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Abstract 

In view of potential application to biomedical diagnosis, tight transcriptome data quality control is compulsory. 
Usually, quality control is achieved using labeling and hybridization controls added at different stages throughout 
the processing of the biologic RNA samples. These control measures, however, only reflect the performance of the 
individual technical manipulations during the entire process and have no bearing as to the continued integrity of 
the RNA sample itself. Here we demonstrate that intrinsic statistical properties of the resulting transcriptome data 
signal and signal-variance distributions and their invariance can be identified independently of the animal species 
studied and the labeling protocol used. From these invariant properties we have developed a data model, the pa-
rameters of which can be estimated from individual experiments and used to compute relative quality measures 
based on similarity with large reference datasets. These quality measures add supplementary, non-redundant in-
formation to standard quality control estimates based on spike-in and hybridization controls, and are exploitable in 
data analysis. A software application for analyzing datasets as well as a reference dataset for AB1700 arrays are 
provided. They should allow AB1700 users to easily integrate this method into their analysis pipeline, and might 
instigate similar developments for other transcriptome platforms. 
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Introduction  

Transcriptome studies using microarrays have become 
a commonplace assay in biological research. A major 
limitation of the technology challenges data analysis. 
The absence of a correct theoretical model for the 
hybridization process combined with the impossibility 
to generate gold-standard samples make it unachiev-
able to normalize signals either between different 
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probes or absolutely, and hence, the quantification of 
RNA molecule abundance in the sample is only rela-
tive. In view of potential utilization of microarrays in 
biomedical applications, this limitation is a severe 
draw-back. For instance, inter-assay, inter-method, 
and inter-platform comparisons become extremely 
challenging without absolute quantification of the 
molecular species under study. Comparative studies of 
inter- and intra-platform variations clearly support this 
view (1-4). The absence of positive controls for the 
ensemble of the scored RNA species thus significantly 
augments the need for tight quality control of the ex-
periments in order to achieve reliable measurements. 
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The importance of developing quality control ap-
proaches and standards is well illustrated by the exis-
tence of the MicroArray Quality Control (MAQC) 
Project (4, 5), where scientists from academia and the 
main commercial technology providers work together 
on the definition of assay and data standards and 
practices to follow. 

Today, quality control (QC) of transcriptome 
measurements is typically assured through the com-
bination of four different elements: First, the 
to-be-analyzed RNA samples, as well as the labeled 
products of the reverse transcriptase reactions, are 
assayed for the quantity, purity and integrity. These 
measurements rely entirely on the determination of 
average parameters that only reflect the overall qual-
ity of the sample and not the quality of the preparation 
of individual species within the complex mixture. 
Ironically, the only individual species that – for rea-
sons of their abundance – receive particular attention 
during this assessment are the major ribosomal 
rRNAs that have subsequently to be removed from 
the mixture. Furthermore, these measurements can 
only be performed prior to hybridization on the arrays. 
Since the hybridization process itself takes typically 
longer than ten hours at heightened temperatures, 
nothing can be said about the integrity of the sample 
on the array (6, 7). 

Second, the so-called spike-in controls are added at 
various steps of sample preparation, labeling and hy-
bridization in order to control the efficacy of the dif-
ferent enzymatic reactions or enrichment steps. The 
spike-in molecules are often RNA, cDNA, or cRNA 
sequences derived from distant species, or synthetic 
sequences that are then captured by dedicated probes 
on the microarray in order to testimony efficiency and 
homogeneity of the different experimental steps. 
These controls are of defined quantity and tested for 
minimal cross-hybridization to the reminder of the 
probes. Likewise, synthetic sequence probes are spot-
ted to the arrays for background appreciation through 
cross-hybridization (1, 8, 9). 

Third, the spot integrity of the array is often also 
assayed through the use of uniform, pre-labeled se-
quence species that hybridize to co-deposited control 
oligonucleotides at each spot on the array. These con-
trols are thought to testimony the presence of the main 
probes following essentially a guilt-by-association 

reasoning. More importantly, they quantify the uni-
formity of the array spotting and array surface, and 
thus can be used for normalization of heterogeneities 
at this level (10, 11). 

Finally, different computational methods based on 
the above measurements and sometimes mean signal 
intensities are used to estimate probe by probe and 
global reliability measures. These are then used to 
eliminate individual measurements or the entire array 
from down-stream analysis (12, 13). 

To offer another view of the quality control issue 
and complete the existing solutions, we propose a 
method to estimate quality through intrinsic statistical 
properties of the signal and the signal-variance distri-
butions of all probes on an array. 

By analyzing large numbers of transcriptome ex-
periments from our Applied Biosystems AB1700 
platform, we have previously reported a particular 
data-structure of the microarray signal and sig-
nal-variance distributions, which is quite distinct from 
Affymetrix platform generated data (14). The main 
characteristic of AB1700 system data is the presence 
of a mixture of two lognormal distributions for the 
signals, rather than a single one (15). The sig-
nal-variance distribution of the data also reflects this 
bimodal separation of probes and thus reinforces the 
observation (14). The dual distribution character of 
the data is suggested to be independent of the animal 
species analyzed or the amplification protocol chosen. 
While the origin of this distinct feature of AB1700 
transcriptome data is today not fully understood [for a 
discussion of different hypotheses please refer to Noth 
et al (14)], it is of no importance to the fact that it can 
be exploited in characterizing this particular type of 
microarray experiments. In fact, we have shown that a 
model created to capture the main characteristics of 
this invariant property of the AB1700 data can be 
used to estimate a parameter set from individual ex-
periments, which in turn can serve to generate syn-
thetic, random pseudo-data with indistinguishable 
statistical properties (16). 

Here, we first demonstrate that the above distribu-
tion properties indeed need to be considered as in-
variant with respect to the origin of the RNA samples 
and the protocol used for hybridization, by using 
1,050 AB1700 experiments generated in part (65%) in 
our group and in part (35%) from published experi-
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ments from other research groups. Furthermore, the 
intrinsic statistical properties of the data are well cap-
tured by a slightly modified version of the previously 
developed data model. Finally, by estimating the pa-
rameters for the refined model from a given experi-
ment and comparing them to a large reference dataset 
containing the averages and variances of the corre-
sponding parameters from either a curated set of 500 
or an un-curated set of 300 experiments drawn from 
the total 1,050 ones as reference, a similarity measure 
can be computed. We show that this similarity meas-
ure is characteristic of the distinctness of the analyzed 
experiment with respect to the reference set, and 
hence can be used to analyze the homogeneity of in-
dividual assays within a group. Since the similarity 
measure is calculated from the sample generated sig-
nals and coefficients of variance only, it is totally in-
dependent of the above discussed quality control es-
timators, and thus adds non-redundant information to 
the QC process. As demonstrated using two publicly 
available datasets, which meet all of the standard QC 
measures, outliers can be identified and their removal 
can lead to significant changes in the interpretation of 
the data. 

Results and Discussion 

Invariance of mixture signal distribution in 
AB1700 data 

The AB1700 microarray technology commercialized 
by Applied Biosystems is characterized through the 
use of long (60 mer) oligonucleotides as probes, a 
chemiluminescence-based detection chemistry, and 
optimized array surface chemistry (14). We have pre-
viously shown that the AB1700 platform is more sen-
sitive than the Affymetrix setup by comparing 50 un-
related and heterogeneous AB1700 experimental 
datasets to an identically sized group of publicly 
available similarly heterogeneous Affymetrix datasets 
(14). A similar study has compared AB1700 to current 
Agilent technology (17). In our study we have fur-
thermore made the unexpected observation that 
AB1700 generated data represent a mixture distribu-
tion of yet unidentified significance (14) (Figure S1). 
Theoretical studies had suggested that transcriptome 

signal distributions are always lognormal distributed 
(15), while the signal distribution of AB1700 data 
clearly is composed of two independent lognormal 
distributions as evidenced by expectation maximiza-
tion and likelihood analysis (14). Based on the char-
acterization of the signal and signal-variance distribu-
tion of this initial set of 50 experiments, we had de-
veloped a mathematical model that can be efficiently 
used to describe the statistical properties of AB1700 
data by estimating the model parameters on individual 
datasets (14, 16) (Figure S1). 

The analysis of a total of 1,050 publicly available 
and new experiments generated in our group permits 
to validate the mathematical description of the statis-
tical properties of AB1700 data. Lists of 500 and 300 
arrays used to generate reference compendia can be 
found in Tables S1 and S2 for details on the array 
technology, species, and labeling methodology. We 
thereby included data for the three different species 
for which dedicated microarrays are available (human, 
mouse, rat). Furthermore, we also used experiments 
where primate mRNAs were hybridized to human 
arrays, as we have shown before that the human array 
versions are suitable to determine transcriptome pro-
files both from Asian Macaques and African Green 
Monkeys (18, 19). An initial dataset of 750 arrays 
encompassing data generated using either of the two 
alternate labeling protocols, first and second genera-
tion arrays, as well as the human arrays hybridized 
with RNA isolated from the two different monkey 
species, was assembled in order to be representative 
for all of these different conditions (Data File S1). 
The resemblance of data from different species as 
well as from different tissues of a single species is 
striking, as shown in Figure 1A, which displays 
heatmaps with natural logarithm transformed sig-
nal-variance over signal data. It is independent of 
cross-hybridizing monkey RNA to human arrays 
(Figure 1B). Importantly, synthetic, random 
pseudo-data generated using our mathematical model 
display the same distribution properties (16) (Figure 
1C). When analyzing more carefully the parameter 
value distributions of the entire set of 750 arrays 
(Figure S1 and Data File S1), these initial findings are 
confirmed. For instance, the relative weight of the two 
signal distributions, and therefore the fraction of 
probes returns signal values that belong to the second  
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Figure 1  A. Heatmaps of signal-normalized logarithmic coefficient of variance (V) against logarithmic signal (S) for one actual 
dataset example from each of the three species for which AB1700 arrays are available. The color gradient from blue to black to red 
indicates the density of the data points. The distribution is characteristic of the AB1700 data. B. Similar heatmaps showing the dis-
tribution of ln(V) vs. ln(S) for two monkey species hybridized to the human AB1700 arrays. C. A heatmap of the same distribution 
for random data generated from our AB1700 signal and signal-variance model. Note that the distribution closely resembles those 
from actual data. 
 
lognormal distribution averaging at 0.649 with stan-
dard deviation 0.06 (consult Figure S2 for a histo-
gram). Therefore, on average, a third of all probes 
returns signal values belonging to the first signal dis-
tribution (14) (Figure S1). If the same signal distribu-
tion model is applied to Affymetrix data, the average 
over 50 individual experiments is 0.400 with standard 
deviation 0.07 (Figure S2), confirming the distinct 
(the means differ by >3.5× standard deviations) dis-
tribution properties between the two technologies (14). 
Similar observations can be made for the other pa-
rameters of our model. In conclusion, we confirm that 
the overall mixture distribution structure of AB1700 
data, independent of biological origin and labeling 
protocol, is an invariant. 

A modified signal and signal-variance distri-
bution model for AB1700 data  

We have already shown previously how this invari-
ance of the data structure of AB1700 experiments can 
be efficiently used to draw random pseudo-data from 

the parameterized model we had previously presented 
(16). In order to even better capture the statistical 
properties of individual experiments, and after having 
observed a certain variability in the signal and sig-
nal-variance ranges that is only poorly captured by the 
parameters of the two lognormal distributions, we 
have decided to add the natural logarithm of the signal 
range and the signal-variance range, as estimated on 
the 99% quantile in both dimensions, as independent 
characteristic parameters to our model. The estimation 
of both parameters, alongside the previously defined 
parameters for the entire set of 750 assays, their av-
erages and standard deviations, can be found in Data 
File S1. 

Similarity measures for QC 

Having obtained 750 independent parameter estimates 
for the signal and signal-variance distributions, we 
can calculate now their averages and standard devia-
tions. For any new experiment, after having estimated 
its parameter values as well, the question of how 
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similar or distinct they are when compared to the av-
erages of the 750 previous experiments can be as-
sessed. Given the fact that the main statistical proper-
ties of the data distributions are invariant for all the 
experiments, we have so far analyzed and constituted 
a representative sample for all the species studied, 
such a similarity measure will capture significant de-
viations from the average. While in such, a significant 
deviation from the average of analyzed data does not 
necessarily indicate technical problems with the array 
analyzed, but may indeed reflect a very particular 
biological setting. This information gained by analyz-
ing similarity can provide an important indicator as to 
verify the given experimental result through bioin-
formatics analysis or experimental repetition in form 
of technical or biological replicates.  

Calculation of the similarity measure, or index, is 
simply achieved by calculating a normalized sum of 
the deviations from the variance-weighted averages of 
the entire set of parameter estimates between the ref-
erence file and the array being analyzed (see Materi-
als and Methods). In this way, the Similarity Index 
(S.I.) takes form of a likelihood measure that can take 
non-zero values only in the interval [0, 1]. Further-
more, the S.I. is more sensitive to outliers. Obviously, 
the S.I. does not have any absolute bearing and de-
pends on the reference dataset used for its calculation. 
Therefore, reporting S.I. values requires concomitant 
reporting of the reference data. 

A robust reference set 

In absence of an absolute standard we next asked how 
representative and robust our reference dataset is. To 
this end, we calculated the S.I. measures for all of the 
750 experiments in the reference dataset using this 
very same reference file. While every array is ana-
lyzed against a standard it contributes to, this 
auto-referencing is of negligible (1/750) extent. A 
histogram of the repartition of the S.I. values for the 
entire dataset is shown in Figure 2 (gray histogram). 
The distribution of S.I. values is smooth and skewed 
towards lower S.I. values. As the only criterion that 
was available in order to select an experiment for the 
reference dataset was whether or not the array had 
met the standard QC criteria defined by the AB1700 
system (which in some cases we only could assume to 

be true for the published experiments we analyzed), 
we expect that the reference dataset contains arrays of 
different technical quality. On the other hand, to some 
small extent, statistically not appreciable given the 
sample size, we cannot rule out the possibility that 
differences in S.I. values also reflect some biological 
reality. Hence a compromise between robustness and 
representation had to be established. We therefore 
used a simple bootstrapping procedure to remove in 
total a third of the experiments from the 750× refer-
ence dataset. This was achieved by removing in suc-
cessive rounds of 100, 100, and then 50 of those ex-
periments with the smallest S.I. values, while at each 
round recreating a reference dataset of size 650, 550, 
and finally 500, respectively, and recalculating the S.I. 
values (see Materials and Methods). When testing the 
resulting 500× dataset (Data File S2) on the original 
750× reference set, we accordingly obtained a more 
symmetric distribution, which is no longer signifi-
cantly skewed to lower S.I. values (black histogram in 
Figure 2). 

 

Figure 2  Superposition of the two S.I. value histograms for 
the 750× and 500× reference files. Note that the first (empty) 
bin is of different size than the others. 
 

We next tested the robustness of our 500× refer-
ence dataset. To this end, we first compared again 
arrays from different species (HGS, MGS, RGS) in 
order to insure that the distribution of the S.I. values 
still is homogeneous and comparable between the 
different array versions. From all three organisms 
(human, mouse, rat), we selected 50 independent ex-
periments at random and calculated their S.I. values 
with respect to the 500× reference set (Figure S3). No 
significant differences can be observed, hence, the 
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500× reference dataset faithfully reflects the species 
invariance of the signal and signal-variance distribu-
tions. Note also that the 500× reference set is simi-
larly composed of about 30% of publicly available 
data and 70% of our own, yet unpublished, datasets. 
Therefore, the bootstrapping strategy has not detected 
any significant differences in the overall quality of the 
data from both origins. 

Second, we compared the S.I. values calculated 
using either the 750× or the 500× reference dataset for 
one given experimental series (GEO dataset GSE3155) 
(20) containing 40 individual arrays (Table S3). The 
S.I. values based on the 500× dataset are always 
higher than those calculated based on the 750× dataset. 
This is expected, as we had removed the low ranking 
experiments when creating the 500× set, thereby ob-
viously increasing the average and median values. 
Furthermore, the ranking of the arrays based on the 
750× dataset is different from the one when using the 
500× set. This can also be expected since small 
changes in the average values will translate into a 
non-homogenous effect on very closely related S.I. 
values. The idea of restricting the reference dataset to 
the 500 high-ranking experiments was precisely to 
enhance the resolution of the S.I. values for homoge-
neous series such as the one analyzed here (Figure 3). 
It is, however, also clear from this analysis that those 
experiments that can be considered significantly dif-

ferent from the reminder of the experiments (Figure 3, 
black histogram, 0.40<S.I.<0.50) are the lowest rank-
ing arrays in both analyses using either the 750× or 
the 500× reference dataset (Table S3, labeled in red). 
Both reference files therefore generate similar distri-
butions and permit reproducibly the detection of in-
homogeneities within an experimental series. The 
500× reference dataset thereby permits higher resolu-
tion given its higher average and median values. 

As a last test of robustness, we selected 100 ex-
periments from both the 750× and the 500× reference 
datasets at random. From these subsets new reference 
files were calculated. The procedure was repeated a 
total of 10 times for both original reference datasets. 
The data from the experimental series GSE3155 (20) 
were then analyzed based on these 20 reference files 
created from the random subsets. For comparison, we 
then analyzed their mean S.I. variance, the variance 
over the mean S.I., and the rank of every single ex-
periment across the entire set of 20 classifications 
(Table S4). Furthermore, we determined the mean of 
S.I. variances and the variance of the S.I. means. 
Again, while significant numbers of experiments 
change rank when comparing the different reference 
datasets, these rank changes are basically only local 
random permutations of closely related experiments 
as indicated by the low values of the mean of S.I. 
variances and the low variance of the S.I. means. 

 

Figure 3  Superposition of the S.I. value histograms for the two data series GSE3155 (black) and GSE6806 (red) as calculated using 
the 500× reference dataset. Note that the first (empty) bin is of different size than the others. The auto-referenced set of 500 arrays 
making up the 500× is shown as backdrop (white bars). 
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Therefore, even reference datasets created of 1/5 and 
1/7.5 of the initially collected experiments can faith-
fully reproduce the overall distribution of data (Fig-
ure S4), yet another indicator of the robustness of the 
strategy. 

In conclusion, the 500× reference dataset generated 
here is sufficiently representative and robust to ana-
lyze the homogeneity of experimental results within 
an experimental dataset. Obviously, no absolute indi-
cator of quality can be derived based on such a strat-
egy; however, the relative distance of a single ex-
periment to the average of a large and representative 
data collection, as well as intra series inhomogeneity 
is easily appreciable. The S.I. values calculated here 
thereby have no bearing as to either absolute technical 
quality or biological variability, but serve as a sensi-
tive indicator of rare events. This information is 
unique, as standard QC protocols do not take into 
consideration the intrinsic statistical properties of the 
data signal and signal-variance distributions. The S.I. 
values can then be utilized for downstream analysis as 
demonstrated below. As a final proof of robustness of 
the approach developed here, we then generated an-
other reference file from 300 new experiments taken 
again from the public database GEO and our ongoing 
experimentation (Table S2 and Data File S3). These 
data are completely unrelated to the ones we had used 
above, and were not curated as the 500× reference set. 
Both this new 300× and the curated 500× reference 
sets were then compared to each other (Figure S5) by 
recalculating the S.I. values for the 500 experiments 
used for the 500× reference file using the 300× refer-
ence file (Figure S5A), and vice versa (Figure S5B). 
The bell-shaped distribution of the 500 experiments 
from the curated 500× reference file is preserved 
when using the 300× file, similarly the distribution of 
the 300 non-curated experiments is preserved when 
using the 500× reference file. This cross-over analysis 
demonstrates that the overall properties of the S.I. 
value distributions are independent of the experiments 
that were used to generate the reference files. It also 
demonstrates that the bootstrapping approach we used 
to generate the 500× reference set out of the initial 
750 experiments is an appropriate method to sharpen 
the distribution, and consequently increase the resolu-
tion achieved with the curated reference file. Both the 
curated 500× and the un-curated 300× reference sets 

were then used in parallel to demonstrate their effec-
tiveness as QC measures for biological analysis. 

Using S.I. measurements in transcriptome 
data analysis 

In order to demonstrate the interest of our method of 
estimating experimental homogeneity based solely on 
invariant properties of the intrinsic statistical signal 
and signal-variance distributions, we chose to analyze 
another public experimental dataset (GEO No. 
GSE6806) (21). As can be appreciated in Figure 3 
(red histogram), this small experimental series of 12 
independent experiments displays both a relatively 
strong deviation from the mean of the 500× reference 
dataset (white histogram in background) and one out-
lier. The deviation from the mean of the 500× set can 
be explained by the nature of the data. In fact, the mi-
croarrays from the GSE6806 study were generated 
using RNA from single mouse oocytes, thus from 
very small quantities of total RNA by using an ampli-
fication strategy (21). Both the small amount of start-
ing material and the amplification lead to slightly 
modified signal and signal-variance distributions as 
one can expect. Figure S6 shows that a similar dis-
tribution of the data from GSE6806 is obtained when 
comparing the curated 500× and the new 300× refer-
ence file in the calculation of S.I. values. Most im-
portantly, independently of which reference file is 
used, the array/experiment GSM157090 is isolated as 
an outlier. In Figure 4A we show a ln(variance) over 
ln(signal) plot for two different datasets from this se-
ries. The overall shape of the signal and sig-
nal-variance distributions closely resembles the ex-
amples shown in Figure 1; however, the parameter 
estimation reveals differences sufficient in amplitude 
and consistent over several parameters as to clearly 
set this dataset apart from the mean of datasets ana-
lyzed (Figure 3, red versus white histogram). There-
fore, our procedure is capable of detecting faithfully 
such differences, whether they stem from particular 
experimental conditions as in this case or from tech-
nical difficulties.  

We next decided to reanalyze the data from the 
GSE6806 series once with and once without the assay 
GSM157090, for which we calculated the S.I. of 0.29 
and which even when compared to the mean of the 
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experiments in the GSE6806 study should be consid-
ered an outlier. Note that from the distributions of the 
data, by eye no significant difference between the 
sample GSM157090 (outlier) and other samples of the 
same series such as GSM157085 can be made (Figure 
4A). As detailed in the Materials and Methods section, 
we utilized an analysis strategy closely resembling the 
initial analysis performed by the authors of the origi-
nal study (21). We thereby simply determined the 
number of statistically significant probe signal differ-
ences between the two experimental conditions (Dicer 
knock-down, and control) (21) once including all 
datasets and once without the dataset GSM157090 
(Figure 4B and Data File S4). As can be appreciated 
from the Venn diagram shown in Figure 4B, slight 
differences (<5%) in the number of probes reporting 
statistically significant (P<0.05) induction (FC>1) of 
genes can be observed. 

We next performed a downstream pathway analysis 
of the retained probe sets for the two conditions using 
the Panther database annotations and the same condi-
tions as those of the initial study (21) and a multiple 
testing correction by the Bonferoni method. The au-
thors of the GSE6806 study reported on 10 biological 

processes that were enriched in after their data analy-
sis (21). We see seven of these pathways also enriched 
with a statistical significance of P<0.05 taking into 
account the Bonferoni correction for multiple testing 
(from the published data, it is not clear whether the 
authors of the initial study also used a correction and 
what the nature of the procedure was, which might 
explain the differences observed). In any case, ana-
lyzing both datasets (with and without sample 
GSM157090), we observe an enrichment of probes 
corresponding to the same biological processes (Table 
1). When removing the sample GSM157090, however, 
we do isolate an additional eleven genes that map to 
the two highest ranking biological processes (Table 1), 
and thereby augmenting the significance of the ob-
servation (please compare the P values). In this sec-
ond analysis guided by our QC procedure, no genes 
belonging to any of the other biological process on-
tologies are “lost”. Note that the corresponding P 
values increase slightly as the relative distribution of 
genes to ontological categories changes due to the fact 
that the additional eleven genes map only to the first 
two categories. Hence, the removal of the GSM157090 
dataset from the downstream analysis enhances the 

 

Figure 4  A. Ln(V) versus ln(S) heatmaps for two experiments from the GSE6806 series. The S.I. values based on the 500× refer-
ence set are indicated. B. A Venn diagram depicting the number of probes considered statistically significantly (P<0.05) upregulated 
when comparing the Dicer knockdown (Dicer-KO) versus the wild-type (Dicer-WT) case either with or without the GSM157090 
experiment. 
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Table 1  Comparison of the biological processes detected as significantly (P<0.05) enriched in the analysis of statistically 
significantly upregulated probes either including or not the GSM157090 experiment 

Dicer KO vs. Dicer WT 
                                                                            

Dicer KO vs. Dicer WT [w/o GSM157090] 
                                                                                          Biological process 

Count Expect P value Count Expect P value 

Protein biosynthesis 157 32.68 8.31E-55 167 33.02 1.78E-61 

Chrom. Segreg. 25 6.15 1.72E-6 26 6.22 4.94E-7 

Translational Reg. 20 4.97 5.90E-5 20 5.02 6.89E-5 

Chrom. Pack & Remod. 31 12.36 8.69E-4 31 12.48 1.05E-3 

DNA replication 19 6.60 1.03E-2 19 6.66 1.17E-2 

Oxidat. Phos. 14 4.23 2.49E-2 14 4.28 2.75E-2 

Nuclear transport 15 5.02 4.13E-2 15 5.07 4.58E-2 

Note: “Count” indicates the number of probes annotated to the corresponding ontology term and present in the list of statistically significantly regu-
lated probes of the corresponding condition. “Expect” is the number of probes corresponding to the ontology term that would be expected based on a 
random zero-hypothesis. P values were determined using a Bonferoni correction for multiple testing. 

 
quality of the observation made by sharpening for in-
stance the differences between the statistically signifi-
cant biological process categories. It can be expected 
that not only the additional eleven genes mapping to 
the two most significant biological process categories 
are of relevance, but also others of the 88 additional 
probes detect significant changes in gene expression 
relevant to the biological phenomenon studied. 

In conclusion, the QC procedure introduced here is 
capable of detecting inhomogeneities (of whichever 
origin) between transcriptome experiments within an 
experimental series or between different experimental 
series. This information can be used to better guide 
downstream analysis, for instance, by removing out-
liers that otherwise went undetected using standard 
quality assessment techniques. 

In order to demonstrate generality of our QC 
methodology, we next analyzed another published 
dataset (GEO No. GSE10503) (22). This dataset is 
again composed of twelve independent experiments in 
four different biological conditions, where mouse 
Hdac3-null versus control cells are compared at two 
different developmental stages (P17, P28) (22). Using 
the 500× reference file, we determined the S.I. values 
for the entire series of experiments (Figure 5A). We 
also calculated the S.I. values for all 12 experiments 
using the 300× reference file (inlet, Figure 5A). In 
both cases two outliers can be identified (indicated by 
red-borders in the histograms). Interestingly, the out-
liers in this dataset have higher S.I. values than the 
majority of experiments. As the S.I. values have no 
absolute meaning (see also Conclusion section), this 

does not imply that the two outlier experiments are of 
better quality than the others. Simply, there is a sig-
nificant heterogeneity in this experimental series that 
can be picked up using our approach. It is also inter-
esting that this heterogeneity is not appreciable when 
using other methodology such as principal component 
analysis (PCA). Figure 5B shows a PCA in corre-
spondence space for the same set of data. The two 
outliers we identified independently using the two 
reference datasets (Figure 5A) are again marked with 
red borders. Similarly, as for the data shown in Figure 
4, we then re-analyzed this experimental series in two 
different ways: (1) as described originally (22), and (2) 
by removing the two outlier experiments. The relative 
numbers of genes identified as statistically signifi-
cantly (P<0.01) regulated between the Hdac3 
knock-out and control cells at P17 are illustrated in 
the Venn diagram of Figure 5C. Through subsequent 
ontology enrichment analysis of the QC curated data, 
we identify the same biological process as the authors 
of the original study as being the most significantly 
enriched (Table 2) (22). However, and similarly to the 
results shown in Figure 4, we detect more genes be-
longing to this biological process as being regulated, 
and therefore, increase statistical significance of the 
result by three orders of magnitude (Table 2). Table 3 
lists those genes belonging to the “Lipid, fatty acid 
and steroid metabolism” biological process that we 
identify in addition to those found by the authors of 
the original study (22), which are statistically signifi-
cantly regulated at both P17 and P28. Note that our 
QC procedure only affected the P17 condition. 
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Figure 5  A. S.I. histogram of the individual experiments of series GSE10503 using the 500× reference file. The inlet shows the 
same series analyzed using the 300× reference file. The two outlier experiments are displayed with a red border. B. A principal com-
ponent analysis in correspondence space of the GSE10503 series. The two outlier experiments as identified in (A) are indicated using 
the same color code as in (A). Every biological condition is displayed using its own coloring. C. A Venn diagram depicting the num-
ber of probes considered statistically significantly (P<0.01) regulated when comparing the Hdac3-null versus the Hdac3-control ex-
periments either with or without the two outliers identified in (A). 

Table 2  Comparison of the biological process detected as most significantly enriched in the analysis of statistically signifi-
cantly regulated probes either including or not the outlier experiments 

P17∩P28 Hdac3-null vs. Hdac3-Control P17∩P28 Hdac3-null vs. Hdac3-Control  
[w/o GSM265476 and GSM 265477] Biological process 

Count Expect P value Count Expect P value 

Lipid, fatty acid and steroid metabolism 26 4.29 7.12E-12 33 5.37 3.14E-15 

Table 3  Additional genes identified as being statistically significantly regulated in both the P17 and P28 biological condi-
tions after removal of the two outliers in the P17 condition 

Average fold change 
Probe ID Gene name Gene symbol 

P17 [w/o replicates] P28 

381504 monoacylglycerol O-acyltransferase 2 Mogat2 2.9058 5.9897 
400599 ATP-binding cassette, sub-family A (ABC1), member 8a Abca8a -1.1872 -3.1906 
437440 hydroxysteroid (17-beta) dehydrogenase 9 Hsd17b9 -1.2689 -4.2387 
441362 sulfotransferase family, cytosolic, 1C, member 2 Sult1c2 -1.0925 -1.9719 
501043 ethanolamine kinase 2 Etnk2 -1.2624 -1.8293 
772131 cytochrome P450, family 2, subfamily d, polypeptide 13 Cyp2d13 -1.0796 -5.3676 
829262 acyl-CoA thioesterase 10|acyl-CoA thioesterase 9 Acot10|Acot9 1.2657 2.2433 
916709 hexosaminidase A Hexa 1.2189 1.0132 
920047 cytochrome b5 reductase 3 Cyb5r3 1.0222 1.4030 

Note: The average fold changes are expressed as log2. 
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In conclusion, we have shown by using two previ-
ously published datasets that our QC methodology is 
capable of identifying outlier experiments that went 
undetected using standard QC approaches. The 
re-analysis of both experimental series after removing 
the outliers can be shown to lead to results of higher 
statistical significance and the identification of addi-
tional genes that are important to the biological func-
tion under study. Finally, we have demonstrated the 
robustness of our empirical method, as we have dem-
onstrated that both the 500× reference file and the 
totally unrelated and un-curated 300× reference file in 
both cases lead to the identification of the same out-
liers. 

The ace.map QC 1.0 application 

Having shown that our procedure indeed adds valu-
able information to the quality control process of 
transcriptome data, we decided to generate a software 
application for this purpose and make it available to 
any researcher interested in using this QC procedure 
when working with AB1700 data. The application that 
we sought to create is specifically tailored to the 
process detailed in the works presented here, and 
comes with the 500× reference dataset discussed. In 
order to assure computational platform independence, 
and given the heterogeneity of exploiting systems 
used, we have decided to develop a JAVA program 
that can be executed on any standard operating system 
(Solaris, Linux, Windows, Macintosh) equipped with 
the freely available SUN Microsystems JRE package. 
The ace.map QC program was conceived to be as user 
friendly as possible and comes with a detailed user’s 
guide, which should be consulted for information on 
the operation of the software. The algorithms imple-
mented allow automatic processing individual 
AB1700 data files as well as entire datasets composed 
of several input files. The model parameter for the 
signal and signal-variance distributions are automati-
cally calculated and displayed through a graphics in-
terface. Furthermore, the S.I. values are calculated 
based on a user-specified reference file. While we 
provide the 500× reference file discussed here to-
gether with the application, the functionality for cre-
ating such reference files is included in the applica-
tion, and any user can generate her/his own reference 

file. Details on the algorithm and the software can be 
found in the user’s guide (Data File S5). The software 
can be downloaded for non-commercial, public re-
search from the website (http://seg.ihes.fr) in the “web 
sources”, “software” section (Data File S6). Figure 
S7 shows an exemplary screen-shot of the running 
application. 

Conclusion 

Using invariant statistical properties of AB1700 tran-
scriptome profiles, we describe here a simple proce-
dure to estimate microarray quality using reference 
datasets. Interestingly, the similarity estimation is 
based solely on the intrinsic signal and sig-
nal-variance distributions, and hence independent of 
spike-in and control probes on the microarrays. Our 
procedure is thus complementary to those standard 
procedures as it provides non-redundant a posteriori 
information on the overall integrity of the RNA sam-
ple analyzed. While our method is based on empirical 
observations, the interpretation of the S.I. values that 
we can determine from the statistical properties of the 
signal and signal-variance distributions is not 
straight-forward. However, it does not affect the ro-
bustness of the approach that has been developed us-
ing a total of 1,050 experiments from very different 
sources, as we demonstrated using two independent 
reference datasets. We believe that the bias in the pu-
rification, enrichment and labeling of mRNAs of dif-
ferent length and structure will result in skewed dis-
tributions of the signals obtained during microarray 
analysis. Our method faithfully picks up these skews 
and translates them into a single quantity that can be 
used to compare experiments from within a series or 
across series. We have also shown by using two inde-
pendent, public, and previously published datasets to 
illustrate how our novel methodology can be used to 
identify outliers in experimental series and how the 
elimination of outliers enhances the statistical signifi-
cance of the analysis results. In this way we have pro-
vided compelling evidence for the statistically sig-
nificant regulation of additional genes that had gone 
undetected in the analysis schemes originally em-
ployed (21, 22). Most importantly, our method is 
thereby complementary but non-redundant to existing 
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QC approaches, hence provides additional and new 
insights into the quality of the microarray experimen-
tation. The provided software application as well as 
the reference files should allow AB1700 users to eas-
ily integrate this method into their analysis pipeline, 
and might instigate similar developments for other 
transcriptome platforms. 

Materials and Methods 

AB1700 microarray technology 

All experimental data referred to in this manuscript 
were either generated on our Applied Biosystems 
AB1700 transcriptome platform (Product No. 
4338036), or downloaded from the NCBI Gene Ex-
pression Omnibus (http://ncbi.nlm.nih.gov/geo). Ta-
bles listing the size and origin of the different datasets 
used to generate the 500× and the 300× reference files 
are found as Tables S1 and S2. 

RNA labeling, hybridization and detection 

RNA amplification, RNA labeling, hybridization and 
detection were done following the protocols supplied 
by Applied Biosystems together with the correspond-
ing kits. 15-20 µg of total RNA sample was subjected 
to Chemiluminescence RT labeling (Applied Biosys-
tems, Product No. 4339628), alternatively 1-2 µg of 
total RNA was subjected to RT-IVT amplification and 
labeling (Applied Biosystems, Product No. 4339628). 
Labeled cDNAs were then hybridized and detected 
according to the supplied protocols (Applied Biosys-
tems, Product No. 4346875). 

Data preprocessing and primary analysis 

Applied Biosystems Expression Array System Soft-
ware v1.1.1 (Product No. 4364137) has been used to 
acquire the chemiluminescence and fluorescence im-
ages and primary data analysis. Briefly, the primary 
analysis consists of the following individual opera-
tions: (1) Image correction. Calibration images are 
used to subtract any device-dependent bias from the 
raw images and to correct for spectral bleed-through 
from the chemiluminescence (CL) into the fluores-
cence (FL) channel. Pixels that are saturated in the 

long exposure (25 s) CL image are replaced by ap-
propriately scaled values of the short exposure (5 s) 
CL image. (2) Global and local background correction. 
Correct globally for non-specific signals and un-
wanted hybridization, using specific random-oligo- 
sequence control spots and locally for bleeding be-
tween adjacent probes with high intensity differences. 
A single bias is calculated over the entire array and 
subtracted from all probes, and a background estimate 
is calculated using pixels inside an annulus around the 
feature aperture. (3) Feature normalization. Compen-
sation of spotting variations (comparable to print tip 
normalization) and optical trends. Normalization of 
CL intensities by FL–CL ratios. In this step, the vari-
ance estimate is calculated, too. (4) Spatial normaliza-
tion. Spatial trend correction on the feature level using 
specific (SPN) control spots evenly placed over the 
array (~1 SPN control in 300 spots). Spatial normali-
zation mainly captures non-uniform illumination of 
the array. (5) Global normalization. Division of all 
signals by the median. Note that we renormalize the 
resulting data according to the median once more af-
ter having removed probes for which the Applied 
Biosystems software has set flags equal to or greater 
than 212, indicating compromised or failed measure-
ments (as recommended by Applied Biosystems) as 
well as the control probes. This second normalization 
is not part of the standard AB1700 protocol, and thus 
was done for both our and the publicly available 
datasets. 

Secondary data analysis 

Calculation of subtraction profiles was performed 
according to standard procedures with the following 
modifications: data for technical replicates were av-
eraged with weights anti-proportional to their coeffi-
cient of variance estimates. Biological replicates from 
different biologic conditions were compared in an 
“everyone-against-everyone” scheme and log2 
fold-change estimates (“logQ”, “L”) were then deter-
mined as averages of weighted individual logQ values. 
The weights were anti-proportional to the variance 
over the individual logQ values. For these inter-assay 
comparisons, the NeONORM method was used for 
normalization (23) with k=0.20. P values were deter-
mined based on a normal distribution hypothesis of 
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signal intensities using standard ANOVA methods. 
Multiple probes for a single gene, cross-reactivity of 
a single probe to several genes, as well as the resolu-
tion of probe-ID annotations were done according to 
the standards defined previously (24). Combining 
GO, KEGG and PANTHER annotations, we assigned 
all probes present on the arrays to the biological 
processes from the PANTHER Database (25). We 
then calculated the relative representation of those 
probes detected as significantly regulated as com-
pared to a random set of probes drawn from the en-
semble of probes. P values for over- and un-
der-representation of pathways were calculated using 
a binominal distribution and a Bonferoni correction 
for multiple testing. 

Parameter estimation for the 21+2p model 

The estimation of parameters for our signal and sig-
nal-variance model is described in detail in previous 
studies (14, 16). Briefly, the ensemble of parameters 
is estimated for every data file individually using a 
combination of techniques in the following (also 
compare Figure S1): 

The estimation process is embedded into individual 
Expectation Maximization (EM) steps. Every EM step 
thereby re-estimates all parameters over the weighted 
sample data (logarithmic signal and logarithmic vari-
ance) in the previous step. In our case, for every data 
point i [ln(Signali) | ln(Variance0.0i)] and [ln(Signali) | 
ln(Variance0.34i)] (from here on: [Si | Vi] ), the 
weights w1,i and w2,i are calculated, which correspond 
to the combined probabilities: 

p(θn | [Si | Vi] ) / (p(θ1 | [Si | Vi] ) + p(θ2 | [Si | Vi] ) ). 
These combined probabilities p(θ1,2 | [Si | Vi] ) are 

the product of the a priori probability p(θn | Si), and 
hence the mixture function, and the probability that is 
determined over the lognormal probability density 
function at position Vi with the parameters for the 
corresponding Si. The weights are being used for the 
calculation of weighted mean and weighted variance 
for the first lognormal distribution [m1(Si) and s1(Si)]. 
They are also being used by the Gradient Method 
(below) based parameter estimation as factors for 
calculating the cumulative error, which is being 
minimized for the second lognormal distribution. Af-
ter each EM estimation step, the mixture function is 

re-estimated using the new weights w1,i. The EM al-
gorithm terminates either after a preset number of 
steps is reached (negative abortion), or if the likeli-
hood increase between two EM steps falls below a 
preset convergence threshold (positive abortion).  

A gradient method forming an orthonormal basis 
via the Gram-Schmidt orthogonalization method is 
used in succeeding EM steps to ensure improvement 
of all parameter estimates and in order to avoid oscil-
lations. The iterative search is thus subdivided into n 
orthogonalization steps, n being the number of pa-
rameters of the function to find the minimum for. 
Each scan consists either of a stepwise movement 
from the current parameter vector xr , which carries 
the actual parameter estimates for the distribution at 
the actual position, into direction d

r
, with d

r
 being 

the orthonormal basis (Gram-Schmidt), using a prede-
fined step-width until the error stops to decrease, or, if 
the first step already lead to a greater error, the 
step-width is divided by two until either the error de-
creases or a maximum number of divisions has been 
reached. In both cases, the errors of the last three 
sampled parameter points are used for quadratic in-
terpolation to further improve the estimate. Depend-
ing on ε and/or c, a new xr  is calculated. If the cor-
responding error should be higher than for the best 
scan estimate, it is replaced by the latter. 

Finally, the signal range and signal-variance 
range are directly calculated over the 99% quantile 
in logarithmic base 2 space and added to the pa-
rameter list. 

Generating reference files 

For the generation of reference files we used the 
ace.map QC 1.0 application that is being published 
here. The algorithm thereby runs the parameter esti-
mation on the specified input data files individually, 
and once all parameters have been estimated for the 
entire set of experiments, a table containing the indi-
vidual parameter estimates, their mean values, their 
variance, and their standard deviation is generated. 
Furthermore, a weight for each parameter is deter-
mined based on the variance of the corresponding 
mean parameter estimate. The weights thereby are 
anti-proportional to the variance, and add up to unity. 
These weights thus reflect the variability of any given 
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parameter over the datasets used for generating the 
reference file, and thus define the relative contribution 
of each parameter to the Similarity Index calculation 
(see below). Three examples of reference files are 
found as Data Files S1-S3.  

Similarity Index (S.I.) estimation 

To be able to estimate the similarity of a new experi-
mental dataset, a reference file has to be created first 
(see above). The Similarity Index (S.I.) is then calcu-
lated by comparing the values of the 23 parameters of 
the model estimated for the experimental dataset with 
those from the reference file. The Similarity Index is 
the variance-weighted sum of the difference between 
the experimental dataset analyzed and the reference 
dataset-mean for individual parameters and is defined 
as: 
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and thus can take values between 0 (no similarity) to 
1 (perfect match). 

Acknowledgements 

The authors are grateful to their collaborators Drs. B. 
Bell, J. Elion, M. Müller-Trutwein, L. Rogge, M.C. 
Zennaro, and their coworkers for sharing unpublished 
data, and their continuous support and encouragement 
throughout this study. All members of the systems 
epigenomics group are thanked for stimulating dis-
cussions. 

F.X.P. was recipient of a fellowship from the Nau-
sicaa Combat Sa Leucémie Association. This work 
was partially funded through support to A.B.’s group 
received from the European Hematology Association 
– José Carreras Foundation, the French Ministry of 
Research through the “Complexité du Vivant – Action 
STICS-Santé” program, the Agence Nationale de la 
Recherche (ISPA, 07-PHYSIO-013-02), the Agence 
Nationale de Recherche sur le SIDA et le hépatites 
virales, and the Génopole Evry. 

Authors’ contributions  

FXP, SN and AB conceived the initial idea. GB and 
SN performed programming. FXP, GB and AB con-
ducted reference file assembly, testing, data analysis 
and illustrations. AB wrote the manuscript. All au-
thors read and approved the final manuscript. 

Competing interests 

The authors have declared that no competing interests 
exist. 

References 

1 Canales, R.D., et al. 2006. Evaluation of DNA microar-
ray results with quantitative gene expression platforms. 
Nat. Biotechnol. 24: 1115-1122. 

2 Stafford, P. and Brun, M. 2007. Three methods for opti-
mization of cross-laboratory and cross-platform microar-
ray expression data. Nucleic Acids Res. 35: e72. 

3 Gollub, J., et al. 2003. The Stanford Microarray Database: 
data access and quality assessment tools. Nucleic Acids 
Res. 31: 94-96. 

4 MAQC Consortium. 2006. The MicroArray Quality Con-
trol (MAQC) project shows inter- and intraplatform re-
producibility of gene expression measurements. Nat. 
Biotechnol. 24: 1151-1161. 

5 Patterson, T.A., et al. 2006. Performance comparison of 
one-color and two-color platforms within the MicroArray 
Quality Control (MAQC) project. Nat. Biotechnol. 24: 
1140-1150. 

6 Wang, X., et al. 2001. Quantitative quality control in mi-
croarray image processing and data acquisition. Nucleic 
Acids Res. 29: e75. 

7 Wilkes, T., et al. 2007. Microarray data quality—review 
of current developments. OMICS 11: 1-13. 

8 Cohen Freue, G.V., et al. 2007. MDQC: a new quality 
assessment method for microarrays based on quality con-
trol reports. Bioinformatics 23: 3162-3169. 

9 Klebanov, L. and Yakovlev, A. 2007. How high is the 
level of technical noise in microarray data? Biol. Direct 2: 
9. 

10 Lee, N.H. and Saeed, A.I. 2007. Microarrays: an over-
view. Methods Mol. Biol. 353: 265-300. 

11 Klebanov, L., et al. 2007. Statistical methods and mi-
croarray data. Nat. Biotechnol. 25: 25-26. 

12 Wang, X., et al. 2003. Quantitative quality control in mi-
croarray experiments and the application in data filtering, 
normalization and false positive rate prediction. Bioin-
formatics 19: 1341-1347. 

13 Tan, P.K., et al. 2003. Evaluation of gene expression 



Brysbaert et al. / Transcriptome Quality Control 

Genomics Proteomics Bioinformatics 2010 Mar; 8(1): 57-71 71

measurements from commercial microarray platforms. 
Nucleic Acids Res. 31: 5676-5684. 

14 Noth, S., et al. 2006. High-sensitivity transcriptome data 
structure and implications for analysis and biologic inter-
pretation. Genomics Proteomics Bioinformatics 4: 
212-229. 

15 Konishi, T. 2004. Three-parameter lognormal distribution 
ubiquitously found in cDNA microarray data and its ap-
plication to parametric data treatment. BMC Bioinfor-
matics 5: 5. 

16 Brysbaert, G., et al. 2007. Generation of synthetic tran-
scriptome data with defined statistical properties for the 
development and testing of new analysis methods. Ge-
nomics Proteomics Bioinformatics 5: 45-52. 

17 Wang, Y., et al. 2006. Large scale real-time PCR valida-
tion on gene expression measurements from two com-
mercial long-oligonucleotide microarrays. BMC Genom-
ics 7: 59. 

18 Jacquelin, B., et al. 2007. Long oligonucleotide microar-
rays for African green monkey gene expression profile 
analysis. FASEB J. 21: 3262-3271. 

19 Jacquelin, B., et al. 2009. Nonpathogenic SIV infection 
of African green monkeys induces a strong but rapidly 
controlled type I IFN response. J. Clin. Invest. 119: 
3544-3555. 

20 Sørlie, T., et al. 2006. Distinct molecular mechanisms 
underlying clinically relevant subtypes of breast cancer: 
gene expression analyses across three different platforms. 
BMC Genomics 7: 127. 

21 Tang, F., et al. 2007. Maternal microRNAs are essential 
for mouse zygotic development. Genes Dev. 21: 644-648. 

22 Knutson, S.K., et al. 2008. Liver-specific deletion of his-
tone deacetylase 3 disrupts metabolic transcriptional 
networks. EMBO J. 27: 1017-1028. 

23 Noth, S., et al. 2006. Normalization using weighted nega-
tive second order exponential error functions 
(NeONORM) provides robustness against asymmetries in 
comparative transcriptome profiles and avoids false calls. 
Genomics Proteomics Bioinformatics 4: 90-109. 

24 Noth, S., et al. 2005. Avoiding inconsistencies over time 
and tracking difficulties in Applied Biosystems 
AB1700/Panther probe-to-gene annotations. BMC Bioin-
formatics 6: 307. 

25 Mi, H., et al. 2005. The PANTHER database of protein 
families, subfamilies, functions and pathways. Nucleic 
Acids Res. 33: D284-288. 

 

Supplementary Material 
Figures S1-S7, Tables S1-S4 and Data Files S1-S6 
DOI: 10.1016/S1672-0229(10)60006-X 

 


	Quality Assessment of Transcriptome Data Using IntrinsicStatistical Properties

