schwarzer, 2007) and “metafor” (Viechtbauer, 2010).

2.2 Existing likelihood-based methods

Three likelihood-based approaches for parameter estimation and confidence intervals have been proposed in the litera-
ture. They all make use of the same maximum likelihood estimators for the parameters 𝜃 and 𝜏2, which is based on the
procedure of Hardy and Thompson (1996), but they differ in the construction of confidence intervals.

2.2.1 The HT method

The log-likelihood function that was proposed in Hardy and Thompson (1996) is given by

𝑙(𝜃, 𝜏2) = −
1

2
𝑚 log(2𝜋) −

1

2

𝑚∑
𝑖=1

log(𝜏2 + 𝑆2
𝑖
) −

1

2

𝑚∑
𝑖=1

(𝑌𝑖 − 𝜃)
2∕(𝜏2 + 𝑆2

𝑖
). (4)

It shows that the within-study variances 𝜎2
𝑖
are assumed known and equal to 𝑆2

𝑖
. Maximizing (4) with respect to 𝜃 and 𝜏2

results in solving the following two equations iteratively:

𝜃 =
[∑𝑚

𝑖=1
𝑌𝑖(𝜏

2 + 𝑆2
𝑖
)−1

]
∕
[∑𝑚

𝑖=1
(𝜏2 + 𝑆2

𝑖
)−1

]
,

𝜏2 =
[∑𝑚

𝑖=1((𝑌𝑖 − 𝜃)
2 − 𝑆2

𝑖
)(𝜏2 + 𝑆2

𝑖
)−2

]
∕
[∑𝑚

𝑖=1(𝜏
2 + 𝑆2

𝑖
)−2

]
.

(5)

The two solutions are HT maximum likelihood estimators �̂�𝐻𝑇 and �̂�2𝐻𝑇 . For the construction of confidence regions on
(𝜃, 𝜏2) a kind of log-likelihood ratio statistic 𝑇𝐻𝑇(𝜃, 𝜏2) was proposed:

𝑇𝐻𝑇(𝜃, 𝜏
2) = −2[𝑙(𝜃, 𝜏2) − 𝑙(�̂�𝐻𝑇, �̂�

2
𝐻𝑇)]. (6)

It is assumed that 𝑇𝐻𝑇(𝜃, 𝜏2) is chi-square distributed with 2 degrees of freedom. All pairs of values (𝜃, 𝜏2) that would
satisfy 𝑇𝐻𝑇(𝜃, 𝜏2) < 𝜒22(1 − 𝛼), with 𝜏

2 ≥ 0 and 𝜒2
𝑑
(𝑞) the 𝑞th upper quantile of the chi-square distribution with 𝑑 degrees

of freedom, form the (1 − 𝛼) × 100% confidence region on (𝜃, 𝜏2) (Hardy & Thompson, 1996).
To obtain confidence intervals for 𝜃 and 𝜏2 separately, a profile likelihood functionwas considered.Here, we focus on the

(1 − 𝛼) × 100% confidence interval for 𝜃, but a similar approach can be applied to 𝜏. If we assume that 𝜃 is given, we could
maximize the log-likelihood function in (4) for 𝜏 first, resulting in the constrained maximum likelihood estimator �̂�2(𝜃).
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Substituting this estimator in (4) results in the profile log-likelihood function 𝑙(𝜃) ≡ 𝑙(𝜃, �̂�2(𝜃)). The profile log-likelihood
ratio statistic for 𝜃 is then defined as

�̃�𝐻𝑇(𝜃) = −2[𝑙(𝜃) − 𝑙(�̂�𝐻𝑇)]. (7)

All values of 𝜃 that would satisfy inequality �̃�𝐻𝑇(𝜃) < 𝜒21(1 − 𝛼)would form the (1 − 𝛼) × 100% confidence interval for 𝜃.
Theremay exists several [R] packages that can calculate the profile likelihood-based confidence interval on 𝜃, for exam-

ple, the [R] package “metaplus” (Beath, 2016), butwe used the [R] package “pimeta” (Nagashima et al., 2019). This package
will also be used for the higher-order likelihood method in Section 2.2.2. It can determine the maximum likelihood esti-
mators �̂�𝐻𝑇 and �̂�2𝐻𝑇 , the confidence region for (𝜃, 𝜏

2), and the two confidence intervals for 𝜃 and 𝜏2 from real data. We
have used this package for both the case studies and the simulation study.

2.2.2 The Noma–Bartlett (NB) method

The profile likelihood approach for 𝜃 mentioned in Section 2.2.1 is considered a first-order likelihood inference method
(Guolo, 2012). Higher-order asymptotic methods for the proposed profile likelihood ratio statistic will provide more accu-
rate inference (Barndorff-Nielsen & Hall, 1988; Cox & Hinkley, 1974), in particular for smaller values of 𝑚. Noma (2011)
applied a Bartlett-type correction (Barndorff-Nielsen & Hall, 1988) to the profile likelihood ratio statistic �̃�𝐻𝑇(𝜃) in (7) by
normalizing it with a constant that depends on the constrained maximum likelihood estimator �̂�2(𝜃). The NB method
uses this corrected likelihood ratio statistic, which is given by �̃�𝑁𝐵(𝜃) = �̃�𝐻𝑇(𝜃)∕[1 + 2𝐶(�̂�2(𝜃))], with

𝐶(𝜏2) =

[
𝑚∑
𝑖=1

(𝑆2
𝑖
+ 𝜏2)−3

]
∕

[
𝑚∑
𝑖=1

(𝑆2
𝑖
+ 𝜏2)−1

𝑚∑
𝑖=1

(𝑆2
𝑖
+ 𝜏2)−2

]
. (8)

The (1 − 𝛼) × 100% confidence interval for 𝜃 is formed by all 𝜃’s satisfying �̃�𝑁𝐵(𝜃) < 𝜒21(1 − 𝛼). For the case studies and
our simulation study, we obtained the estimates of the overall effect size 𝜃 and the NB confidence interval with the [R]
package “pimeta” (Nagashima et al., 2019). Note that the NBmethod uses the estimators �̂�𝐻𝑇 and �̂�2𝐻𝑇 of HT, and therefore
provides only an alternative confidence interval for 𝜃.

2.2.3 The GS method

Instead of using the profile likelihood ratio statistic �̃�𝐻𝑇(𝜃) in (7), a signed profile likelihood ratio statistic can be used:

𝑟𝐺(𝜃) = sign(�̂�𝐻𝑇 − 𝜃)

√
𝑙(�̂�𝐻𝑇, �̂�

2
𝐻𝑇) − 𝑙(𝜃, �̂�

2(𝜃)). (9)

The statistic 𝑟𝐺(𝜃) is approximately normally distributed (Guolo, 2012). Thus the set of values 𝜃 for which inequalities
𝑧𝛼∕2 ≤ 𝑟𝐺(𝜃) ≤ 𝑧1−𝛼∕2 hold true, with 𝑧𝑞 the 𝑞th quantile of a standard normal distribution, provides a (1 − 𝛼) × 100%
confidence interval for 𝜃.
Alternatively, a Skovgaard correction to the signed profile likelihood ratio statistic in (9) can be applied in a random-

effects meta-analysis. This GS corrected statistic is given by

𝑟𝐺𝑆(𝜃) = 𝑟𝐺(𝜃) + [𝑟𝐺(𝜃)]
−1 log(�̃�(𝜃)∕𝑟𝐺(𝜃)), (10)

with �̃�(𝜃) = [𝑆−1(𝜃)𝑞(𝜃)]1|𝐼(�̂�𝐻𝑇, �̂�2𝐻𝑇)|1∕2|𝐽(�̂�𝐻𝑇, �̂�2𝐻𝑇)|−1|𝑆(𝜃)||𝐼22(𝜃, �̂�2(𝜃))|−1∕2, 𝑆(𝜃) the 2 × 2matrix given by

𝑆(𝜃) =

⎛⎜⎜⎜⎜⎜⎝

𝑚∑
𝑖=1

(𝑆2
𝑖
+ �̂�2(𝜃))−1

𝑚∑
𝑖=1

(�̂�𝐻𝑇 − 𝜃)(𝑆
2
𝑖
+ �̂�2(𝜃))−2

0

[
𝑚∑
𝑖=1

(𝑆2
𝑖
+ �̂�2(𝜃))−2

]
∕2

⎞⎟⎟⎟⎟⎟⎠
, (11)
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𝑞(𝜃) the vector given by

𝑞(𝜃) =

( ∑𝑚

𝑖=1
(�̂�𝐻𝑇 − 𝜃)(𝑆

2
𝑖
+ �̂�2(𝜃))−1

−
∑𝑚

𝑖=1

[
(𝑆2
𝑖
+ �̂�2𝐻𝑇)

−1 − (𝑆2
𝑖
+ �̂�2(𝜃))−1

]
∕2

)
, (12)

𝐼(𝜃, 𝜏2) the 2 × 2Fisher informationmatrix, 𝐼22(𝜃, 𝜏2) the seconddiagonal element of 𝐼(𝜃, 𝜏2), 𝐽(𝜃, 𝜏2) theHessianmatrix
(i.e., 𝐼(𝜃, 𝜏2) = −𝔼𝐽(𝜃, 𝜏2)), and [𝑆−1(𝜃)𝑞(𝜃)]1 the first element of the vector 𝑆−1(𝜃)𝑞(𝜃). TheGS (1 − 𝛼) × 100% confidence
interval for 𝜃 is obtained by the set of values of 𝜃 that satisfies 𝑧𝛼∕2 ≤ 𝑟𝐺𝑆(𝜃) ≤ 𝑧1−𝛼∕2. These confidence limits will be
calculated from data using [R] package “metaLik” (Guolo & Varin, 2012). Also the GS method uses the estimators �̂�𝐻𝑇
and �̂�2𝐻𝑇 of HT, and constructs only an alternative confidence interval for 𝜃.

2.2.4 The REML estimation

The restricted log-likelihood function for estimation of the variance component 𝜏2 is given by (Kontopantelis & Reeves,
2012)

𝓁𝑅𝐸𝑀𝐿(𝜏
2) = −

1

2

∑𝑚

𝑖=1
log

(
2𝜋[𝜏2 + 𝑆2

𝑖
]
)

−
1

2

[∑𝑚

𝑖=1
[𝑌𝑖 − 𝜃𝑅𝐸𝑀𝐿][𝜏

2 + 𝑆2
𝑖
]−1 + log

(∑𝑚

𝑖=1
[𝜏2 + 𝑆2

𝑖
]−1

)] (13)

with 𝜃𝑅𝐸𝑀𝐿 =
∑𝑚

𝑖=1
𝑌𝑖[𝜏

2 + 𝑆2
𝑖
]−1∕

∑𝑚

𝑖=1
[𝜏2 + 𝑆2

𝑖
]−1. A general formulation of the restricted likelihood function for linear

mixed models is given by Gurka (2006). Maximizing the log likelihood in (13) with respect to 𝜏2 can be conducted with
procedureMIXED of SAS (see the Appendix). The REML estimator �̂�2𝑅𝐸𝑀𝐿 is constrained to nonnegative values. Then, the
REML estimator for the overall effect size 𝜃 is determined by substituting �̂�2𝑅𝐸𝑀𝐿 in 𝜃𝑅𝐸𝑀𝐿 (see also Equation 5), leading
to

�̂�𝑅𝐸𝑀𝐿 =

𝑚∑
𝑖=1

𝑌𝑖[�̂�
2
𝑅𝐸𝑀𝐿 + 𝑆

2
𝑖
]−1∕

𝑚∑
𝑖=1

[�̂�2𝑅𝐸𝑀𝐿 + 𝑆
2
𝑖
]−1. (14)

Note that this estimator is the maximum likelihood estimator for the likelihood function in (4) when the between-study
variance 𝜏2 is replaced by �̂�2𝑅𝐸𝑀𝐿. Thus the variance of �̂�𝑅𝐸𝑀𝐿 in (14) is based on the Fisher information matrix and can
now be estimated by

𝑉(�̂�𝑅𝐸𝑀𝐿) =

[
𝑚∑
𝑖=1

[�̂�2𝑅𝐸𝑀𝐿 + 𝑆
2
𝑖
]−1

]−1
. (15)

Here, we use the (1 − 𝛼) × 100% asymptotic confidence interval �̂�𝐷𝐿 ± 𝑡𝑚−1,𝛼∕2−1𝑆𝑅𝐸𝑀𝐿, with 𝑡𝑑,𝑞 the 𝑞th upper quantile
of the 𝑡-distribution with 𝑑 degrees of freedom and 𝑆𝑅𝐸𝑀𝐿 = 𝑉1∕2(�̂�𝑅𝐸𝑀𝐿) the estimated standard error.

2.3 A bivariate distribution (BD) method

The methods discussed in Sections 2.1 and 2.2 provide estimators and confidence intervals for the parameters 𝜃 and 𝜏2
conditionally on 𝜎2

𝑖
= 𝑆2

𝑖
. We believe that 𝑆2

𝑖
should be viewed as an estimator for 𝜎2

𝑖
to be able to address the uncertainty

of 𝑆2
𝑖
as an estimator. In this view, it will be unlikely that 𝑆2

𝑖
will be equal to 𝜎2

𝑖
and therefore may impact the analysis, in

particular when 𝑆2
𝑖
is imprecise or possibly not an ideal estimator. Treating 𝑆2

𝑖
as an estimator for 𝜎2

𝑖
, instead of assuming

that 𝜎2
𝑖
= 𝑆2

𝑖
, has been acknowledged in literature (Cochran, 1937; Hardy & Thompson, 1996), but the importance of its

uncertainty has been rejected, since it would not ormarginally affect the calculation of confidence intervals for 𝜃 compared
to an analysis where 𝜎2

𝑖
is assumed equal to 𝑆2

𝑖
(Cochran, 1937; Hardy & Thompson, 1996). It is argued that the estimator

for the between-study variance plays amore dominant role in the calculation of confidence intervals on 𝜃 than the within-
study variances. For meta-analyses with only large studies, we expect that the uncertainty of 𝑆2

𝑖
as estimator will be small,
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but for smaller studies the imprecisionmay affect the variability of the pooled estimator �̂�. Thus, we propose to investigate
this issue in more detail by considering a joint model for 𝑌𝑖 and 𝑆2𝑖 .
We assume that 𝑌𝑖 follows model (1) and 𝑆2𝑖 has approximately a chi-square distribution, that is, 𝑑𝑓𝑖𝑆

2
𝑖
∕𝜎2
𝑖
∼ 𝜒2

𝑑𝑓𝑖
,

with 𝑑𝑓𝑖 the degrees of freedom for 𝑆2
𝑖
in line with Cochran (1937). We assume that 𝑑𝑓𝑖 is either observed or can be

calculated from the aggregated information (e.g., from the sample sizes). The need for a degrees of freedom makes our
approach most suitable for effect sizes from continuous clinical outcomes (i.e., functions of mean differences, regression
parameters of linear regression analyses, and correlation coefficients) where a degrees of freedom exists naturally. Fur-
thermore, we will assume that 𝜎2

𝑖
≈ 𝜎2𝜂𝑖 , with 𝜂𝑖 > 0 a known parameter value that would typically depend on the sample

size of study 𝑖. Thus we assume in the analysis of an AD meta-analysis that the residual variances in (1) are considered
heteroskedastic across studies as a consequence of different study sizes and that they share (approximately) a common
within-study variance parameter 𝜎2. With the proposed likelihood approach below, this analysis assumption would make
the pooled estimator less sensitive to potential correlations between an individual effect size and its standard error unre-
lated to study size. The conditional analysis methods in Sections 2.1 and 2.2 would be more sensitive to such correlations,
because they may incorrectly weigh the observed effect sizes and introduce a bias. It should be noted that an assumption
of 𝜎2

𝑖
≈ 𝜎2𝜂𝑖 is in line with literature on pooling estimates from biological assays (Cochran, 1954). Furthermore, it helps

us maintain a parsimonious model, because estimating 𝑚 variance parameters 𝜎2
𝑖
may result in an overfit and will lead

to numerical complexities.
In practice, 𝜎2

𝑖
≈ 𝜎2𝜂𝑖 may be a strong or unrealistic assumption, but we believe that violation of this assumption may

not necessarily lead to serious problems in our analysis. First of all, 𝜎2
𝑖
≈ 𝜎2𝜂𝑖 may be viewed as a first-order approxi-

mation, since study size is typically one dominant factor that drives differences in precision across studies. Furthermore,
factors that may cause violation of the approximation 𝜎2

𝑖
≈ 𝜎2𝜂𝑖 will most likely also affect the estimator 𝑆2𝑖 and therefore

the ratio 𝑑𝑓𝑖𝑆2𝑖 ∕𝜎
2
𝑖
, which is relevant in the estimation of 𝜎2

𝑖
through 𝜎2, may neutralize such violations. In our simula-

tion study, we will introduce heteroskedastic within-study variances and therefore violate the assumption of 𝜎2
𝑖
≈ 𝜎2𝜂𝑖 in

the data generation process on purpose, but we will still implement 𝜎2
𝑖
≈ 𝜎2𝜂𝑖 in the analysis to verify the robustness of

our approach.
To illustrate the importance of study size and choices of 𝜂𝑖 for the variance 𝜎2𝑖 , one example is ameta-analysis of Fisher’s

𝑧 transformed correlation coefficients. In such a setting, 𝜂𝑖 = [𝑛𝑖 − 3]−1, with𝑛𝑖 the total sample size for study 𝑖. Estimation
of the variance parameter 𝜎2 is then expected to be close to one for Pearson’s correlation, since 𝜎2

𝑖
≈ [𝑛𝑖 − 3]

−1, but close
to 1.06 for Spearman’s correlation (Fieller & Pearson, 1961). Another example is a meta-analysis of mean differences. In
case of homoskedasticity, 𝜂𝑖 = [𝑛−1𝑖0 + 𝑛

−1
𝑖1
], with 𝑛𝑖𝑗 the sample size for the binary exposure 𝑗 ∈ {0, 1}. Then the variance

parameter 𝜎2 represents the between-participant variation within studies (van den Heuvel et al., 2021) that is assumed
consistent across studies. For an association of an exposure variable with a continuous clinical outcome that is corrected
for confounders, the meta-analysis is concerned with the pooling of a (standardized) regression parameter from a linear
regression analysis. The variance of the estimated regression parameter is directly proportional to the degrees of freedom
of the residual variance of the linear regression model, that is, 𝜂𝑖 = [𝑛𝑖 − 𝑝𝑖]−1, with 𝑛𝑖 the study size of study 𝑖 and 𝑝𝑖 − 1
the number of confounders. More generally, wemay just consider 𝜂𝑖 = [𝑑𝑓𝑖]−1 as a general approximation to the different
choices and view 𝑑𝑓𝑖 as the effective sample size of study 𝑖 used to estimate 𝜎2𝑖 . The variance parameter 𝜎

2 would then
become a nuisance parameter as a measure of within-study variability without having a direct meaning to the underlying
individual data from the studies (see Section 3).
Except for normalizing constants, the log-likelihood function for the BD of (𝑌𝑖, 𝑆2𝑖 ) is given by

𝑙
(
𝜃, 𝜏2, 𝜎2

)
≈ −

1

2

[
𝑚∑
𝑖=1

(
log(𝜏2 + 𝜎2

𝑖
) + (𝑌𝑖 − 𝜃)

2∕(𝜏2 + 𝜎2
𝑖
) − 𝑑𝑓𝑖 log

(
𝜒2
𝑖

)
+ 𝜒2

𝑖

)]
, (16)

with 𝜒2
𝑖
= 𝑑𝑓𝑖𝑆

2
𝑖
∕𝜎2
𝑖
the chi-square distributed variable and 𝑑𝑓 =

∑𝑚

𝑖=1 𝑑𝑓𝑖 the total number of degrees of freedom. Note
that the sum

∑𝑚

𝑖=1
𝜒2
𝑖
in the likelihood (16) is also chi-square distributedwith 𝑑𝑓 degrees of freedom (Moschopoulos, 1985).

Calculating the likelihood equations for the estimation of the parameters 𝜃, 𝜏2, and 𝜎2, leads to the two equations in (5)
with 𝑆2

𝑖
replaced by 𝜎2

𝑖
= 𝜎2∕𝑑𝑓𝑖 and additionally to a third equation

𝑚∑
𝑖=1

(𝑌𝑖 − 𝜃)
2 − (𝜏2 + 𝜎2

𝑖
)

𝑑𝑓𝑖(𝜏2 + 𝜎
2
𝑖
)2

=

𝑚∑
𝑖=1

𝜎2
𝑖
− 𝑆2

𝑖

𝜎4
𝑖

. (17)
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Here, 𝜎2 can be obtained by applying the Newton–Raphson method (Choi and Wette, 1969) if 𝜃 and 𝜏2 would be given.
Estimation of all three parameters 𝜃, 𝜏2, and 𝜎2 can be obtained with the procedure NLMIXED of SAS software. The ML
estimators of our BD method are referred to as �̂�𝐵𝐷 , �̂�2𝐵𝐷 , and �̂�

2
𝐵𝐷 . The programming codes for procedure NLMIXED are

provided in the Appendix. In the special case that there is no heterogeneity in the effect sizes (𝜏2 = 0), the estimator for
the overall effect 𝜃 and the nuisance parameter 𝜎2 are given by

�̂�𝐵𝐷 =

𝑚∑
𝑖=1

[𝑑𝑓𝑖𝑌𝑖]∕

𝑚∑
𝑖=1

𝑑𝑓𝑖 and �̂�2𝐵𝐷 =
1

𝑚 + 𝑑𝑓

𝑚∑
𝑖=1

𝑑𝑓𝑖

[
(𝑌𝑖 − �̂�𝐵𝐷)

2 + 𝑑𝑓𝑖𝑆
2
𝑖

]
. (18)

This pooled estimator �̂�𝐵𝐷 is normally distributed with mean 𝜃 and variance 𝜎2∕𝑑𝑓 and the estimator �̂�2𝐵𝐷 is directly
related to the chi-square distribution with𝑚 + 𝑑𝑓 degrees of freedom, that is, (𝑑𝑓 + 𝑚)�̂�2𝐵𝐷∕𝜎

2 ∼ 𝜒2
𝑚+𝑑𝑓

.
An asymptotic (1 − 𝛼) × 100% confidence interval on 𝜃 can also be provided by the SAS procedure NLMIXED and

it is given by �̂�𝐵𝐷 ± 𝑡𝑚−1,𝛼∕2 ̂𝑆𝐸(�̂�𝐵𝐷), with 𝑡𝑑,𝑞 the 𝑞th upper quantile of the 𝑡-distribution with 𝑑 degrees of freedom,
and ̂𝑆𝐸(�̂�𝐵𝐷) the estimated asymptotic standard error of the estimator �̂�𝐵𝐷 (SAS Institute, 1996). SAS uses the number of
random effects minus one (𝑚 − 1) as the default number of degrees of freedomwhen a RANDOM statement is used, but it
requires the DF option to use the appropriate number when the marginal likelihood in (16) is implemented in NLMIXED
(see the Appendix) to obtain the correct degrees of freedom𝑚 − 1.
We do realize that the proposed bivariate method requires more input than the other described methods, since the

number of degrees of freedom 𝑑𝑓𝑖 associated with the within-study variance estimate 𝑆2𝑖 is required in our approach.
However, in practice we expect that meta-analysts may have access to this information or otherwise can calculate or
create the appropriate degrees of freedom for 𝑆2

𝑖
. For instance, for amean difference the degrees of freedomwould become

𝑛𝑖0 + 𝑛𝑖1 − 2 for equal variances or equal to the Satterthwaite degrees of freedom for unequal variances (see Section 3),
with 𝑛𝑖0 and 𝑛𝑖1 the sample sizes of the control and exposed group in study 𝑖, respectively. Pearson’s correlation coefficient
is typically associated with 𝑛𝑖 − 2 degrees of freedom (Fisher, 1915), while the degrees of freedom for a meta-analysis of
regression parameters of linear regression analyses, is equal to the degrees of freedom 𝑛𝑖 − 𝑝𝑖 for the residual variance,
with 𝑛𝑖 the number of participants in study 𝑖 and 𝑝𝑖 − 1 the number of confounders used in the linear regression analysis.

2.4 Case studies from the literature

To illustrate the approaches, we applied them to two different meta-analyses with different types of effect sizes. One
meta-analysis studies the effect of coronary artery disease (CAD) on the mean platelet volume (MPV) using mean differ-
ences (Sansanayudh et al., 2014), while the other meta-analysis studies Spearman’s correlation coefficient for correlation
between apparent diffusion coefficient (ADC) and tumor cellularity (TC) in patients (Chen et al., 2013).

2.4.1 Meta analysis on CAD and MPV

One of the aims of Sansanayudh et al. (2014) was to conduct a systematic review and meta-analysis comparing mean
differences in MPV between patients (CAD) and controls. Forty studies were included in this meta-analysis based on the
authors’ eligibility criteria, but only 31 studies compared themeanMPV between CAD patients and controls. They applied
DL approach to the mean differences and reported an overall mean difference of 0.70 (0.55; 0.85).
We used the data of these 31 studies that were presented in fig. 2 of Sansanayudh et al. (2014). For these studies, we

extracted the means, standard deviations, and sample sizes for patients and controls and calculated the mean difference
𝑌𝑖 , the standard error 𝑆𝑖 , and the accompanying degrees of freedom 𝑑𝑓𝑖 according to Section 3. These values are provided
in Table 1.
The overall mean difference with their 95% confidence intervals and the estimate for the between-study variance 𝜏2

for our seven approaches are presented in Table 2. The estimates from HT, NB, and GS are all equal, since they are the
maximum likelihood estimates for likelihood function (4). The estimates for DL and HKSJ are also equal since they both
use the weighted average in (3). They only differ in the calculation of confidence intervals. DL has the smallest pooled
estimate, the smallest estimate for 𝜏2, and the narrowest 95% confidence interval. The results match the results reported
by Sansanayudh et al. (2014), but they reported a somewhat smaller confidence interval because they may have used the
normal quantile. The HKSJ clearly enlarges the confidence interval due to a correction factor that is equal to 1.195. The
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TABLE 1 Overview of the effect sizes, standard errors, and degrees of freedom for the association of MPV with CAD

Study 𝒀𝒊 𝑺𝒊 𝒅𝒇𝒊 Study 𝒀𝒊 𝑺𝒊 𝒅𝒇𝒊

Cameron (1983) 0.75 0.106 239 Lippi (2009) 0.57 0.028 644
Trowbridge (1984) 0.80 0.163 10.07 Senen (2010) 0.05 0.110 276
Glud (1986) −0.08 0.390 38.6 Tavil (2010) 1.41 0.150 256
Erne (1988) 0.40 0.177 78.3 Pawlus (2010) 1.24 0.136 97.9
Hendra (1988) 0.70 0.131 276 Jurcut (2010) 0.55 0.042 137
Mcgill (1994) 0.52 0.161 92.2 Ulusoy (2011) 0.20 0.130 117
Halbmayer (1995) 0.10 0.094 222 Chu (2011) 1.00 0.116 105
Pizzulli (1998) 1.10 0.104 132 Cemin (2011) −0.02 0.043 158
Senaran (2001) 1.35 0.180 33.6 Assiri (2012) 0.73 0.116 202
Kilichli-Camur (2005) 0.64 0.120 153 Kunicki (2012) 0.35 0.199 235
Khandekar (2006) 0.70 0.184 43.2 Khode (2012) 0.31 0.131 110
Ihara (2006) −0.01 0.117 193 Lopez-Cuence (2012) 1.80 0.523 308
Boos (2008) 1.00 0.199 19.0 Ozkan (2012) 0.65 0.076 337
Ranjith (2009) 1.38 0.091 88.7 Mizaie (2012) 0.35 0.198 234
Varol (2009) 1.00 0.231 108 Ozlu (2013) 0.71 0.168 122
Sen (2009) 2.13 0.222 165

TABLE 2 Combined estimate of mean difference of MPV, along with 95% confidence limits and the between-study variance estimate

Method 𝜽 with 95% Confidence limits �̂�𝟐

DL 0.699 (0.544; 0.854) 0.1532
HKSJ 0.699 (0.513; 0.885) 0.1532
HT 0.703 (0.526; 0.883) 0.2137
NB 0.703 (0.520; 0.890) 0.2137
GS 0.703 (0.522; 0.890) 0.2137
REML 0.704 (0.520; 0.887) 0.2223
BD 0.713 (0.510; 0.917) 0.2339

HT pooled estimate is slightly larger than the DL estimate, but has an almost 40% higher estimate for the between-study
variance. The 95% confidence intervals for NB and GS are slightly wider than the 95% confidence interval of HT, which is
the intention of these two methods. The pooled estimate of REML is very close to the ML estimate, but has a confidence
interval close to the two higher-order profile likelihoods (NB andGS). The pooled estimate of BD is the highest of all pooled
estimates and the 95% confidence interval is the widest of all 95% confidence intervals. The estimate of the between-study
variance of BD is also slightly larger than the other between-study estimates.

2.4.2 Meta-analysis on ADC and TC

TheADC is ameasure of themagnitude of diffusion ofwatermoleculeswithin tissues. It can be calculated fromMRI’swith
diffusion-weighted imaging. TC affects the diffusion of water in tissue and in vitro and animal studies demonstrate that
TC is inversely correlated with ADC. Chen et al. (2013) conducted a meta-analysis to explore the correlation between TC
and ADC. The authors selected 30 studies from 189 papers and collected or calculated Spearman’s correlation coefficient
for each study (Table 1 in Chen et al., 2013). The authors applied the DL approach on the Fisher 𝑧 transformed correlation
coefficients without mentioning how the standard error was calculated. They reported a pooled correlation coefficient of
−0.57 (−0.62; −0.52).
We extracted the sample sizes (𝑛𝑖) and Spearman correlation coefficients (𝑅𝑖) from their paper and calculated the Fisher

𝑧 transformation as the effect size 𝑌𝑖 = 0.5[log(1 + 𝑅𝑖) − log(1 − 𝑅𝑖)]. We calculated two different standard errors for the
Fisher 𝑧 transformed Spearman correlation coefficient: 𝑆2

𝑖
(FP) = 1.06∕[𝑛𝑖 − 3] suggested by Fieller and Pearson (1961) and

𝑆2
𝑖
(BW) = [1 + 0.5𝑅2

𝑖
]∕[𝑛𝑖 − 3] suggested by Bonett andWright (2000). Although alternative calculations for the standard
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TABLE 3 Overview of the effect sizes, standard errors, and degrees of freedom for the correlation of TC with ADC

Study 𝒀𝒊 𝑺𝒊(𝐅𝐏) 𝑺𝒊(𝐁𝐖) 𝒅𝒇𝒊 Study 𝒀𝒊 𝑺𝒊(𝐅𝐏) 𝑺𝒊(𝐁𝐖) 𝒅𝒇𝒊

Suguhara (1999) −0.973 0.250 0.275 18 Yoshikawa (2008) 0.050 0.210 0.204 25
Gupta (2000) −0.775 0.266 0.284 16 Woodhams (2009) −0.950 0.297 0.326 13
Gauvai (2001) −0.811 0.343 0.369 10 Wang (2009) −0.741 0.179 0.191 34
Kono (2001a) −0.973 0.275 0.303 15 Yamashita (2009) −0.848 0.215 0.232 24
Kono (2001b) −0.775 0.266 0.284 16 Gibbs (2009) −0.829 0.250 0.269 18
Guo A (2002) −0.497 0.206 0.210 26 Kikuchi (2009) −0.793 0.389 0.417 8
Guo Y (2002) −0.563 0.155 0.160 45 Jenkinson (2010) 0.040 0.275 0.267 15
Chen (2005) −0.576 0.185 0.191 32 Ellingson (2010) −1.376 0.275 0.315 15
Hayashida (2006) −0.829 0.326 0.351 11 Barajas (2010) −0.576 0.266 0.275 16
Plank (2007) −0.758 0.460 0.491 6 Kyriazi (2010a) −1.020 0.460 0.509 6
Matoba (2007) −0.973 0.420 0.462 7 Kyriazi (2010b) −0.908 0.515 0.561 5
Humphries (2007) −0.908 0.257 0.281 17 Wang (2011) −0.365 0.266 0.266 16
Zelhof (2008) −0.523 0.174 0.179 36 Goyal (2011) −0.321 0.179 0.178 34
Hatakenaka (2008) −0.775 0.094 0.100 122 Doskaliyev (2012) −0.662 0.225 0.236 22
Manenti (2008) −0.887 0.210 0.228 25 Ginat (2012) −0.662 0.266 0.279 16

TABLE 4 Pooled estimates of Spearman’s correlation coefficients with their 95% confidence limits and between-study variance estimate

Method Fieller and Pearson Bonett andWright
𝜽 with 95% Confidence limits �̂�𝟐 𝜽 with 95% Confidence limits �̂�𝟐

DL −0.590 (-0.656; -0.515) 0.0240 −0.579 (-0.648; -0.501) 0.0222
HKSJ −0.590 (-0.656; -0.515) 0.0240 −0.579 (-0.648; -0.501) 0.0222
HT −0.590 (-0.659; -0.517) 0.0251 −0.580 (-0.653; -0.503) 0.0249
NB −0.590 (-0.662; -0.513) 0.0251 −0.580 (-0.656; -0.499) 0.0249
GS −0.590 (-0.664; -0.514) 0.0251 −0.580 (-0.658; -0.499) 0.0249
REML −0.591 (-0.659; 0.513) 0.0285 −0.581 (-0.652; -0.499) 0.0283
BD −0.592 (-0.658; -0.516) 0.0253 −0.589 (-0.656; -0.515) 0.0190

error exist (Caruso&Cliff, 1997), our choices for 𝑆𝑖 are not or (expected to be)mildly correlatedwith the effect size𝑌𝑖 . Since
Spearman’s coefficient is the rank-based Pearson’s correlation coefficient, we choose 𝑑𝑓𝑖 = 𝑛𝑖 − 2, because the degrees of
freedom for Pearson’s correlation coefficient is 𝑛𝑖 − 2. An overview of the studies, effect sizes, standard errors, and degrees
of freedom are presented in Table 3.
All seven approaches have been applied to the data in Table 3 for both standard errors. The pooled estimator and its

95% confidence interval are then transformed back to the original scale of correlation. The results for all seven methods
are reported in Table 4 for both standard errors. The between-study variance was obviously obtained in the Fisher 𝑧
transformed scale.
When we use the Fieller and Pearson standard error we see that all methods are almost identical. This is to be expected

since the standard errors are not random. Only the two finite-sample corrected profile likelihoods (NB and GS) have a
slightly larger interval. When we use the Bonett and Wright standard error, we see that the pooled estimate of BD is the
highest and the pooled estimate of DL is the smallest (although the differences are small). However, the 95% confidence
interval for BD is now the smallest and it produced the smallest between-study variance (although differences are quite
small). It is interesting to notice that the choice of calculation of the standard error has no impact on the pooled estimate
of the BD approach, but it does affect the other approaches to some extent.

3 SIMULATIONMODEL

We use a heteroskedastic mixed effects model to generate individual participant data (IPD). The IPD is then used to cal-
culate AD: an effect size 𝑌𝑖 , a standard error 𝑆𝑖 , and its associated degrees of freedom 𝑑𝑓𝑖 . The effect sizes are then pooled
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using the methods described in Section 2. Different settings for the IPD model parameters were selected, including simu-
lations that allow for interaction between-study design parameters (i.e., the dependency between 𝑌𝑖 and 𝑆𝑖). A number of
1000 simulation runs were generated for each setting. For each simulation run, the parameter 𝜃 is estimated and accom-
panied with a 95% confidence interval using the methods described in Section 2. We present the bias, mean squared error
(MSE), and the coverage probability for themain parameter 𝜃. TheMonte Carlo standard error for estimation of a coverage
probability of 95% is equal to 0.69%.

3.1 Individual participant data

We simulated IPD for 𝑚 studies. The sample size 𝑛𝑖 for study 𝑖 = 1, … ,𝑚 varied from study to study. This sample size
was drawn from an overdispersed Poisson distribution, that is, 𝑛𝑖|𝛾𝑖 ∼ Poi(𝜆 exp{0.5𝛾𝑖}), with 𝛾𝑖 ∼ Γ(𝑎0, 𝑏0) drawn from
a gamma distribution. Then within each study the participants are randomly allocated to two groups (e.g., treatments)
with probabilities 𝑝 and 1 − 𝑝, resulting in 𝑛𝑖0 participants in the control group (i.e., 𝑛𝑖0|𝑛𝑖 ∼ Bin(𝑛𝑖, 𝑝)) and 𝑛𝑖1 = 𝑛𝑖 − 𝑛𝑖0
participants in the exposed group. A continuous response 𝑌𝑖𝑗𝑘 for individual 𝑘 (= 1,… , 𝑛𝑖𝑗), in group 𝑗 (= 0, 1), of study 𝑖
is then simulated according to a heteroskedastic linearmixed effectsmodel (Davidian&Carroll, 1987; Quintero& Lesaffre,
2017):

𝑌𝑖𝑗𝑘 = 𝜇𝑗 + 𝑈𝑖𝑗 + 𝜉𝑗 exp (𝑉𝑖)𝜖𝑖𝑗𝑘, (19)

with𝜇𝑗 themean of group 𝑗,𝑈𝑖𝑗 a study-specific randomeffect for group 𝑗, 𝜉2
𝑗
a group-specific residual variance parameter,

𝑉𝑖 a random effect for residual heteroskedasticity across studies, and 𝜖𝑖𝑗𝑘 ∼ 𝑁(0, 1) standard normally distributed and
independent of random effects 𝑈𝑖0, 𝑈𝑖1, and 𝑉𝑖 . It is assumed that (𝑈𝑖0, 𝑈𝑖1, 𝑉𝑖)𝑇 has a multivariate normal distribution
with means 0 and a variance–covariance matrix Σ given by

Σ =

⎛⎜⎜⎜⎝
𝜐20 𝜌𝑀𝜐0𝜐1 𝜌𝑉𝜐0𝜐2

𝜌𝑀𝜐0𝜐1 𝜐21 𝜌𝑉𝜐1𝜐2

𝜌𝑉𝜐0𝜐2 𝜌𝑉𝜐1𝜐2 𝜐22

⎞⎟⎟⎟⎠. (20)

The value of 𝜌𝑀 represents the correlation between the study-specific random effects 𝑈𝑖0 and 𝑈𝑖1 for the exposed and
the control group, respectively. The value 𝜌𝑉 represents the correlation between the study mean and the logarithm of the
random heteroskedastic residual variance.
Note that there are two forms of residual heteroskedasticity in the IPD model (19). One is at the level of the participant

and introduced via parameter 𝜉2
𝑗
and the other one is at the level of the study introduced via the random term exp(𝑉𝑖).

The variance 𝜉2
𝑗
indicates a fixed heteroskedasticity in variability between individuals for the two groups (i.e., the group

affects both the level and the variability) that is consistent across studies, while exp(𝑉𝑖) indicates random heteroskedas-
ticity across studies that is consistent within studies (i.e., individuals are more or less alike within studies). This random
heteroskedasticity will be referred to as the heteroskedasticity of within-study variances for AD meta-analyses (see also
next section).

3.2 Aggregated data

Based on the IPD of model (19), we can calculate the required study information for an AD meta-analysis. The observed
effect size aggregated at the study level is given by the raw mean difference 𝑌𝑖 = �̄�𝑖0. − �̄�𝑖1. for study 𝑖, where �̄�𝑖𝑗. =∑𝑛𝑖𝑗
𝑘=1
𝑌𝑖𝑗𝑘∕𝑛𝑖𝑗 is the average value for group 𝑗 in study 𝑖. The estimated standard error 𝑆𝑖 for the effect size 𝑌𝑖 is given

by 𝑆2
𝑖
= 𝑆2

𝑖0
∕𝑛𝑖0 + 𝑆

2
𝑖1
∕𝑛𝑖1, with 𝑆2𝑖𝑗 =

∑𝑛𝑖𝑗
𝑘=1
(𝑌𝑖𝑗𝑘 − �̄�𝑖𝑗.)

2∕(𝑛𝑖𝑗 − 1) the sample variance for group 𝑗 in study 𝑖. The calcu-
lation of this standard error does not assume homoskedastic variances between the treatment and control group. The
corresponding degrees of freedom 𝑑𝑓𝑖 for 𝑆2𝑖 can then be determined by Satterthwaite approach (Satterthwaite, 1946)

𝑑𝑓𝑖 = 𝑆
4
𝑖
∕[𝑆4

𝑖0
∕(𝑛2

𝑖0
(𝑛𝑖0 − 1)) + 𝑆

4
𝑖1
∕(𝑛2

𝑖1
(𝑛𝑖1 − 1))]. (21)
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Usingmodel (19), the observed effect size𝑌𝑖 can bewritten in the formof thewell-known randomeffectsmodel formeta-
analysis studies (Brockwell & Gordon, 2007) given in (1), with 𝜃 = 𝜇0 − 𝜇1 the overall mean difference, 𝑈𝑖 ≡ 𝑈𝑖0 − 𝑈𝑖1
the effect size heterogeneity, 𝜀𝑖 = exp(𝑉𝑖)(𝜉0�̄�𝑖0. − 𝜉1�̄�𝑖1.) the within-study residual, with �̄�𝑖𝑗. =

∑𝑛𝑖𝑗
𝑘=1
𝜖𝑖𝑗𝑘∕𝑛𝑖𝑗 . The usual

distributional assumptions of normality of 𝑌𝑖 and independence of 𝑈𝑖 and 𝜀𝑖 in model (1) are only met when the random
heteroskedasticity 𝑉𝑖 does not exist. Indeed, when 𝑉𝑖 = 0, the terms 𝑈𝑖 and 𝜀𝑖 are independent and normally distributed,
that is, 𝑌𝑖 ∼ 𝑁(𝜃, 𝜐20 − 2𝜌𝑀𝜐0𝜐1 + 𝜐

2
1 + 𝜉

2
0∕𝑛𝑖0 + 𝜉

2
1∕𝑛𝑖1). But the presence of 𝑉𝑖 makes the distribution of the residuals

(and thus the effect size 𝑌𝑖) nonnormal and creates a dependence between𝑈𝑖 and 𝜀𝑖 when 𝜌𝑉 ≠ 0 (van den Heuvel et al.,
2021). The distribution of the effect size 𝑌𝑖 becomes untraceable when 𝑉𝑖 exists. Furthermore, heterogeneity of the effect
sizes is present for all settings of 𝜌𝑀 < 1, 𝜐0 > 0, and 𝜐1 > 0, but it vanishes when 𝜌𝑀 = 1 and 𝜐0 = 𝜐1. Finally, without the
presence of heteroskedastic within-study variances 𝑉𝑖 , the residuals 𝜀𝑖 are still heteroskedastic across studies (𝖵𝖠𝖱(𝜀𝑖) =
𝜉20∕𝑛𝑖0 + 𝜉

2
1∕𝑛𝑖1) due to different sample sizes across studies, but the existence of 𝑉𝑖 makes the standard errors of the

effect size (i.e., the residuals 𝜀𝑖 in (1)) heteroskedastic even when all studies would have the exact same sample size (see
also Cochran, 1954).
Again using model (19), the variance 𝑆2

𝑖
can be rewritten into

𝑆2
𝑖
= exp(2𝑉𝑖)(𝜉

2
0𝑠
2
𝑖0
∕𝑛𝑖0 + 𝜉

2
1𝑠
2
𝑖1
∕𝑛𝑖1) (22)

with (𝑛𝑖𝑗 − 1)𝑠2𝑖𝑗 =
∑𝑛𝑖𝑗
𝑘=1
(𝜖𝑖𝑗𝑘 − �̄�𝑖𝑗.)

2 chi-square distributed with 𝑛𝑖𝑗 − 1 degrees of freedom. Thus the presence of term 𝑉𝑖
in (22), shows that the observed standard errors in the meta-analysis are also heteroskedastic, and not just the residuals
𝜀𝑖 for the effect size 𝑌𝑖 in model (1). The conditional distribution of 𝑆2𝑖 given 𝑉𝑖 is approximately chi-square distributed
using Satterthwaite approach (Satterthwaite, 1946), that is, 𝑑𝑓𝑖𝑆2𝑖 ∕[exp{𝑉𝑖}(𝜉

2
0∕𝑛𝑖0 + 𝜉

2
1∕𝑛𝑖1)] is approximately chi-square

distributed with 𝑑𝑓𝑖 degrees of freedomwhen conditioned on𝑉𝑖 . The conditional distribution becomes exactly chi-square
distributed with 𝑛𝑖0 + 𝑛𝑖1 − 2 degrees of freedom when both 𝜉0 = 𝜉1 and 𝑛𝑖0 = 𝑛𝑖1 hold. However, the term 𝑉𝑖 makes the
marginal distribution of 𝑆2

𝑖
less traceable and possibly different from a chi-square distribution.

Finally, the random heteroskedasticity 𝑉𝑖 causes a dependency between 𝑌𝑖 and 𝑆2𝑖 , even when there is no heterogene-
ity (𝑈𝑖 = 0), because 𝑉𝑖 is present in both 𝑌𝑖 and 𝑆2𝑖 . However, the variance of 𝑌𝑖 given 𝑆

2
𝑖
is unequal to 𝑆2

𝑖
, since the

conditional distributions of 𝑌𝑖 and 𝑆2𝑖 given 𝑉𝑖 are independent (van den Heuvel et al., 2021). Nevertheless, it can be
demonstrated that the expectation of 𝑆2

𝑖
is equal to the variance of𝑌𝑖 when the heterogeneity vanishes (𝑈𝑖 = 0), making 𝑆2𝑖

an unbiased and appropriate estimator for the residual variance 𝖵𝖠𝖱(𝜀𝑖) = exp{𝜐22∕2}[𝜉
2
0∕𝑛𝑖0 + 𝜉

2
1∕𝑛𝑖1]. The possible cor-

relation between𝑈𝑖 and𝑉𝑖 will affect the dependency between the effect size𝑌𝑖 and standard error 𝑆𝑖 that is invoked by𝑉𝑖
alone. It can be demonstrated that the covariance of𝑌𝑖 and 𝑆2𝑖 is equal to 𝖢𝖮𝖵(𝑌𝑖, 𝑆

2
𝑖
) = 𝜐2𝜌𝑉[𝜐0 − 𝜐1] exp{𝜐

2
2∕2}[𝜉

2
0∕𝑛𝑖0 +

𝜉21∕𝑛𝑖1] (van den Heuvel et al., 2021). Thus 𝜌𝑉 = 0 or 𝜐0 = 𝜐1make the effect size𝑌𝑖 and variance 𝑆
2
𝑖
uncorrelated (but not

independent), while 𝜌𝑉 ≠ 0 and 𝜐0 ≠ 𝜐1 introduces a correlation between 𝑌𝑖 and 𝑆2𝑖 .
We believe that all proposed estimation methods for 𝜃 with their different confidence intervals in Section 2 are at best

approximatemethods formodeling the AD of our simulatedmeta-analysis. Moreover, none of themethods has an obvious
direct advantage over any of the other methods a priori, since none of the methods incorporated the dependency between
𝑌𝑖 and 𝑆𝑖 or used a nonnormal distribution for 𝑌𝑖 .

3.3 Simulation settings

The settings of the parameters are not based on any real case study, but they are chosen such that the simulation may
potentially correspond with a meta-analysis of clinical trials on hypertension treatment for lowering systolic blood pres-
sure. Parameter settings used to generate the IPD are𝑚 ∈ {5, 10, 20, 30}, 𝜆 = 100, 𝑎0 = 𝑏0 = 1, 𝑝 = 0.5, 𝜇 = 160, 𝜃 = −2,
𝜉20 = 𝜉

2
1 = 100. We will run several combinations of the remaining parameters 𝜐

2
0 , 𝜐

2
1 , 𝜐

2
2 , 𝜌𝑀 , and 𝜌𝑉 of the IPD model:

1. Setting 1: Homogeneous effect sizes and no heteroskedastic within-study variances: 𝜐20 = 0, 𝜐
2
1 = 0, 𝜐

2
2 = 0, 𝜌𝑀 = 0,

and 𝜌𝑉 = 0,
2. Setting 2: Heterogeneous effect sizes and no heteroskedastic within-study variances: 𝜐20 = 2, 𝜐

2
1 = 3, 𝜐

2
2 = 0, 𝜌𝑀 = 0.7,

and 𝜌𝑉 = 0,
3. Setting 3: Heterogeneous effect sizes and heteroskedastic within-study variances without correlation: 𝜐20 = 2, 𝜐

2
1 = 3,

𝜐22 = 1, 𝜌𝑀 = 0.7, and 𝜌𝑉 = 0,
4. Setting 4: Heterogeneous effect sizes and heteroskedastic within-study variances with low correlation: 𝜐20 = 2, 𝜐

2
1 = 3,

𝜐22 = 1, 𝜌𝑀 = 0.7, and 𝜌𝑉 = 0.3,
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TABLE 5 Bias of the pooled estimators for the overall effect size under different simulation settings and for 𝜃 = −2

Setting 𝒎 = 𝟓 𝒎 = 𝟏𝟎

DL HT REML BD DL HT REML BD
1 −0.004 −0.006 −0.003 −0.005 −0.024 −0.024 −0.022 −0.024
2 −0.003 −0.003 −0.003 −0.002 −0.006 −0.009 −0.007 −0.007
3 0.006 −0.000 0.004 0.013 0.007 0.010 0.009 −0.010
4 −0.020 −0.032 −0.022 0.006 −0.034 −0.035 −0.031 −0.007
5 −0.038 −0.052 −0.040 0.001 −0.062 −0.066 −0.060 −0.005
6 −0.057 −0.076 −0.059 −0.005 −0.091 −0.099 −0.090 −0.005
Setting 𝒎 = 𝟐𝟎 𝒎 = 𝟑𝟎

DL HT REML BD DL HT REML BD
1 −0.021 −0.021 −0.020 −0.020 −0.010 −0.010 −0.010 −0.011
2 −0.013 −0.014 −0.014 −0.012 −0.004 −0.004 −0.004 −0.004
3 −0.001 0.000 −0.001 −0.019 −0.001 −0.001 −0.001 −0.006
4 −0.043 −0.044 −0.043 −0.018 −0.045 −0.046 −0.045 −0.007
5 −0.073 −0.075 −0.072 −0.017 −0.075 −0.077 −0.076 −0.007
6 −0.103 −0.107 −0.102 −0.015 −0.106 −0.109 −0.106 −0.006

TABLE 6 MSE of the pooled estimators for the overall effect size under different simulation settings and for 𝜃 = −2

Setting 𝒎 = 𝟓 𝒎 = 𝟏𝟎

DL HT REML BD DL HT REML BD
1 0.505 0.501 0.504 0.496 0.239 0.238 0.240 0.233
2 0.878 0.876 0.878 0.872 0.435 0.436 0.434 0.429
3 0.930 0.936 0.932 1.213 0.434 0.439 0.437 0.589
4 0.918 0.927 0.926 1.204 0.431 0.435 0.432 0.602
5 0.909 0.919 0.919 1.207 0.432 0.436 0.433 0.610
6 0.904 0.912 0.915 1.209 0.436 0.441 0.436 0.616
Setting 𝒎 = 𝟐𝟎 𝒎 = 𝟑𝟎

DL HT REML BD DL HT REML BD
1 0.105 0.104 0.105 0.102 0.069 0.069 0.069 0.068
2 0.197 0.197 0.197 0.197 0.128 0.128 0.127 0.127
3 0.202 0.203 0.202 0.282 0.127 0.127 0.126 0.181
4 0.202 0.204 0.202 0.277 0.126 0.127 0.126 0.182
5 0.204 0.206 0.204 0.273 0.128 0.129 0.128 0.182
6 0.208 0.210 0.208 0.266 0.132 0.133 0.132 0.183

5. Setting 5: Heterogeneous effect sizes and heteroskedastic within-study variances with medium correlation: 𝜐20 = 2,
𝜐21 = 3, 𝜐

2
2 = 1, 𝜌𝑀 = 0.7, and 𝜌𝑉 = 0.5,

6. Setting 6: Heterogeneous effect sizes and heteroskedastic within-study variances with high correlation: 𝜐20 = 2, 𝜐
2
1 = 3,

𝜐22 = 1, 𝜌𝑀 = 0.7, and 𝜌𝑉 = 0.7.

4 RESULTS

First we discuss the bias and the MSE of the pooled estimators for the overall effect size for the four different estimation
methods: DL, HT, REML and our BD, respectively. The results are presented in Tables 5 and 6. Recall that the NB and GS
confidence intervals make use of the maximum likelihood estimators of Hardy and Thompson and that the HKSJ method
makes use of the DL estimators. Then, we study the coverage probabilities of all seven approaches of confidence intervals
on the overall effect size. The results are presented in Figure 1a–f. Finally, we discuss the estimation of the between-study
variance (𝜏2) for the four estimation methods. The results are listed in Table 7.
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F IGURE 1 Coverage probabilities of 95% confidence intervals of seven methods for the overall effect size under different settings and
study sizes

4.1 Estimation of the overall effect size

For the settings without heteroskedastic within-study variances (settings 1 and 2) the biases of DL, HT, REML, and BD are
all similar. Irrespective of the sample size, biases remain within 1.2% of the true effect size (𝜃 = −2) for the homogeneous
effect sizes and are negligible for the heterogeneous effect sizes. In the presence of uncorrelated heterogeneous effect
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TABLE 7 Between-study variances of the three estimation methods under different simulation settings

Setting 𝝉𝟐 𝒎 = 𝟓 𝒎 = 𝟏𝟎

DL HT REML BD DL HT REML BD
1 0 0.664 0.346 0.680 0.329 0.436 0.281 0.433 0.253
2 1.5707 1.920 1.221 1.933 1.195 1.779 1.404 1.793 1.355
3 ∼1.5707 1.984 1.221 2.067 1.670 1.728 1.319 1.728 1.723
4 ∼1.5707 1.993 1.214 2.075 1.726 1.725 1.324 1.741 1.730
5 ∼1.5707 1.989 1.199 2.065 1.779 1.723 1.331 1.746 1.733
6 ∼1.5707 1.972 1.168 2.036 1.838 1.722 1.332 1.749 1.730
Setting 𝝉𝟐 𝒎 = 𝟐𝟎 𝒎 = 𝟑𝟎

DL HT REML BD DL HT REML BD
1 0 0.296 0.207 0.277 0.181 0.240 0.177 0.222 0.154
2 1.5707 1.601 1.410 1.605 1.362 1.589 1.468 1.602 1.417
3 ∼1.5707 1.560 1.378 1.582 1.669 1.569 1.448 1.582 1.649
4 ∼1.5707 1.564 1.379 1.581 1.673 1.575 1.445 1.575 1.615
5 ∼1.5707 1.565 1.379 1.579 1.672 1.576 1.441 1.574 1.600
6 ∼1.5707 1.563 1.375 1.577 1.650 1.575 1.439 1.572 1.585

sizes and heteroskedastic within-study variances (setting 3), again all biases are very close to zero for all four sample sizes.
However, in the case of correlated heterogeneous effect sizes and heteroskedastic within-study variances (settings 4–6),
only BD seems to have small biases for all sample sizes and it is never larger than 1.0% of the true effect size. The biases
of DL, HT, and REML are away from zero, in particular when the heterogeneous effect sizes are strongly correlated with
the heteroskedastic within-study variances. The sample size does not seem to affect this, although the bias is somewhat
smaller for meta-analyses with five studies. The bias can reach a level of more than 5% of the true effect size.
The performance of MSE for the four estimation methods is very consistent across all settings. For all methods, the

MSE increases with settings, which is expected due to the increased variability. Setting 1 has no study heterogeneity and no
heteroskedastic within-study variances, and thus the smallest variability acrossmeta-analysis studies. Setting 2 has hetero-
geneous effect sizes but no heteroskedastic within-study variances. Then for settings 3–6, the residual variance increases
due to the heteroskedastic within-study variances and an increased positive correlation 𝜌𝑉 , while the heterogeneity in
effect sizes remains constant (although the correlation seems to have little effect). When no heteroskedastic within-study
variances are present, the MSE of the four estimation approaches DL, HT, REML, and BD are almost identical. However,
when heteroskedastic within-study variances are present, the MSE of BD is larger than the MSE of DL, HT, and REML,
due to a choice of study weights that is not maximizing the precision of the pooled effect size anymore. Indeed, the study
weight 𝑤𝑖 that would maximizes precision of the pooled effect size in case of heteroskedastic within-study variances is
[𝜏2 + 𝜎2

𝑖
]−1∕

∑𝑚

𝑖=1
[𝜏2 + 𝜎2

𝑖
]−1, while the BD method is applying the weights [𝜏2 + 𝜎2∕𝑑𝑓𝑖]−1∕

∑𝑚

𝑖=1
[𝜏2 + 𝜎2∕𝑑𝑓𝑖]

−1 with
an estimator �̂�2 for 𝜎2. Thus the BD method may lose some precision with respect to a pooled effect size using the opti-
mal weights, but the standard error of �̂�𝐵𝐷 also includes the uncertainty of estimating 𝜎2, since the BD approach jointly
estimates the three parameters 𝜃, 𝜏2, and 𝜎2. The MSE of DL, HT, and REML seem to be identical across all settings and
sample sizes. It seems that the random heteroskedasticity does hardly affect the MSE of DL, HT, and REML, since it is
(almost) at the same level as setting 2 which had no heteroskedastic within-study variances. These methods make use of
the optimal weights [𝜏2 + 𝑆2

𝑖
]−1∕

∑𝑚

𝑖=1
[𝜏2 + 𝑆2

𝑖
]−1 for a pooled effect size with maximum precision, but they ignore the

uncertainty of having to estimate the heteroskedastic variances 𝜎2
𝑖
and may therefore be at risk of a too small estimated

standard error for the pooled effect size.

4.2 Coverage probabilities for the overall effect size

Considering the coverage probabilities in Figure 1a–f, we see conservative coverage probabilities for the (unrealistic) case
of homogeneous effect sizes and no heteroskedastic within-study variances (setting 1), although the HT method seems
closer to nominal than the others. The conservative coverage probabilities are explained by the incorrect use of the degrees
of freedom in the 𝑡-quantile. The estimates for the between-study variance frequently vanishes, which would imply that
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the degrees of freedom for the estimated standard error of the pooled effect size is much closer to the sum of all the degrees
of freedom in the meta-analysis study (Cochran, 1954; Mzolo et al., 2013). In that case, a normal quantile is warranted or
one could update the degrees of freedom in the 𝑡-quantile. When the number of studies increases we see that the coverage
probability for all methods converges to nominal. We see the same phenomena for the setting with heterogeneous effect
sizes (setting 2) when the number of studies is small. The between-study variance cannot be estimated reliably (see tab.
1 of McNeish & Stapleton, 2016) and becomes zero too frequent. It is somewhat surprising that the profile likelihood
confidence interval of HT provides liberal coverage probabilities in this setting. All methods seem to become closer to
nominal for setting 2 when the number of studies is increasing.
In case heteroskedastic within-study variances are introduced, the DL, HKSJ, HT, and REML methods seem to under-

perform and provide liberal coverage probabilities when the number of studies is equal to 10 and 20. The HKSJ is doing
slightly better than the DL and REML method, but the difference is negligible. The HT approach is particularly bad for
a small meta-analysis with a small number of studies. For the simulation setting of uncorrelated effect sizes and het-
eroskedasticity (setting 3), we believe that this lower coverage is caused by having to use 𝑆2

𝑖
for the true variance 𝜎2

𝑖
in the

study weights. The estimation uncertainty is not transferred to the standard error of the pooled effect size and the asymp-
totic standard errors do not work properly. The other methods GS, NB, and BD do take care of this issue of estimation
uncertainty and show an improved coverage. When the number of studies then start to increase this issue of finite-sample
uncertainty becomes less relevant and the methods DL, HKSJ, HT, and REML start to provide nominal coverages. Then
these methods are clearly preferred over the BD method, since the BD method provides a lower precision that is induced
by the nonoptimal study weights.
When the effect size and its standard error are becoming correlated (settings 4–6), a bias in the estimation of the overall

effect size for the estimation methods DL, HT, and REML start to occur. This bias then worsens the coverage probability
compared to the third setting (uncorrelated effect sizes and heteroskedasticity). This bias also occurs for meta-analyses
with just five studies, but then the conservative coverage probability of DL, HKSJ, and REML from setting 2 is accidentally
reduced to a coverage probability closer to nominal. This bias in estimating the pooled effect size is now also causing
a somewhat lower coverage for higher numbers of study sizes, but the bias is not large enough to cause a concern in
the coverage.
The dependency between the effect size and its standard error does not seem to affect the higher-order profile likelihood

(NB and GS) and our bivariate approach (BD) for any of the four settings with heteroskedasticity. For 10 or more studies,
the coverage probabilities are (very) close to nominal, but theGSmethod seems to be slightly and consistently conservative
at𝑚 = 10 studies. These methods have a better bias-precision trade-off then the DL, HKSJ, HT, and REML methods, but
BD is still a first-order approximation and it does as good (or better) as the higher-order profile likelihood approximations
when the between-study variances can be reliably estimated. For meta-analyses with a very small number of studies, our
approach can still be improved by implementing the appropriate degrees of freedom when the between-study variance is
estimated zero. This would also be true for the other conservative methods (Mzolo et al., 2013).

4.3 Estimation of the between-study variance

To complete the comparison, we also compared the estimates of the between-study variance 𝜏2 for the four estima-
tion methods DL, HT, REML, and BD. For the first setting the variance 𝖵𝖠𝖱(𝑈𝑖) = 𝖵𝖠𝖱(𝑈𝑖0 − 𝑈𝑖1) is 𝜏2 = 0 and in the
remaining settings this variance is 𝜏2 = 𝜎20 + 𝜎

2
1 − 2𝜌𝑀𝜎0𝜎1 = 2 + 3 − 2 × 0.7 ×

√
2 ×

√
3 ≈ 1.5707. However, in the case

of heteroskedastic within-study variances, the correlation between the heterogeneous effect sizes𝑈𝑖 and the random het-
eroskedasticity 𝑉𝑖 may affect the estimation of the between-study variance, but we expect it to be still close to 1.5707. The
results of the estimates are presented in Table 7.
Without heterogeneity and heteroskedastic within-study variances, all methods are biased for the estimation of the

between-study variance, but the BDmethod is closest to the truth and the bias reduces with the number of studies. In the
case of heterogeneity, but without heteroskedastic within-study variances, the DL and REML approach are closest to the
true value when sample sizes𝑚 are 20 or larger. For smaller number of studies, HT and BD are slightly closer to the true
variance. DL and REML seem to overestimate the between-study variance, while HT and BD underestimates the vari-
ance. This latter observation is a well-known characteristic of maximum likelihood estimation for variance components
(McCulloch & Searle, 2001). In the case of heterogeneity and heteroskedastic within-study variances (settings 3–6), we see
that DL and REML give unbiased estimates of the between-study variance when the number of studies is 20 or more, with
REML themost accurate one. The BD approach slightly overestimates, but the exact between-study variance for these four
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settings is not exactly known due to a correlation of the residual (𝜀𝑖) and the heterogeneity (𝑈𝑖). For meta-analyses with
only five studies, the DL and REML estimator both overestimate the between-study variance by more than 25%, while the
BD estimator has a bias of not more than 17.5%. But for 10 studies, the differences between DL, REML, and BD vanishes.
The bias reduces to approximately 10%. The HT method seems to be (substantially) biased in all settings.

5 DISCUSSION

The purpose of this paper was to introduce a joint analysis of the effect sizes and their estimated standard errors for AD
meta-analyses. A combination of a normal and chi-square distributionwas used to describe the distribution of the observed
bivariate statistics, following and extending the work of Cochran (1937). The performance of this BD was compared to
that of the DL method (with and without the HKSJ correction) and four likelihood-based methods. The likelihood-based
methods assumed that the residual variance of the effect size is equal to the squared standard error. We studied the profile
likelihood approach of HT, the Bartlett-corrected likelihood ratio, the Skovgaard corrected likelihood ratio, and the REML
approach. They were all illustrated on two real case studies. Furthermore, a simulation study with different scenarios was
carried out using various numbers of studies and correlation structures between the effect sizes and its standard error.
The simulation settings explicitly studied heteroskedastic within-study variances, because we believe that heteroskedas-
ticity is common in practice. None of the seven studied approaches are theoretically equipped to deal with this form of
heteroskedasticity explicitly.
Differences between the methods for estimation of the overall effect size with its confidence intervals were relatively

small, but some differences were observed. When there is no heteroskedastic within-study variances and the number of
studies is small, all methods demonstrate conservative coverage probabilities, except for HT in the case of heterogeneous
effect sizes. The degrees of freedom of 𝑚 − 1 is too small and should be closer to the total sum of the degrees of freedom
in the meta-analysis when the between-study variance is estimated at zero. Estimation of variance components with just
a few studies is unreliable (McNeish & Stapleton, 2016).
When heteroskedastic within-study variances are introduced, the DL, HT, and REML approaches show a small bias in

the overall effect size except when the effect size is uncorrelated with the heteroskedasticity (simulation setting 3). This
bias certainly contributes to a liberal coverage probability (for meta-analyses with 10 or more studies), but not addressing
the uncertainty of estimating the study weights in the overall standard error also lowers the coverage when the number
of studies is small, a conclusion already established in the literature (Guolo, 2012; Noma, 2011). In case we apply the HKSJ
standard error estimate for the DLmethod, the coverage improves slightly, but it remains almost similar to the DL results
for all settings and is not considered a solution.
Since the corrected likelihood approaches use a finite-sample approximation of the distribution of the HT estimator,

these corrected approaches provide the same bias as the HT method, but they do improve the coverage probability when
the number of studies is 10 or more. The Bartlett-type and the Skovgaard corrected likelihood ratio methods have compa-
rable results with theHT finite-sample approach. They are conservative when the number of studies is small, but for larger
study sizes they provide nominal coverage probabilities. These conclusions have been established earlier too (Noma, 2011;
Veroniki et al., 2019).
More generally, all methods provide nominal coverages as the number of studies increases. Our bivariate approach pro-

vided similar and consistent results in all performance measures under heterogeneity and heteroskedastic within-study
variances formeta-analyseswith 10 ormore studies, with coverage probabilities close to nominal. The coverage is very sim-
ilar or better than the two finite-sample size corrected likelihood approaches and outperforms DL, HKSJ, HT approaches
and REML for meta-analyses with 10–30 studies. However, for studies larger than and equal to 30, our approach is some-
what less precise than the other approaches when the effect sizes and heteroskedasticity are uncorrelated. For a smaller
number of studies, our approach is comparable to these other methods.
A disadvantage of our approach is the need for a degrees of freedom. Therefore, our approach is currently limited to

effect sizes from continuous clinical outcomes (e.g., functions of mean differences, regression parameters from linear
regression analyses, and Fisher 𝑧-transformed correlation coefficients), since these measures typically come naturally
with a degrees of freedom. Future research is needed to make our approach also suitable for effect sizes from contingency
tables and survival analyses where no obvious degrees of freedom are present and where a dependency between the effect
size and its standard error potentially needs a solution. One option is to approximate the distribution of the variance
estimator 𝑆2

𝑖
for an effect size from a contingency table with a chi-square distribution, where the degrees of freedom is

being estimated from the number of events and marginal totals, and model the dependency with 𝑌𝑖 with latent variables.
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Our approach should then also be compared with alternative analysis approaches that would model the probability of an
event directly.
The advantage of our approach is that the analysis is straightforward and based on first-order asymptotics that does not

need a finite-sample correction. It also performed well when studies are heterogeneous in both the effect sizes and their
standard errors and where independence between effect size and standard error was not guaranteed. The other analysis
approaches studied in this paper, which condition on the standard error, led to a bias in the overall effect size (Böhning
et al., 2002), while our method was not affected by the correlation between the effect size and its observed standard error.
Ourmethod is somewhat protected against such dependencies due to the proportionality assumption of the standard error
and the study size implemented in the analysis phase, but could lose some precision by not using the study weights for
optimal precision. In the presence of publication bias, where the effect size would depend on study size, and possibly
for standardized mean differences (like Cohen’s 𝑑), where a functional relationship between the effect size and standard
error exists (Malzahn et al., 2000), our approach may fail and additional research is needed to investigate and address this
issue. Generalizations of the joint likelihood of the effect sizes and their standard errors can be proposed for such issues
(Jackson & White, 2018). Our approach is most beneficial for meta-analyses with small study sizes, since the uncertainty
in the standard error is then most dominant.
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APPENDIX A: PROGRAMMING CODES
Here, we list the SAS codes that were used for the bivariate approach and for the (restricted) maximum likelihood. For
the analysis of maximum likelihood (ML) and the restricted maximum likelihood (REML), the information (𝑌𝑖 , 𝑆−2𝑖 ) of
study 𝑖 should be in the same row, where 𝑌𝑖 and 𝑆−2𝑖 are in separate columns. For the bivariate approach, the information
𝑌𝑖 and 𝑆2𝑖 should be put in different rows in the same column.

SAS codes for REML and Hardy–Thompson (HT)
The data set “Effect_Sizes” should have three columns: one for study 𝑖, one for the effect 𝑌𝑖 , and one for the weight
𝑆−2
𝑖
. Then the SAS codes are given by

PROC MIXED DATA = Effect_Sizes METHOD = REML;

CLASS study;

MODEL effect = / SOLUTION CL;

RANDOM study;

PARMS (1) (1) / HOLD = 2;

WEIGHT weight;

RUN;

The maximum likelihood estimator of Hardy and Thompson (1996) can be obtained by applying METHOD =ML. The
profile likelihood confidence intervals are not available through the procedure MIXED.

SAS codes for bivariate approach
The programming codes in proc NLMIXED assume that there exists a data set “Effect_Sizes” with different columns and
rows. The rows represent studies which are listed in column “Study.” For each study, we have two separate rows: one
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TABLE A . 1 Schematic overview of how the data of a meta-analysis should be organized to execute our bivariate distribution approach

Study Response Outcome Degrees
1 Effect size 𝑌1 𝑑𝑓1

1 Variance 𝑆21 𝑑𝑓1

2 Effect size 𝑌2 𝑑𝑓2

2 Variance 𝑆22 𝑑𝑓2

⋮ ⋮ ⋮ ⋮

⋮ ⋮ ⋮ ⋮

𝑚 Effect size 𝑌𝑚 𝑑𝑓𝑚

𝑚 Variance 𝑆2𝑚 𝑑𝑓𝑚

row for the effect size 𝑌𝑖 and a second row for the variance 𝑆2
𝑖
. The effect size 𝑌𝑖 and variance 𝑆2𝑖 are below each other in

the same column called “Outcome” and to identify these different responses we have a column “Response” with levels
“effect size” and “variance.” Finally, there is a column with the degrees of freedom for each study. Table A.1 shows
schematically how the data are organized.
The SAS programming codes for the bivariate analysis is given below. Note that we must specify the degrees of freedom

(DOF =m-1) for the variance of the pooled effect size.

PROC NLMIXED DATA = Effect_Sizes DOF =m-1;

PARMS THETA = 0 LNSTAU = 0 SD = 10;

TAU2 = EXP(2*LNSTAU);

VAR_I = (SD**2)/Degrees;

VAR_T = TAU2 + (SD**2)/Degrees;

IF Response = “ effect size ”

THEN DENS = -0.5*LOG(VAR_T)-0.5*(( Outcome - THETA)**2)/VAR_T;

ELSE IF Response = “ variance ”

THEN DENS = ( Degrees /2)*LOG( Degrees * Outcome /VAR_I)-0.5* Degrees * Outcome /VAR_I;

MODEL Outcome ~ GENERAL (DENS);

RUN; QUIT;
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