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ABSTRACT: Hyperspectral photothermal mid-infrared spectro-
scopic imaging (HP-MIRSI) is an emerging technology with
promising applications in cervical cancer diagnosis and quantitative,
label-free histopathology. This study pioneers the application of
HP-MIRSI to the evaluation of clinical cervical cancer tissues,
achieving excellent tissue type segmentation accuracy of over 95%.
This achievement stems from an integrated approach of optimized
data acquisition, computational data reconstruction, and the
application of machine learning algorithms. The results are
statistically robust, drawing from tissue samples of 98 cervical
cancer patients and incorporating over 40 million data points.
Traditional cervical cancer diagnosis methods entail biopsy,
staining, and visual evaluation by a pathologist. This process is
qualitative, subject to variations in staining and subjective interpretations, and requires extensive tissue processing, making it costly
and time-consuming. In contrast, our proposed alternative can produce images comparable to those from histological analyses
without the need for staining or complex sample preparation. This label-free, quantitative method utilizes biochemical data from HP-
MIRSI and employs machine-learning algorithms for the rapid and precise segmentation of cervical tissue subtypes. This approach
can potentially transform histopathological analysis by offering a more accurate and label-free alternative to conventional diagnostic
processes.
KEYWORDS: O-PTIR, cervical cancer, photothermal, mid-infrared spectroscopic imaging, chemical imaging, label-free imaging

1. INTRODUCTION
Cervical cancer is a significant global health challenge, with
over 600 000 new cases and 350 000 deaths per year.1 Its
primary cause is persistent infection with high-risk human
papillomavirus (HPV) strains, alongside factors such as
smoking, immunosuppression, long-term oral contraceptive
use, and high parity.2,3 As the fourth most common cancer in
women, its impact varies widely by location with less
developed areas suffering more due to limited healthcare,
screening, and vaccination.4 Despite prevention efforts,
including HPV vaccination and screening in high-income
communities, cervical cancer remains a major cause of death in
lower-income communities across the world.5 Early detection
is key to improving survival outcomes, but many lack access to
early screening, leading to late-stage diagnoses.6

Recent decades have seen major advancements in the early
detection and diagnosis of cervical cancer. The Pap smear test,
crucial for identifying precancerous or cancerous cells, has
significantly contributed to lowering cervical cancer mortality

rates.7 Despite its utility, its accuracy is hindered by subjective
sample interpretation, leading to overlooked lesions and false
negatives. This limitation underscores the need for more
objective and sensitive methods.
HPV DNA testing has become a preferred screening tool,

detecting virus-induced cell changes with greater sensitivity
than Pap smears and allowing less frequent testing.8 Despite its
effectiveness in identifying high-risk HPV strains, it risks
overtreatment, particularly in younger women who might clear
the virus naturally. Furthermore, it cannot verify the presence
or stage of cancer, requiring additional diagnostics upon HPV
detection.9 Liquid biopsy, a noninvasive method for detecting
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cancer DNA in blood, holds promise for early cervical cancer
detection, potentially improving treatment outcomes.10 Yet, its
performance varies due to technical factors and analysis of
different HPV subtypes, highlighting its diagnostic and
monitoring challenges.11 Raman spectroscopy, proposed for
diagnosing cervical cancer, offers biochemical specificity but
encounters challenges due to long data acquisition times for
hyperspectral imaging. The generation of accurate histological
maps is difficult, with the results influenced by instrument
settings and sample preparation.12 Fluorescence lifetime
imaging microscopy (FLIM) emerges as a rapid technique
but lacks the biochemical specificity of infrared spectroscopy
methods and faces segmentation accuracy issues, alongside
reproducibility and accuracy concerns from variability in
settings and preparation.13,14 Diffuse reflectance (DR) spec-
troscopy, suggested for lesion discrimination, falls short in
spatial resolution for histology and sensitivity for low-grade
lesion differentiation.15

Improving cervical cancer histopathology using machine
learning and artificial intelligence (AI) techniques has been
proposed.16,17 These algorithms are trained on large data sets
of stained cervical cancer images, offering the potential for
more precise and consistent detection of precancerous changes
than human interpretation alone.18 The training involves
brightfield microscope images stained and annotated by
pathologists, serving as the ground truth, promising to improve
screening program efficiency and effectiveness.19 However, the
“black box” nature of machine learning models, especially deep
learning, presents challenges, such as the absence of clear,
biochemically specific explanations for results, which may lead

to reluctance among doctors to adopt these technologies in
clinical settings. Moreover, these models require vast amounts
of high-quality, well-labeled data for effective training and
generalization, a significant hurdle given the variability in
staining techniques and tissue handling, making large, curated
data sets scarce.20 While deep learning excels at identifying
patterns in high-resolution images, they are prone to errors,
especially when presented with systematic, nonstochastic
variations in staining quality and sample preparation protocols
within training data. Current methods require human experts
to verify automated cancer grading, highlighting the need for
deep learning to complement rather than replace expert
judgment in oncology.21,22 Utilizing biochemically quantitative
technologies that are less prone to sample preparation and
staining variations is a promising route to achieving high
diagnostic accuracy through AI. It is crucial for selecting
appropriate treatments and improving patient outcomes.23,24

Midinfrared spectroscopic imaging (MIRSI) represents a
class of technologies that offer biochemically sensitive, label-
free imaging data. This approach addresses the aforementioned
challenges with staining quality and quantification.25−32

Furthermore, MIRSI provides data that can be interpreted in
biochemical terms.32−36 Optical photothermal infrared (O-
PTIR) imaging37−41 is emerging as a promising MIRSI
technology that overcomes the diffraction-limited spatial
resolution42 characteristic of previous methods such as Fourier
transform infrared (FTIR) spectroscopic imaging43 and
facilitating image capture at a resolution of 0.5 μm. Figure 1
illustrates the comparison between images at 1660 cm−1

obtained using FTIR and O-PTIR at their highest resolutions

Figure 1. Experimental data from 100 cervical cancer patient cores measured using FTIR (top row) versus O-PTIR (bottom row) imaging at the
amide I band (1660 cm−1) at their highest resolutions. A zoomed-in comparison of the FTIR and O-PTIR data from the same core highlights the
difference in resolution and image quality. O-PTIR surpasses the diffraction-limit barrier associated with FTIR systems, enabling imaging at 0.5 μm
resolution.
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of ∼5 μm × 5 μm and 0.5 μm × 0.5 μm, respectively. FTIR
resolution is wavenumber dependent whereas OPTIR is not.
O-PTIR has a higher resolution and can visualize finer image
details. However, a significant challenge with OPTIR is that
hyperspectral data acquisition is time-consuming. To address
the problem of slow data collection, we proposed a
reconstruction algorithm for sparse data.44 For instance,
collecting an image at one wavelength for a 1400 μm ×
1400 μm sample would previously take almost 80 min. We
collected high-resolution images at one wavelength along with
27 low-resolution images at different wavelengths. Using
curvelet transform and 1 minimization, 27 low-resolution
images were reconstructed while preserving spectral resolution.
This research significantly enhances data collection speed,
improving it 10-fold with minimal information loss. To validate
this approach, we applied machine learning techniques to
classify and segment ovarian cancer tissue, achieving a success
rate of 95%. This approach makes hyperspectral photothermal
(HP) MIRSI practical. Here, we build upon this work and
expand the analysis of photothermal imaging data to address
cervical tissue segmentation and the histopathological
examination of multiple types of cervical cancer, including
adenocarcinoma and squamous cell carcinoma. We will
investigate the trade-off between image resolution and data
acquisition time with hyperspectral MIRSI. We will combine
data reconstruction with machine learning methods to facilitate
tissue subtype classification across a wide range of cervical
cancer samples. The use of photothermal MIRSI overcomes
previous challenges associated with subcellular resolution. Our
enhanced HP-MIRSI data collection approach addresses speed
challenges and significantly accelerates the technology.

2. MATERIALS AND METHODS
Images were collected from a tissue microarray (TMA) of cervical
biopsies from 100 patients, consisting of normal, adenocarcinoma,
adenosquamous carcinoma, and squamous cell carcinoma samples
(Biomax, CR1001b). The TMA was paraffin-embedded mounted on a
1 mm thickness CaF2 substrate. The patient cohort consisted of
women aged 23 to 76, with tumor stages ranging from I to IV.
Paraffin-embedded samples were sectioned at 5 μm and deparaffinized
prior to imaging. The deparaffinization was done following the
protocol along the lines described in Baker et al.33 before undergoing
O-PTIR imaging. The paraffin-embedded samples were deparaffinized
by washing the sample in 100% xylene twice for 5 min each and then
with 100% ethanol thrice. Images were acquired from two adjacent
sections of the TMA, one of which was labeled with hematoxylin and
eosin (H&E) for annotation by a pathologist. The other immediate
adjacent section was used for O-PTIR imaging after deparaffinization.

2.1. Data Acquisition
The adjacent H&E stained TMA was imaged with a Nikon inverted
optical microscope with a 10×, 0.4 NA objective in the brightfield
mode and has diffraction-limited spatial resolution in the visible range
(0.4 μm to 0.7 μm). OPTIR data were collected using a Photothermal
mIRage microscope with a silicon photodiode, a pixel size of 0.5 μm ×
0.5 μm, and a 0.65 numerical aperture. A quantum cascade laser
(QCL) source sweeps through the range of 902 cm−1 to 1898 cm−1.
We are using a 532 nm probe beam, and mIRage settings for data
collection were 50% IR beam power with 100 kHz pulse rate, 5%
duty cycle, and 500 ns pulse width. Detector gain was set at 10× and
scan rate for each image was 0.4 Hz. We collected data with 0.5 μm ×
0.5 μm spatial resolution per pixel at seven wavelengths: 1660, 1554,
1440, 1340, 1240, 1220, and 1104 cm−1. Twenty-seven lower-
resolution images were collected at a 0.5 μm × 5 μm per pixel at
974, 984, 1036, 1070, 1102, 1136, 1178, 1238, 1280, 1300, 1325,
1358, 1396, 1420, 1456, 1482, 1500, 1536, 1556, 1596, 1610, 1662,

1668, 1682, 1718, 1746, and 1786 cm−1. Spectral bands are selected
based on their biochemical importance.33−35 Note that infrared
spectra from biological samples often have broad peaks, and adjacent
wavenumbers are frequently correlated. As a result, there is
redundancy in the acquired data, which enhances the robustness of
our results.

The average size for each biopsy was approximately 1400 ×
1400 μm (Figure 1). Acquisition times were 80 min per band at
high spatial resolution and 8 min per band at the lower spatial
resolution. Capturing 7 high-resolution spectral wavenumbers took
9.3 h, whereas obtaining the 27 low-resolution plus 1 high-resolution
image required 4.9 h. Subsequently, 27 high-resolution band images
were reconstructed using our previously proposed algorithm44 by
combining low-resolution data with the high-resolution reference
band at 1660 cm−1. To minimize misalignment, all images were
collected in one session. During data collection, we collected
background and optimized the system every 6 h. Each core date
was collected individually, and we focused the beam before each data
collection to minimize any errors due to sample tilt. As a result of a
stage shift during acquisition, portions of two cores were missing in
some wavelengths. These cores were not included in the final analysis;
therefore, all reported results pertain to 98 cores.

Two data cubes, with 27 and 7 bands, respectively, were produced
for both the high-resolution and reconstructed images. A pathologist
(Y.Z.) specializing in cervical cancer reviewed the corresponding
adjacent section stained with H&E and annotated cell types from
different disease stages. To develop the random forest (RF) and
convolutional neural network (CNN) classifiers, one group of 44
cores was used for training, and another set of 54 different cores was
used for testing. Both sets included multiple cancer grades. The
structures of the RF and CNN classifiers are derived from our
published work.45−47 The last TMA row, which contained normal
tissue, was used exclusively for testing, while for all other rows, the
first five cores were used for training and the remaining cores for
testing. This protocol ensures the independence of training and
testing data sets, which is a limitation in previously published work.45

Table 1 presents the number of pixels for each class in both training
and testing.

2.2. Annotation
A pathologist annotated histological data based on images from an
H&E stained adjacent section. The annotations included multiple
tissue-type classes, such as stroma or epithelium. Even though the
samples contained various tissue types, such as lymphocytes, blood
cells, and necrosis, we limited our analysis to the two most abundant
subtypes, namely epithelium and stroma, which appeared in nearly all
the samples. Other tissue classes, being less abundant and having
fewer annotation points, pose a challenge for identification using
machine learning methods due to the limited amount of data.
Moreover, to ensure robust training, the machine learning algorithms
required us to label only those pixels of which we were absolutely
certain. These annotations were then transferred to O-PTIR by
manually aligning the chemically stained image with the correspond-

Table 1. Number of O-PTIR Pixels in Training and Testing
Datasets by Classa

class training testing

epithelium 7,790,150 10,104,774
stroma 12,571,675 11,509,787
total 20,361,825 21,614,561

aTo create training and testing cohorts, the TMA is divided in half,
with the left half used for training and the right half for testing. An
equal number of pixels from each class is selected to avoid class-bias in
training. Specifically, a subset of 10,000 O-PTIR pixels per class are
utilized for training in the random forest (RF) classifier, and 400,000
pixels per class are employed for convolutional neural networks
(CNNs).
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ing IR data. To create training and testing data sets, the left half of the
TMA was used for training, while the right half was used for testing.
This approach allowed the classifiers to be exposed to a variety of
tissue types while maintaining independent training and testing sets.

3. RESULTS
The overall accuracy (OA) and receiver operating character-
istic (ROC) curves were used as evaluation metrics to evaluate
the impact of improved spatial resolution in O-PTIR on cell
type classification. The ROC curves delineate the correlation
between specificity and sensitivity to ascertain acceptable false
positive and true positive indicators.
The study evaluated the accuracy of two classifiers, RFs and

CNNs, using data from both computationally reconstructed 27
high-resolution bands and 7 experimentally measured high-
resolution bands. The detailed accuracy results, summarized in
Table 2, revealed that the CNN classifier, which incorporates
both spectral and spatial features from the O-PTIR data,
consistently outperformed the RF classifier in overall and
classwise accuracy, demonstrating a significant improvement of
approximately 20% in overall accuracy. This increase is
attributed to the CNN’s ability to utilize a broader range of
information, especially the high spatial resolution of photo-
thermal MIRSI, compared to the RF’s reliance on a limited set
of spectral features. This is in line with our previous work47

which only used 5 wavelengths and resulted in marginally
lower accuracy. The enhanced performance with 27 bands,
compared to 7, indicates that the reconstruction method not
only shortens data collection time but also improves prediction
accuracy by offering an expanded spectral data set. These
findings highlight the critical role of combining spatial and
spectral information in boosting classification accuracy.
Further analysis of classifier performance through a second

measure, namely the area under the curve (AUC) in an ROC
plot, presented in Figure 2, supports these conclusions. The
27-band CNN models exhibit superior performance over the 7-
band configurations across both classes, reinforcing the value
of integrating more comprehensive spectral features alongside
spatial information for improved tissue classification accuracy.
Subsequently, we used our trained CNN models to segment

all cores into tissue subtypes, including epithelium and stroma.
The comparison of H&E images with the corresponding CNN
predictions for 7 and 27 band data is illustrated in Figure 3.
The 27 band classifier aligns more closely with the H&E
images, suggesting that the reconstruction process effectively
preserves information. This qualitative comparison provides a
visual illustration and aligns well with the quantitative
measures presented in Figure 2 and Table 2. Our optimized
data collection and reconstruction approach not only optimizes
data collection time but also improves accuracy in tissue
subtype classification.

We evaluated our 27-band CNN model on various subtypes
of cervical cancer to further assess the segmentation efficacy of
our method. The data set included 40 cores of squamous cell
carcinoma and 26 cores of adenocarcinoma, and the remaining
cores comprised other types, including adenosquamous
carcinoma, endometrioid adenocarcinoma, mucinous adeno-
carcinoma, and adjacent normal cervix tissues. For each cancer
subtype, we loaded the pre trained model and tested it for
three iterations to make sure results were robust and
repeatable. The average accuracy and their standard deviation
over three iterations are reported in Table 3. Additionally, we
plotted the ROC curves for each cancer subtype, as presented
in Figure 4. The AUC, an independent measure of
classification accuracy, exceeds 0.95 for all subtypes. These
results demonstrate good overall classification performance
across all cervical cancer subclasses, although segmenting the
stroma in squamous cell carcinoma presented the most
significant challenge.

4. DISCUSSION
Our study demonstrates the utility of hyperspectral photo-
thermal (HP) MIRSI, a technology that combines advanced
computational techniques with quantitative, biochemically
sensitive label-free contrast and subcellular resolution. This
combination of advantages enables us to capture high-
resolution images that are critical in distinguishing between
different tissue types and identifying cancerous changes at the

Table 2. Mean Accuracy of Models by Data Type Across Five Classification Experiments, Trained with 10,000 (RF) and
400,000 (CNN) Randomly Selected Samples Per Classa

class RF7 RF27 CNN7 CNN27

epithelium 71.63 ± 1.29 81.42 ± 1.52 93.6 ± 2.3 97.88 ± 0.73
stroma 70.05 ± 1.21 72.24 ± 1.97 86.5 ± 2.2 92.62 ± 1.20
total 70.95 ± 0.72 76.53 ± 0.82 91 ± 0.9 94.98 ± 0.28

aThe analysis compares classification results from 7 high-resolution bands with those from 27 reconstructed HP-MIRSI bands. The significantly
higher accuracy of the CNN classifier is likely due to enhanced spatial resolution, which increases within-class spatial-spectral diversity. Moreover, a
comparison between CNN27 and CNN7 demonstrates that our 27-band reconstruction approach, containing more spectroscopic information,
achieves superior performance.

Figure 2. ROC curves and associated AUC values for each
classification model. The CNN models (solid lines) yield superior
results compared to the RF models (dashed lines) for both the 7-band
and 27-band data sets. The enhanced performance of CNN models
over RF is attributed to their utilization of both spatial and spectral
information. Furthermore, CNN outcomes for the 27-band data set
exhibit an improvement over the 7-band data set, owing to the
increased spectral information.
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cellular level. Our approach requires minimal tissue processing
and does not use qualitative stains, making it a more efficient
and practical method. Additionally, our optimized data

acquisition and reconstruction approach reduces data
collection time, making hyperspectral MIRSI data acquisition
more feasible. We also utilize machine learning algorithms such
as RF and CNN classifiers to improve the accuracy and
efficiency of cervical tissue subtyping.
A key finding of our research is that HP-MIRSI can reliably

segment multiple types of cervical cancer tissue into subtypes.
We demonstrate >95% classification accuracy on a statically
robust data set consisting of 98 cervical cancer patients and
>40 million data points. Tissue subtype segmentation is a
critical step in label-free diagnostics,44,47 and our work lays the
foundation for accurate, label-free cervical cancer diagnosis.
This work is the first demonstration of applying high-
resolution MIRSI to the challenging problem of cervical
cancer tissue analysis. It promises a robust and quantitative
alternative to current qualitative approaches.
Results from Tables 2 and 3 and the corresponding ROC

curves show that CNNs have significant advantages over RF
classifiers with segmenting photothermal MIRSI data. This can

Figure 3. Comparison of classification results: (a) from the 7-band CNN, (b) from the H&E stained adjacent sections used to annotate ground
truth, and (c) from the 27-band CNN. The 27-band CNN model exhibits a marginal yet noticeable improvement over the 7-band CNN results due
to the increased number of bands. This supports and is consistent with the quantitative measures presented.

Table 3. Class Accuracies for Different Cervical Cancer
Subtypesa

subtype adenocarcinoma squamous cell other

epithelium pixels 759,291 5,991,556 1,987,103
epithelium accuracy 98.42 ± 0.85 95.30 ± 0.61 97.19 ± 1.52
stroma pixels 3,440,185 3,820,799 5,486,673
stroma accuracy 98.13 ± 0.79 80.46 ± 1.99 96.54 ± 0.73
total 98.15 ± 0.006 89.53 ± 0.011 96.72 ± 0.003
aThe data included 40 cores with squamous cell carcinoma, 26 cores
with adenocarcinoma, and other tissue that includes adenosquamous
carcinoma, endometrioid adenocarcinoma, mucinous adenocarcino-
ma, and adjacent normal cervical tissues. The mean and standard
deviation are reported below after testing the classifier for three
iterations subtype.
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be intuitively understood as a consequence of the higher
resolution (0.5 μm) and the corresponding increased spatial
details available in photothermal images. CNNs are capable of
leveraging spatial details to improve classification, whereas RFs
that rely on spectral information alone cannot achieve the same
gains.
Our optimized data collection and reconstruction ap-

proach44 for analyzing cervical cancer tissues shows remarkable
efficacy, as evidenced by the superior performance of CNN
models in classifying these tissues (see Table 2). This
approach, which combines low- and high-resolution imaging
from 27 bands with data reconstruction, outperforms the use
of 7 high-resolution bands alone. Additionally, the process of
obtaining data from the 27 bands required only 4.9 h,
compared to the 9.3 h needed to obtain the 7 high-resolution
band data, further demonstrating the efficiency of our method.
Our work significantly reduces data collection time in HP-
MIRSI without compromising spectral data quality and
demonstrates excellent automated segmentation of clinical
cervical cancer tissue. This advancement not only improves
the feasibility of implementing HP-MIRSI in clinical environ-
ments by overcoming numerous barriers to its adoption but
also paves the way for real-time cancer diagnosis and treatment
planning.
We present the results of tissue type segmentation for

multiple subtypes of cervical cancer, including squamous cell
carcinoma and adenocarcinoma, in Table 3 and Figure 4.
Utilizing large data sets with 98 cervical cancer patients allows
us to analyze cervical cancer subtypes in a robust manner, with
40 patients having squamous cell carcinoma, 26 patients with
adenocarcinoma, and the rest with adenosquamous carcinoma,
endometrioid adenocarcinoma, mucinous adenocarcinoma,
and adjacent normal cervix tissues. The segmentation and
analysis, conducted with over 40 million data points, yield
statistically reliable results. Moreover, the segmentation results
exhibit a close alignment with H&E-stained data presented in
Figure 3. The accuracy of our results is supported by both

quantitative and qualitative assessments of tissue segmentation,
elucidating the reliability of our findings.

5. CONCLUSION
Our research introduces a novel method for the rapid and
accurate analysis of cervical cancer tissue, leveraging the
strengths of HP-MIRSI and advanced machine learning
algorithms. This study demonstrates the potential of our
approach in rapid, quantitative, label-free, digital histopathol-
ogy. Our work is an important step in the clinical translation of
this technology and its wider deployment. This technology has
the potential to provide fast and reliable tissue diagnostics with
minimal sample preparation. The implications of our work
extend beyond cervical cancer, offering a promising avenue for
the application of this technology in the early detection and
classification of multiple cancer types. Future research will
focus on refining the technology and exploring its integration
into clinical practice, with the ultimate goal of improving
patient outcomes through early and accurate diagnosis.
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