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Abstract

Network coupled cells, such as astrocytes, regulate their cellular homeostasis via Ca2+ sig-

nals spread between the cells through gap junctions. Intracellular Ca2+ release is controlled

by different signaling pathways that can be stimulated by ATP, glutamate and serotonin (5-

HT). Based on our findings, all these pathways are influenced by inflammatory agents and

must be restored to fully recover the Ca2+ signaling network. An ultralow concentration of

the local anesthetic agent bupivacaine reduced 5-HT-evoked intracellular Ca2+ release, and

an ultralow concentration of the phosphodiesterase-5 inhibitor sildenafil in combination with

vitamin D3 reduced ATP-evoked intracellular Ca2+ release. Combinations of these three

substances downregulated 5-HT-, glutamate- and ATP-evoked intracellular Ca2+ release to

a more normal Ca2+ signaling state. Furthermore, inflammatory Toll-like receptor 4 expres-

sion decreased with a combination of these three substances. Substance P receptor neuro-

kinin (NK)-1 expression was reduced by ultralow concentrations of bupivacaine. Here,

bupivacaine and sildenafil (at extremely low concentrations) combined with vitamin D3 have

potential anti-inflammatory properties. According to the present study, drug combinations at

the right concentrations, especially extremely low concentrations of bupivacaine and silden-

afil, affect different cellular biochemical mechanisms and represent a potential solution for

downregulating inflammatory parameters, thereby restoring cells or networks to normal

physiological homeostasis.

Introduction

Gap junction-coupled cell networks can be targets when the body or different organs are

exposed to inflammatory stimuli, such as bacteria or viruses [1,2]. Astrocytes in the central
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nervous system (CNS) have been studied for several decades regarding their physiological and

network coupling properties. These cells control extracellular and intracellular homeostasis at

all levels of the CNS and may also contribute to the homeostasis of the other nervous systems

in the body [3,4]. The strategic organization of astrocytes with their long processes and end

feet, which make contact with other cellular networks, barriers, ventricles, etc., play an impor-

tant role in chronic neuroinflammation [5,6]. During inflammation, the expression and affini-

ties of several receptors are changed [7–9], the cytoskeleton is disrupted, and Ca2+ signaling is

elevated, resulting in increased adenosine triphosphate (ATP) production, thereby changing

the balance of Ca2+-regulating processes [10,11]. This change in Ca2+ signaling causes reduced

communication between cells via gap junctions [12]. Furthermore, Na+ transporters are down-

regulated at the cellular level [13], and increased release of proinflammatory cytokines is

observed [7].

Inducers of inflammation trigger the production of inflammatory mediators, which alter

the functionality of connective tissues and organs and lead to harmful induction of different

barrier systems, such as the blood-brain barrier (BBB), blood-nerve barrier, and blood-lymph

barrier [14,15]. Bupivacaine, a local anesthetic, has been proposed to attenuate inflammatory

responses at concentrations much lower than those that block Na+ channels [16,17]. Bupiva-

caine decreases the expression of nuclear factor (NF)-қB and proinflammatory cytokines such

as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) [18].

Bupivacaine treatment in rat models of inflammatory pain decreased the activation of micro-

glia and astrocytes [18].

Toll-like receptors (TLRs) trigger innate immune responses and stimulate glial cells to

release proinflammatory mediators and cytokines [19]. TLR4 is present on astrocytes and

shows increased expression after lipopolysaccharide (LPS) induction [7]. The active form of

vitamin D3, 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3), can access the CNS via passive and/

or active transport across the BBB. Vitamin D3 stimulates its receptor, vitamin D receptor

(VDR), on all neuronal cells, including astrocytes [20]. Furthermore, vitamin D3 has neuro-

protective roles through its influence on the expression of nitric oxide synthase (iNOS), which

in turn affects nitric oxide (NO) [20], decreases TLR4 expression on astrocytes [21,22] and

reduces BBB damage [23].

Ca2+ influx over the plasma membranes can result in increased concentrations of cyclic

guanosine monophosphate (GMP), which activates protein kinase G (PKG) [24]. However,

cyclic GMP is rapidly hydrolyzed by phosphodiesterases (PDEs), among which PDE-5 seems

important [25]. PDE inhibitors exert a direct anti-inflammatory effect by increasing cyclic

GMP levels. [25–27]. The potent and selective PDE-5 inhibitor sildenafil increases GMP con-

centrations, which can ameliorate the effect of inflammation [27]. We previously demon-

strated that sildenafil attenuates ATP-evoked intracellular Ca2+ release in LPS-induced

inflammatory reactive astrocytes [28].

We also studied another combination of substances at extremely low concentrations where

sildenafil was included. In this combination, in addition to sildenafil, extremely low concentra-

tions of the μ-opioid antagonist naloxone, a μ-opioid agonist and the anti-epileptic drug leve-

tiracetam were evaluated [29]. We believe that this combination [29], which affects glutamate-

and ATP-evoked Ca2+ signaling, may have positive effects on neuroinflammation, while the

combination that is the focus of the present study has wider anti-inflammatory properties.

The purpose of the present study was to attenuate inflammation-induced LPS effects on

astrocytes to return the cells to a more physiological state with a drug combination that pri-

marily affects 5-HT- and ATP-evoked Ca2+ signaling. At ultralow concentrations, bupivacaine

and sildenafil attenuate 5-HT-evoked intracellular Ca2+ release [17] and ATP-evoked intracel-

lular Ca2+ release, respectively [28]. We hypothesized that a combination of bupivacaine,
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sildenafil (both at ultralow concentrations), and vitamin D3 under high-glucose conditions

exerts better anti-inflammatory properties than the individual substances. A high-glucose con-

centration might also have some anti-inflammatory properties [29,30].

Materials and methods

Cell model system

Rat primary cortical astrocytes from newborn Sprague-Dawley rats were purchased from 3H

Biomedical Science (Uppsala, Sweden) and prepared according to the manufacturer’s instruc-

tions with some modifications [7,8,29]. The cultures were delivered in 5.5 mM glucose and

cultivated in 5.5 mM glucose (physiological concentration) for the entire period.

LPS treatment and pharmaceutical restoration

For anti-inflammatory restoration, the cell cultures were incubated with LPS (10 ng/ml) for 24

h. For restoration, inflammatory reactive cells were incubated with pharmaceutical substances

together with LPS and 25 mM glucose for an additional 24 h. The substances used were bupi-

vacaine (Marcain) (Astra Zeneca, Södertälje, Sweden) (10−12 M) [17], sildenafil citrate salt

(Sigma Aldrich, St. Louis, MO, USA) (1 μM) [28] and 1α,25-dihydroxyvitamin D3 (calcitriol)

(Sigma Aldrich) (100 nM) [31].

Calcium imaging

With a high-throughput screening system for intracellular Ca2+ signaling, a Flexstation 3

Microplate Reader (Molecular Devices, San José, CA, USA), cells were incubated with the

Ca2+-sensitive probe FLIPR Calcium 6 (Molecular Devices) and exposed to different neuro-

transmitters: 5-HT (10−5 M), glutamate (10−3 M), or ATP (10−4 M), all from Sigma Aldrich.

The total areas under the curve (AUCs), which reflect the amount of Ca2+ released [32], were

analyzed to measure the Ca2+ responses. The amplitude (peak) is expressed as the maximum

increase.

Protein determination

The protein determination assay was performed in accordance with the manufacturer’s

instructions using a detergent compatible (DC) Protein Assay (Bio-Rad, Hercules, CA, USA)

based on the method used by Lowry et al. [33] with minor modifications. The standard (0–4

mg/ml bovine serum albumin, BSA) and samples were mixed with the reagents, incubated for

15 min at room temperature, read at 750 nm with a Versa-max microplate reader, and ana-

lyzed using SoftMax Pro 4.8 from Molecular Devices (Sunnyvale, CA, USA).

SDS-PAGE and western blotting

Cells were rinsed twice in phosphate-buffered saline (PBS) and immediately lysed for 20 min

on ice in cold radio-immunoprecipitation assay (RIPA) lysis buffer containing 150 mM NaCl,

1% IGEPAL1 CA-630, 0.5% sodium deoxycholate, 0.1% sodium dodecyl sulfate (SDS), and

50 mM Tris (pH 8.0) supplemented with a protease inhibitor cocktail containing 104 mM 4-

(2-aminoethyl)benzenesulfonyl fluoride hydrochloride (AEBSF), 80 μM aprotinin, 4 mM bes-

tatin, 1.4 mM E-64, 2 mM leupeptin, and 1.5 mM pepstatin A. The procedure was performed

according to Persson et al. [34]. Separate aliquots were collected to determine the protein con-

centration. All of the samples were analyzed for the total protein content, and 20 μg of the total

protein from each sample was loaded into each lane of the gel. β-Actin was used as a control

for equal loading.

Anti-inflammatory substances restore inflammatory astrocytes

PLOS ONE | https://doi.org/10.1371/journal.pone.0223648 October 9, 2019 3 / 13

https://doi.org/10.1371/journal.pone.0223648


Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was performed

using a Novex precast gel system (Invitrogen, Carlsbad, CA, USA) according to the manufac-

turer’s recommendations using 4–12% Bis-Tris gels (Invitrogen) at 200 V for 50 min. The sep-

arated proteins were transferred at 30 V for 60 min to a nitrocellulose membrane (Invitrogen)

using NuPAGE transfer buffer (Invitrogen) supplemented with methanol and NuPAGE anti-

oxidant. The membranes were rinsed twice with distilled water, and the proteins were visual-

ized with Ponceau S solution (Sigma Aldrich). The proteins were blocked with 0.5% fat-free

skim milk (Semper AB, Götene, Sweden) in Tris-buffered saline (TBST; 50 mM Tris-HCl, 150

mM NaCl, and 0.05% Tween) for 60 min at room temperature. The membranes were probed

with anti-TLR4 (rabbit polyclonal, 1:500) (Santa Cruz Biotech Inc, Dallas, TX, USA) or anti-

neurokinin (NK)-1 (rabbit polyclonal, 1:1000) (LifeSpan BioSciences Inc, Seattle, CA, USA)

antibodies or a mouse monoclonal primary antibody against Na+/K+-ATPase (α-subunit)

(Sigma Aldrich) diluted 1:250 and washed 4 x for 2 min with TBST, followed by incubation

with secondary horseradish peroxidase (HRP)-conjugated antibodies, donkey anti-mouse or

anti-rabbit F(ab’)2 fragments (Jackson ImmunoResearch, Cambridge, UK) diluted 1:10000

and washed several times in TBST. All primary and secondary antibodies were diluted in 0.5%

fat-free skim milk in TBST. The antibody-bound protein was detected with an enhanced

chemiluminescence kit (PerkinElmer Inc., Waltham, MA, USA) and visualized using Fuji

Film LAS-3000 (Tokyo, Japan).

Immunocytochemistry

The cells were fixed with 4% paraformaldehyde (Bie & Berntsen, Herlev, Denmark) for 10

minutes and washed twice with phosphate buffer saline (PBS) (Invitrogen, Carlsbad, USA)

containing 1% BSA (PBS-BSA). The cells were permeabilized with PBS-BSA containing 0.05%

saponine (PBS-BSA-Sap) for 20 min. Thereafter the cells were incubated for 1 h with a cocktail

of rabbit polyclonal antibody against glial fibrillary acidic protein (GFAP) (Dako, Glostrup,

Denmark) and a mouse monoclonal antibody against OX42 (Serotec Oxford, UK). Both anti-

bodies were diluted 1:100 in PBS-BSA-Sap. The cells were washed with PBS-BSA-Sap for 3 x 5

min and then incubated with a mixture of FITC conjugated F(ab´)2 fragment donkey anti-

mouse IgG and a Dylight 594 conjugated F(ab´)2 fragment donkey anti-rabbit IgG secondary

antibodies (JacksonImmuno Research Europe Ltd, Suffolk, UK), both diluted 1:150. The cells

were washed with PBS-BSA-Sap for 3 x 5 min and finally rinsed with PBS. The cover slips were

mounted on microscope slides with a fluorescent mounting medium (Dako) and viewed in a

Nikon Eclipse 80i microscope. Pictures were taken with a Hamamatsu C5810 colour intensi-

fied 3CCD camera.

Actin visualisation

The astrocyte cytoskeleton was stained with an AlexaTM488-conjugated phalloidin probe

(Invitrogen). The cultures were fixed with 4% paraformaldehyde and made permeable with

PBS (Invitrogen) containing 1% bovine serum albumin (BSA) and 0.05% saponin followed by

an AlexaTM568-conjugated phalloidin probe (Invitrogen) diluted 1:40 in PBS supplemented

with 1% BSA. The coverslips were rinsed three times in PBS and mounted on microscope

slides using Dako’s fluorescent mounting medium (Dako) before being viewed with fluores-

cence dry-objective lens attached to an inverted Nikon Optiphot-2 microscope.

Cytokine release

TNF-α (BD Biosciences, San Diego, USA) was used according to the manufacturer’s instruc-

tions to measure the amount of cytokine released in media with ELISA. Between every
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incubation step, several washes were performed. The amount of TNF-α (ng/mg protein)

release was normalized to the protein content.

Statistical analyses

Differences across the different treatments were identified using one-way ANOVA followed

by Dunnett’s multiple comparisons test. The error bars represent the standard error of the

mean (SEM).

Results

Astroglial cultures

When bought from the supplier, the astrocyte cultures contained a small percentage of micro-

glial cells, less than 5%. Our experiments revealed the necessity of a specific number of micro-

glia to obtain reactive inflammatory astrocytes. This number slightly increased after

incubation with LPS for 24 h [29].

In the present study the induced Ca2+ release in the control cultures is unusually high com-

pared to the induced Ca2+ release in LPS treated cells. This effect has been observed several

times and can under certain circumstances be a problem. One explanation may be that the rats

have some type of low-grade infection, virus, bacteria, and therefore express a high inflamma-

tory level before the cultures are prepared. However, the main finding of this study is that

inflammation is reduced in the LPS treated cells with our drug combination, which is clearly

shown in the results.

Restoration of inflammatory reactive astrocytes

The cultures were first incubated with LPS for 24 h to achieve inflammatory reactivity. For res-

toration of a normal physiological level, the cells remained in culture with LPS plus high glu-

cose and different combinations of pharmaceuticals for an additional 24 h.

An ultralow concentration of bupivacaine, previously evaluated with a concentration curve

[17], attenuated 5-HT-evoked intracellular Ca2+ release in combination with high glucose (Fig

1). Neither glutamate- nor ATP-evoked intracellular Ca2+ release was affected by bupivacaine

and high glucose (Figs 2 and 3).

The potent, selective PDE-5 inhibitor sildenafil induces cyclic GMP accumulation, which

inhibits inflammation [27]. An extremely low concentration of sildenafil, 1 μM, is optimal

[28]. Sildenafil in combination with vitamin D3 and high glucose attenuated the ATP-evoked

intracellular Ca2+ release (Fig 3). Neither 5-HT- nor glutamate-evoked intracellular Ca2+

release was affected (Figs 1 and 2).

The combination of high glucose with vitamin D3 and ultralow concentrations of bupiva-

caine and sildenafil restored the 5-HT-, glutamate- and ATP-evoked intracellular Ca2+ release

in inflammatory LPS-induced astrocytes to normal physiological levels (Figs 1–3).

TLR4 expression decreased with all drug combinations (Fig 4). NK-1 receptor expression

was attenuated with bupivacaine and high glucose (Fig 4). The expression of Na+/K+-ATPase

was not significantly increased (Fig 4).

Control cultures showing astrocytes positive for GFAP and a few microglia positive for

OX42. LPS treated cultures had some more microglia. Cultures treated with LPS and the com-

bination of high glucose, bupivacaine, sildenafil and vitamin D3 show the same appearance as

the control (Fig 5). The actin filaments were mainly organized in stress fibers in the control

cultures, but changed when the cells were treated with LPS for 24 h. Restoration with the com-

bination restored the morphology (Fig 5).
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Release of the pro-inflammatory cytokine TNF-α was observed neither in controls nor after

restoration with the drug combination. TNF-α release was only obtained after LPS incubation

for 24 h (Fig 6).

Discussion

Astrocytes are gap junction-coupled cells in the nervous system, and these cellular networks

have long been proposed to be targets in inflammatory processes [1,5,12,35–37]. The identifi-

cation of anti-inflammatory substances that restore inflammatory reactive cells to a more phys-

iological state has been difficult to discover. Many pharmaceutical substances have been

proposed and tested over the years, many of which have been very promising at the experi-

mental stage. However, only some of these substances have been tested in the clinic. We have

continued to develop and further investigate a number of these substances. Some promising

anti-inflammatory substances are the combination of a μ-opioid agonist, endomorphin-1/

morphine/(-)-linalool, a μ-opioid antagonist, (-)-naloxone at an ultralow concentration, and

the antiepileptic drug levetiracetam [8,38], which has been clinically tested with promising

results [39]. Based on our findings, the Ca2+ signaling pathways can be stimulated by different

neurotransmitters, such as ATP, 5-HT and glutamate. However, this triple combination

showed effects on glutamate-evoked Ca2+ signaling only. Sildenafil has anti-inflammatory

effects at very low concentrations [27,29,30,40], and by testing the substance at different con-

centrations, we found that sildenafil attenuated ATP-evoked intracellular Ca2+ release at low

Fig 1. Astrocytes were incubated with the Ca2+-sensitive probe FLIPR Calcium 6. 5-HT (10−5 M) was used as a stimulator to detect changes in intracellular Ca2+

release. The cells were cultivated in 5.5 mM glucose for the entire cultivation period. Ca2+ responses were measured after the cells were stimulated with 5-HT (control),

incubated with LPS (10 ng/ml) for 24 h, or incubated with LPS for 24 h followed by LPS, 25 mM glucose + bupivacaine (Bup) (10−12 M), 25 mM glucose + sildenafil

(Sild) (1 μM) + vitamin D3 (D3) (100 nM), or a combination of all substances for an additional 24 h. The area under the curve (AUC) of the Ca2+ peak was calculated for

each Ca2+ transient, and the amplitude (peak) was expressed as the maximum increase. The cells were obtained from 4 experiments with quadruple wells in each. The

level of significance was calculated against LPS and was analyzed using a one-way ANOVA followed by Dunnett’s multiple comparisons test. � P<0.05, �� P< 0.01.

https://doi.org/10.1371/journal.pone.0223648.g001
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concentrations [28]. The combination of sildenafil and the above drugs particularly affects glu-

tamate- and ATP-evoked Ca2+ signaling [29]. Thus, we hypothesize that this combination can

have positive effects on neuroinflammatory diseases, but these effects must be tested in vivo

before any further conclusions can be made.

Previous studies have shown that 5-HT-evoked intracellular Ca2+ release increases when

astrocytes have been treated with LPS [41]. The purpose of the present study was to reduce

5-HT-evoked Ca2+ signaling in astrocytes that were treated with LPS to induce inflammatory

reactivity.

Earlier studies [17] revealed that bupivacaine has at least two different mechanisms of

action: anti-inflammatory properties at extremely low concentrations and anesthetic proper-

ties at high concentrations. In high concentrations, bupivacaine is used as a local anesthetic

agent that blocks voltage-gated Na+ channels [42]. However, bupivacaine has other effects at

much lower concentrations where blocking of Na+ channels does not occur [17]. At very low

concentrations, bupivacaine evokes intracellular Ca2+ transients [17], and the enhanced 5-HT-

evoked intracellular Ca2+ release in inflammatory reactive astrocytes is decreased by

bupivacaine.

Restoration processes seem to have even better effects when cells are incubated in high-glu-

cose conditions. High glucose has some anti-inflammatory effects [29,30]. In the present

study, bupivacaine at extremely low concentrations in the presence of high glucose attenuated

5-HT-evoked intracellular Ca2+ release in LPS-induced inflammatory astrocytes. The

Fig 2. Astrocytes were incubated with the Ca2+-sensitive probe FLIPR Calcium 6. Glutamate (10−3 M) was used as a stimulator to detect changes in intracellular Ca2+

release. The cells were cultivated in 5.5 mM glucose for the entire cultivation period. Ca2+ responses were measured after the cells were stimulated with glutamate

(control), incubated with LPS (10 ng/ml) for 24 h, or incubated with LPS for 24 h followed by LPS, 25 mM glucose + bupivacaine (Bup) (10−12 M), 25 mM glucose

+ sildenafil (Sild) (1 μM) + vitamin D3 (D3) (100 nM), or a combination of all substances for an additional 24 h. The area under the curve (AUC) of the Ca2+ peak was

calculated for each Ca2+ transient, and the amplitude (peak) was expressed as the maximum increase. The cells were obtained from 4 experiments with quadruple wells

in each. The level of significance was calculated against LPS and was analyzed using a one-way ANOVA followed by Dunnett’s multiple comparisons test. � P<0.05.

https://doi.org/10.1371/journal.pone.0223648.g002
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expression levels of the inflammatory receptor TLR4 and the substance P receptor NK-1 also

decreased.

Some single clinical tests have been performed with the combination of extremely low bupi-

vacaine concentrations and high-glucose concentrations. This combination resulted in par-

tially positive effects (unpublished).

However, we believe that ATP-evoked Ca2+ signaling has significant effects on inflamma-

tory cells because ATP-evoked Ca2+ signaling increases substantially [28]. Since sildenafil has

an effect on ATP-evoked Ca2+ signaling at extremely low concentrations, we wanted to test its

effects together with bupivacaine on gap junction-coupled astrocytes. ATP is involved in all

cellular signaling systems, and increased ATP production results in increased release from

inflammation-induced astrocytes [10,38,43,44]. ATP stimulates purinergic receptors on astro-

cytes, thereby inducing increased Ca2+ signaling, which has also been observed in inflamma-

tory diseases [11].

During inflammation, inflammatory receptors such as TLR4 and NK-1 increase in expres-

sion, and BBB disruption occurs [4]. We searched for a substance with properties to suppress

the expression of inflammatory receptors and any substance that could reduce the damage to

the BBB. Interestingly, vitamin D3 has these properties [22,23,45]. In addition, astrocytes

express the vitamin D3 receptor VDR [46].

Fig 3. Astrocytes were incubated with the Ca2+-sensitive probe FLIPR Calcium 6. ATP (10−4 M) was used as a stimulator to detect changes in intracellular Ca2+

release. The cells were cultivated in 5.5 mM glucose for the entire cultivation period. Ca2+ responses were measured after the cells were stimulated with ATP (control),

incubated with LPS (10 ng/ml) for 24 h, or incubated with LPS for 24 h followed by LPS, 25 mM glucose + bupivacaine (Bup) (10−12 M), 25 mM glucose + sildenafil

(Sild) (1 μM) + vitamin D3 (D3) (100 nM), or a combination of all substances for an additional 24 h. The area under the curve (AUC) of the Ca2+ peak was calculated for

each Ca2+ transient, and the amplitude (peak) was expressed as the maximum increase. The cells were obtained from 4 experiments with quadruple wells in each. The

level of significance was calculated against LPS and analyzed using a one-way ANOVA followed by Dunnett’s multiple comparisons test. � P<0.05, �� P< 0.01,
���P<0.001.

https://doi.org/10.1371/journal.pone.0223648.g003
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Fig 4. The expression levels of TLR4, NK-1 and Na+/K+-ATPase were studied using western blot analysis. Astrocytes were cultivated in 5.5 mM glucose for the

entire cultivation period. The cells were incubated with LPS (10 ng/ml) for 24 h or incubated with LPS for 24 h followed by LPS, 25 mM glucose + bupivacaine (Bup)

(10−12 M), 25 mM glucose + sildenafil (Sild) (1 μM) + vitamin D3 (D3) (100 nM), or a combination of all substances for an additional 24 h. The level of significance was

calculated against LPS and analyzed using one-way ANOVA followed by Dunnett’s multiple comparisons test. �P< 0.05, �� P< 0.01. n = 6. Representative images of

western blot membranes are presented.

https://doi.org/10.1371/journal.pone.0223648.g004

Fig 5. Cultures stained for the astrocytic marker GFAP (red) and the microglial marker OX42 (green), upper figures. Actin filament staining with

Alexa488-conjugated phalloidin which shows mainly stress fibers in the control culture and after restoration while cells treated with LPS show a diffuse reorganization of

the stress fibers, lower figures. Scale bar = 50 μm. Representative images are presented.

https://doi.org/10.1371/journal.pone.0223648.g005
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We found that restoration with sildenafil, vitamin D3 and high glucose reduced ATP-

evoked Ca2+ signaling in LPS-induced astrocytes. TLR4 expression was also decreased. How-

ever, this combination had no effect on 5-HT-evoked Ca2+ signaling. Therefore, we combined

the following substances: bupivacaine, sildenafil (both at extremely low concentrations), vita-

min D3 and high glucose. Surprisingly, 5-HT-evoked Ca2+ signaling, ATP-evoked Ca2+ signal-

ing, and glutamate-evoked Ca2+ signaling were attenuated.

The purpose of our chosen interventions was to affect 5-HT- and ATP-evoked intracellu-

lar Ca2+ release, which was achieved with the combination of vitamin D3 and ultralow con-

centrations of both bupivacaine and sildenafil in high-glucose medium. Moreover,

glutamate-evoked intracellular Ca2+ release was attenuated, and TLR4 expression decreased

with all combinations.

Conclusions

Based on these unexpected results, we conclude that the pharmaceutical combination of bupi-

vacaine and sildenafil (both in extremely low concentrations), together with vitamin D3 and

high glucose, is needed to aid inflamed cells in regaining homeostasis by restoring 5-HT-,

ATP-, and glutamate-evoked intracellular Ca2+ release, thereby downregulating the inflamma-

tory status. Our results show that several vital reversible cellular functions in inflammatory

reactive gap junction-coupled astrocytes can be fully restored with a combination of pharma-

ceuticals. However, the concentration of each individual substance is important to obtain the

appropriate cellular effects. Future studies will continue to investigate the in vivo effects of this

pharmaceutical combination in preclinical and clinical trials.

Fig 6. TNF-α (ng/mg protein) release observed after treatment with LPS for 24 h. No release was obtained either in

controls or in cultures after restoration. n = 4.

https://doi.org/10.1371/journal.pone.0223648.g006
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1. Hansson E, Skiöldebrand E. Coupled cell networks are target cells of inflammation, which can spread

between different body organs and develop into systemic chronic inflammation. J Inflammation 2015;

12:44. https://doi.org/10.1186/s12950-015-0091-2 PMID: 26213498
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40. Nunes AKS, Rapôso C, Rocha SWS, de Sousa Barbosa KP, de Almeida RL, da Cruz-Höfling MA, et al.
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