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Streptococcus pyogenes (Group A Streptococcus; GAS) is an exclusively human
pathogen. This bacterial species is responsible for a large variety of infections,
ranging from purulent but mostly self-limiting oropharynx/skin diseases to streptococcal
sequelae, including glomerulonephritis and rheumatic fever, as well as life-threatening
streptococcal toxic-shock syndrome. GAS displays a wide array of surface proteins,
with antigenicity of the M protein and pili utilized for M- and T-serotyping, respectively.
Since the discovery of GAS pili in 2005, their genetic features, including regulation
of expression, and structural features, including assembly mechanisms and protein
conformation, as well as their functional role in GAS pathogenesis have been intensively
examined. Moreover, their potential as vaccine antigens has been studied in detail. Pilus
biogenesis-related genes are located in a discrete section of the GAS genome encoding
fibronectin and collagen binding proteins and trypsin-resistant antigens (FCT region).
Based on the heterogeneity of genetic composition and DNA sequences, this region is
currently classified into nine distinguishable forms. Pili and fibronectin-binding proteins
encoded in the FCT region are known to be correlated with infection sites, such as
the skin and throat, possibly contributing to tissue tropism. As also found for pili of
other Gram-positive bacterial pathogens, GAS pilin proteins polymerize via isopeptide
bonds, while intramolecular isopeptide bonds present in the pilin provide increased
resistance to degradation by proteases. As supported by findings showing that the main
subunit is primarily responsible for T-serotyping antigenicity, pilus functions and gene
expression modes are divergent. GAS pili serve as adhesins for tonsillar tissues and
keratinocyte cell lines. Of note, a minor subunit is considered to have a harpoon function
by which covalent thioester bonds with host ligands are formed. Additionally, GAS pili
participate in biofilm formation and evasion of the immune system in a serotype/strain-
specific manner. These multiple functions highlight crucial roles of pili during the onset
of GAS infection. This review summarizes the current state of the art regarding GAS pili,
including a new mode of host-GAS interaction mediated by pili, along with insights into
pilus expression in terms of tissue tropism.
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INTRODUCTION

Several different types of pathogenic bacteria colonize distinct
niches by adhering to host tissues via long filamentous
appendages termed pili or fimbriae, which project from the cell
surface. Pili are also involved in conjugation, twitching motility,
and virulence. Gram-positive bacterial pili were undetected until
recently because of their thin structure. Following their discovery
in bacteria belonging to the Actinomyces and Corynebacterium
genera (Yanagawa and Honda, 1976; Cisar and Vatter, 1979),
and the unraveling of their assembly mechanisms (Ton-
That and Schneewind, 2003), pili of pathogenic streptococci,
including Streptococcus agalactiae, Streptococcus pyogenes, and
Streptococcus pneumoniae have been reported since 2005
(Lauer et al., 2005; Mora et al., 2005; Barocchi et al., 2006).
Commensal oral streptococci, such as Streptococcus sanguinis
and Streptococcus oralis, were also shown to produce pili
(Okahashi et al., 2010; Zähner et al., 2011). Pili are considered
to be physiologically distinctive to typical cell wall-anchored
surface proteins regarding biological functions during the course
of infection, since covalent linkage of subunits allows pilus
proteins to locate not only on the bacterial cell surface but
also >1 µm away from the surface, thus providing first contact
with host molecules.

Streptococcus pyogenes (Group A Streptococcus; GAS) is a
human pathogen responsible for a wide variety of human diseases
(Walker et al., 2014). The major manifestations of GAS infections
are local suppurative inflammation in the upper respiratory tract
and skin, i.e., pharyngitis and impetigo. The annual number of
pharyngitis cases worldwide has been estimated to be 616 million
(Carapetis et al., 2005), while it has been speculated that there are
162 million children affected by impetigo at any one time (Bowen
et al., 2015). GAS also causes sequelae, including rheumatic heart
disease and acute glomerulonephritis, as well as streptococcal
toxic-shock syndrome. The major typing scheme involves M and
T serotyping. The former is based on the antigenicity of the M
protein encoded by the emm gene. The 90 bp DNA sequence
encoding the N-terminal variable region of the mature M protein
is utilized to classify GAS into more than 240 types, known as
emm typing (Beall et al., 1996; Sanderson-Smith et al., 2014).
T typing is an alternative scheme based on the antigenicity of
trypsin-resistant antigens (T antigens) (Griffith, 1934; Lancefield,
1940; Lancefield and Dole, 1946). It is conducted using trypsin-
treated GAS cells and hyperimmune rabbit typing serum. The
typing serum is raised against trypsin-treated GAS surface
proteins, followed by adsorption with undigested GAS cells of
different T types. Commercial antisera consists of five types
of polyvalent sera and 21 of monovalent sera (Takizawa et al.,
1970). A drawback of T serotyping is a lack of specificity. Several
different typing sera react with recombinant pilus tip minor
subunits (Lizano et al., 2007; Falugi et al., 2008; Nakata et al.,
2009). Also, GAS isolates often react with several typing sera,
such as T3/13/B3264 (Falugi et al., 2008). Thus, there is a lack of
resolution compared to M typing. Moreover, unlike emm typing,
there is no widespread genotyping method for pilus genes or
the FCT region. Mora et al. (2005) reported that the major pilin
of the GAS pilus is responsible for the antigenicity of T typing.

The mechanism of protease resistance of a major pilin T antigen
was uncovered by solving the structure by X-ray crystallography
(Kang et al., 2007).

Over the last decade GAS pili have been found to be
responsible for several functions, including host cell adherence,
biofilm formation, immune evasion, and virulence. In this review,
advances in understanding of pilus functions, the mode of
pilus expression, perspectives for pilus-based vaccines, and the
application of the structure and mechanisms of assembly of pili
to biotechnology are summarized.

GENETIC ORGANIZATION OF FCT
GENOMIC REGION CONTAINING
PILUS-RELATED GENES

The genes that specify pili are located in the FCT genomic
region (Bessen and Kalia, 2002). The acronym FCT stands
for fibronectin-binding proteins, collagen-binding proteins, and
trypsin-resistant antigens. Prior to discovery of pili, the gene
encoding the T antigen type 6 (tee6) was reported (Schneewind
et al., 1990). A BlastN search with tee6 and the flanking sequences
as the query revealed a short stretch of sequence identity
(91% over 70 bp) between the downstream region of tee6 and
intergenic regions of spy0133 and spy0135 in the M1 strain SF370.
Subsequent comparative analyses of deposited DNA sequences
from additional serotypes revealed an approximately 11–16 kb
recombinatorial region (Bessen and Kalia, 2002). This region
contains genes encoding the fibronectin-binding F1/SfbI (Sela
et al., 1993; Talay et al., 1994) and F2/PFBP/FbaB (Jaffe et al., 1996;
Rocha and Fischetti, 1999; Terao et al., 2002) proteins, as well as
the collagen-binding Cpa protein (Kreikemeyer et al., 2005). The
FCT region is located between the conserved genes hsp33 and
spy0136 (genome of SF370), and positioned nearly equidistant
from the replication origin (clockwise from ori) as the M protein-
coding emm locus. The heterogeneity of gene content among
different GAS strains has allowed classification into nine subtypes
designated FCT forms 1–9 (Figure 1, hereafter referred to as
FCT-1 to FCT-9) (Kratovac et al., 2007; Falugi et al., 2008). To the
best of our knowledge, the genome sequences of all except FCT-7
and FCT-8 are available. Generally, the same emm type strains
share the same FCT form, though some exceptions have been
reported (Falugi et al., 2008; Köller et al., 2010; Steemson et al.,
2014). This region also encodes three kinds of transcriptional
regulators, namely Nra, RofA, and MsmR (Fogg et al., 1994;
Podbielski et al., 1999; Nakata et al., 2005). RofA and Nra belong
to the RofA-like protein (RALP) regulator family that consists
of four members with a mean amino acid sequence identity of
29% (Granok et al., 2000). Among these three regulators, Nra and
RofA show an approximately 62% protein identity. The nra gene
occurs in FCT-3, while other FCT forms contain the rofA gene.
MsmR, an AraC-type regulator, is specific to FCT-3 and -4, and is
always encoded by a gene located adjacent to prtF2 family genes
(Nakata et al., 2005).

Pilus-related genes constitute an operon and encode one
major and one or two minor subunits, at least one pilin-
specific SrtB or SrtC type sortase, and the FCT-form specific
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FIGURE 1 | Heterogeneic organization of FCT region. Gene content heterogeneity for the seven FCT forms is shown on the basis of genome sequences and
previously reported data (Kratovac et al., 2007; Falugi et al., 2008). Representative M types for each FCT form are also shown. Pilus major and minor subunit
(ancillary proteins 1 and 2; AP1 and AP2) genes are shown in pink and blue, respectively. SipA/LepA and sortase genes are colored orange and purple, respectively.
Fibronectin-binding protein genes, including prtF2 family genes (pfbp and fbaB) and prtF1, are shown in green, while transcriptional regulator genes, including rofA,
nra, and msmR, are shown in light green. Other genes are light gray in color. Deposited DNA sequences of strains (M type, accession number) used for each FCT
form are as follows: form 1, MGAS10394 (M6, NC_006086); form 2, SF370 (M1, NC_002737); form 3, SSI-1 (M3, NC_004606); form 4, A735 (M12, AF447492);
form 5, MGAS10750 (M4, NC_008024); form 6, MGAS10270 (M2, NC_008022); and form 9, STAB14018 (M75, CCP014542.1). Genome sequences for FCT forms
7 and 8 are not available.

chaperone SipA/LepA (Barnett and Scott, 2002; Barnett et al.,
2004; Zähner and Scott, 2008). Based on primary amino acid
sequences, five sortase classes have been defined as SrtA to SrtF
(Dramsi et al., 2005; Spirig et al., 2011). Class B sortases are
predominant in Firmicutes, and their functions include pilus
assembly and cell wall anchoring of proteins involved in iron
acquisition (Mazmanian et al., 1999; Mora et al., 2005). Class
C sortases are predominant in Firmicutes and Actinobacteria,
and specifically function in pilus assembly. Confusingly, the GAS
SrtB and SrtC proteins belong to class C and B, respectively, and
both function in pilus assembly (Kang et al., 2011; Nakata et al.,
2011). The major and minor subunits are often denoted as the
backbone protein (bp) and ancillary proteins (ap), respectively.
The number of minor ap subunits varies among types, with
the tip minor subunit and base subunit usually termed ap1
and ap2, respectively. Falugi et al. analyzed seven different FCT
forms and showed that the major subunit bp can be grouped
into 15 variants. This was later expanded to 18 variants. There
are 14 and 5 variants for the minor subunits ap1 and ap2,
respectively (Falugi et al., 2008; Steemson et al., 2014). They also
demonstrated that the major subunit bp is mainly responsible for
T serotyping specificity.

Among the FCT forms, FCT-3 and FCT-4 share the greatest
similarity. Inter-strain recombination of pilus genes between
FCT-3 and FCT-4 has been speculated based on phylogenetic
analysis and findings showing that an M5 strain possessed a

cpa gene from FCT-4 (Falugi et al., 2008). Interestingly, the
FCT-6 pilus minor subunit genes of several M2 strains show
considerable homology to Group B Streptococcus pilus island I
(PI-1) minor subunit genes, while the FCT region (FCT-1) of
the M6 strain D471 has homology with the rlrA pathogenicity
islet of S. pneumoniae (Bessen and Kalia, 2002; Hava and Camilli,
2002; Barocchi et al., 2006; Falugi et al., 2008). Horizontal gene
transfer and recombination seems to have occurred between
related species.

While emm typing is based on the sequence of 5′-end
of the emm gene, the 3’-ends of emm and emm-like genes
encoding M-like proteins, such as Mrp and Enn (Frost
et al., 2018; Frost et al., 2020), are used for emm pattern
groupings (Bessen et al., 1996). A strong correspondence
between three groupings (patterns A-C, D, and E) and infection
site preference, i.e., throat or skin, has been shown. Based
on epidemiological data, emm pattern A-C and pattern D
strains are designated “throat specialists” and “skin specialists,”
respectively, while pattern E strains are designated “generalists.”
The correlation between emm and FCT forms has been
emphasized by data showing that 83% of FCT-3 strains
harbor emm pattern D, whereas 84% of FCT-4 strains harbor
emm pattern E (Kratovac et al., 2007). This strong linkage
between FCT form and emm pattern raises the possibility that
factors encoded in the FCT region, including pili, have roles
in tissue tropism.
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ASSEMBLY OF GAS PILI

In Gram-positive bacteria pilus subunits are linked to each other
by isopeptide bonds mediated by pilus-specific sortases encoded
in pilus gene clusters (Hendrickx et al., 2011). Among pilus types
of pathogenic streptococci, the number of pilus-specific sortases
varies (Figure 2). In GAS, FCT-5 and FCT-6 strains contain
multiple class C sortases, as observed for pili of S. agalactiae
and S. pneumoniae, while there is only one class B or class C
sortase in FCT-1 to FCT-4. Pilin subunits possess a secretory
signal sequence at their N-termini and a C-terminal cell wall
sorting signal (CWSS) containing an LPXTG or LPXTG-like
motif. This is followed by a stretch of hydrophobic residues

and a positive-charged anchor that retains subunit proteins
in the membrane during secretion via the Sec apparatus. The
pilus-specific sortase cleaves an LPXTG or LPXTG-like motif
between the threonine and glycine residues, and subsequently
forms an acyl-enzyme intermediate by linking the active cysteine
residue to the carboxyl group of the threonine. This intermediate
is relieved by nucleophilic attack by the lysine residue side
chain in the adjacent pilus subunit, forming isopeptide bonds
between adjacent subunits. A series of consecutive reactions
elongate pili until the occurrence of a stop signal, namely
the incorporation of a minor subunit containing the canonical
LPXTG motif (Smith et al., 2010), allowing the assembled pili to
be connected to a free amino group of the peptidoglycan layer by

FIGURE 2 | Pilus components and related factors of pathogenic streptococci. Pilus major (backbone pilin) and minor (tip and base pilin) subunits of Streptococcus
pyogenes (GAS), Streptococcus agalactiae (GBS), and Streptococcus pneumoniae are depicted. GBS pilus genes are located in three pilus island (PI) types, while
S. pneumoniae pilus genes are located in two types of pilus islets (PIs). LPXTG or an LPXTG-like motif is shown under each pilin. Related pilus-specific sortases and
their class, i.e., sortase class B or C, are also shown. Note that GAS SrtB and SrtC1/2 belongs to class C and B, respectively. A requirement of SipA/LepA for pilus
assembly is also shown by “+.” Pilin subunits of FCT forms 5 and 6 are presented as gene tag numbers of MGAS10750 (serotype M4, genome accession number
NC_008024) and MGAS10270 (serotype M2, genome accession number NC_008022), respectively. Subunits of GBS pili are also shown as tag numbers in
2603V/R (serotype V, genome accession number NC_004116.1) and COH1 (serotype III, genome accession number HG939456).
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the housekeeping sortase SrtA (Mazmanian et al., 1999. Thus far,
assembly mechanisms have been mainly investigated for FCT-1,
FCT-2, and FCT-3 pili in GAS.

Among the nine FCT forms, FCT-2, FCT-3, and FCT-4
pili comprise three components, including the major subunit
FctA, and minor subunits Cpa (ap1) and FctB (ap2) (Figure 2).
The pilus-specific sortase has been named SrtC. It comprises
two alleles; SrtC1 in FCT-2 and SrtC2 in FCT-3 and FCT-4
(Barnett et al., 2004; Dramsi et al., 2005; Spirig et al., 2011).
In an M3 strain, SrtC2 was shown to be responsible both for
linkage between Cpa and FctA, as well as FctA polymerization
(Quigley et al., 2009). FctA and Cpa in FCT-3 contain LPXTG-
like VPPTG and QVPTG sorting sequences, respectively, with
isopeptide bonds formed with K173 of FctA (Quigley et al.,
2009). Those authors also reported that Cpa is located exclusively
at the pilus tip. The corresponding LPXTG-like sequences of
Cpa and FctA in M1 strains (FCT-2) are EVPTG and VVPTG,
respectively, with the slight differences in substrate sequences
likely attributed to variations in the substrate recognition of
two SrtC alleles and two SipA/LepA alleles (Figure 2). Covalent
linkage between the C-terminal threonine of Cpa and a lysine
residue of FctA was also reported in an M1 strain (Smith
et al., 2010). For anchoring of pili to the cell wall by SrtA, that
report also noted that the minor subunit FctB was incorporated
into the base of the Cpa-FctA complex as a stop signal for
FctA polymerization. The FctB protein of M1 strains contains a
canonical LPXTG motif (LPLAGE in FCT-3), which is a substrate
for SrtA. A distinctive feature of FCT-2, FTC-3, and FCT-4 pili
is that their assembly requires the signal peptidase I homolog
SipA/LepA, the gene for which is also located in the pilus gene
operon (Zähner and Scott, 2008; Nakata et al., 2009). Catalytic
residues are not conserved in SipA/LepA, and in vitro assays
using peptide fragments of pili and recombinant SipA/LepA show
no peptide cleavage. Thus, SipA/lepA has been suggested to act
as a molecular chaperone that coordinates pilus assembly with
SrtC (Young et al., 2014b). The signal peptidase I homologs in
S. agalactiae and S. pneumoniae are also required for assembly
of pili (Figure 2; Bagnoli et al., 2008; Périchon et al., 2019), the
genes for which are situated in pilus island II b (PI-2b) and the
pathogenicity islet 2 (PI-2), respectively.

Assembly of FCT-1 pili in an M6 strain has been investigated
(Nakata et al., 2011). Pili are composed of the major T6 subunit
and minor FctX subunit as a tip protein. The CWSSs of T6
and FctX include an LPSTG and LPSSG sequence, respectively
(Schneewind et al., 1990; Bessen and Kalia, 2002). The K175
residue of T6 was shown to participate in T6 polymerization
as well as linkage of T6 and FctX (Nakata et al., 2011; Young
et al., 2014a). The pilus-specific sortase SrtB belongs to the SrtC
family and is primarily required for efficient pilus assembly while
SrtA is responsible for cell wall anchoring of T6 pili (Nakata
et al., 2011). Since deletion of the srtB gene does not completely
abrogate T6 polymerization or formation of an FctX-T6 complex,
as shown by immunoblot assay results, it is likely that SrtA can
compensate for the loss of SrtB in pilus assembly to a certain
extent (Nakata et al., 2011). Unlike FCT-2 and FCT-3 pili, there is
no minor subunit for a stop signal and the mechanism of stopping
polymerization remains unknown. Furthermore, several studies

have demonstrated that deletion of the gene encoding the pilus
tip protein (ap1) decreases the detection level of polymerized
major subunits in FCT-1, FCT-2, FCT-3, and FCT-6 pili. This
prompted speculation that heterodimer formation between the
major and minor tip subunits accelerates polymerization of the
major subunits (Lizano et al., 2007; Nakata et al., 2009, 2011; Tsai
et al., 2017).

REGULATION OF PILUS GENE
EXPRESSION

GAS pilus-related gene expression has been shown to be
mediated by RALP family transcriptional regulators, including
RofA and Nra, in a serotype- or strain-dependent manner.
Previous reports have indicated that both RofA and Nra can
function as autoregulators (Podbielski et al., 1999; Granok et al.,
2000), and expression of pilus genes in FCT-3 strains is positively
or negatively regulated by Nra in a strain-specific manner
(Podbielski et al., 1999; Luo et al., 2008). Recent studies of in-
frame deletion mutants indicated that Nra acts as a positive
regulator in several M3 strains and an M49 strain (Calfee et al.,
2018; Nakata et al., 2020). RofA has been reported to be a positive
regulator for the protein F1 gene (prtF1) (Fogg et al., 1994). Also,
the involvement of RofA in pilus gene expression was indirectly
shown by replacement of nra with rofA along with respective
upstream promoter regions from an M6 strain in the background
of an M53 strain (FCT-3) (Lizano et al., 2008). The replacement
resulted in preserved pilus gene expression. On the other hand,
deletion of the rofA gene reduced pilus gene expression in an M1
strain (Calfee et al., 2018). Thus, RALP family members, such as
Nra and RofA, likely promote pilus gene expression. In addition,
MsmR, Mga, and RALP3 can influence pilus gene expression in
a strain-specific manner (Nakata et al., 2005; Kreikemeyer et al.,
2007; Kwinn et al., 2007; Luo et al., 2008).

In vitro induction of pilus gene expression occurs under
a variety of culture conditions including low pH and low
temperature (Nakata et al., 2009; Manetti et al., 2010). A topic
gaining increasing focus is the molecular mechanisms that
underlie modulation of pilus gene expression in response to
environmental signals, such as temperature and acidity. The level
of pilin detection is altered by shifting the culture temperature.
Utilizing an M49 strain, we showed increased FctA expression
at 30◦C as compared to 37◦C. Moreover, the expression of FctA
appeared to be bistable, as only some cells in S. pyogenes chains
were FctA-positive in immunofluorescence experiments (Nakata
et al., 2009). Furthermore, decreasing the temperature to 25◦C
induced pilus production by the majority of cells (Nakata et al.,
2020). This bistabilty was later characterized in more detail for
type 1 pilus genes from pneumococci and shown to depend
on the positive regulator RlrA acting in a positive feedback
loop on pilus genes (Basset et al., 2011, 2017). Moreover, such
bistabilty has clear implications for infections, as pilus-1 was
shown to be preferentially expressed during early colonization in
animal infection models (Pancotto et al., 2013). It remains to be
determined if bistability of S. pyogenes pilus expression has any
implications for in vivo pathogenesis ecology.
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Historically, GAS cultures for a T-typing test have been grown
at 30◦C (Griffith, 1934). Thermosensitive pilus production occurs
at the transcriptional level and the expression pattern is restricted
to nra-positive FCT-3 strains (Nakata et al., 2009, 2020). The
underlying mechanism involves post-transcriptional control of
nra mRNA translation, namely promoting translation at low
temperatures (Figure 3). Of note, in a study that utilized an
M3 and an M49 strain, introduction of silent base substitutions
in the chromosome to melt the predicted stem loop structure
located 23 bases downstream of the AUG start codon decreased
detection of both the Nra protein and pili especially at low
temperatures (Nakata et al., 2020). Considering that temperature
at the initial infection site is lower than the core body temperature
and formation of mRNA stem-loop structure is influenced
by temperature, we speculated that the predicted stem-loop
structure is an mRNA thermometer within nra mRNA. It might
form the stable base-pairing at lower temperatures, and could
be more susceptible to melting at the core body temperature.
Thus, lower temperatures reflecting the initial infection site
would promote the nra translation and subsequent pilus gene
expression, thereby promoting colonization. If temperature

Nra translation/Pilus production

Temperature

3´
30S rRNA

5´ AUGSD3´5´ AUGSD

nra mRNA nra mRNA

nra mRNA thermometer

FIGURE 3 | Proposed model for thermoregulation of pilus production from
FCT form 3 strains. FCT form 3 nra-positive Streptococcus pyogenes
produces pili in a temperature-dependent manner. The underlying mechanism
includes post-transcriptional control of nra mRNA translation via a putative
stem loop structure in the protein coding region of nra mRNA. The putative
stem loop structure most likely functions as a thermometer to modulate the
translational efficiency of nra mRNA by potential interactions with the
translation initiation complex. Thermosensitive modulation of pilus production
highlights the importance of pili in an initial infection phase and involvement of
pili in bacterial fitness in the host.

increased due to bacterial invasion of tissues and inflammation,
pilus production by FCT-3 strains would be halted. How the
stem loop promotes translation of nra mRNA remains elusive.
It possibly involves a “starting block” mechanism, whereby the
stem-loop prevents the 30S ribosomal subunit from sliding onto
mRNA, optimizing the positioning of 30S rRNA and promoting
translation initiation (Figure 3; Jagodnik et al., 2017). Although
additional experimental confirmation is required to elucidate the
mechanism, the existence of a temperature-perception system
in the pilus gene transcriptional regulator adds a new level of
regulation to virulence factor expression in GAS. Furthermore,
Kratovac et al. noted that among 39 emm types associated with
FCT-3, 32 (88.8%) represented pattern D of skin specialists
(Kratovac et al., 2007; Bessen, 2016) raising the possibility of a
link between thermosensitive pilus expression of FCT-3 strains
and skin tropism. The molecular interactions between pili and
host factors in skin have yet to be elucidated. Moreover, whether
regulation of pilus gene expression studied in vitro matches the
in vivo situation and thereby could be translated into clinical
scenarios remains to be investigated. If pilus expression per se
contributes to switching S. pyogenes lifestyles, it will most likely
occur in a serotype- or even strain/isolate-specific manner.

Upregulation of pilus expression by acid stress is also
conducted by two-component systems. Comparisons of genome
sequences of M3 (FCT-3) isolates recovered from symptomatic
pharyngitis and subsequent asymptomatic carriage in the same
patient (at day 63 post infection) revealed three single nucleotide
polymorphisms, including one mutation in the sensor kinase
LiaS (R135G) of the LiaFSR three-component system (or YvqE
of the YvqEC two-component system) (Flores et al., 2015). The
mutation was shown to alter the transcriptome. It also resulted
in an increased ability to adhere to cultured epithelial cells
and to colonize nasopharynx tissues, increased susceptibility to
antibiotics targeting cell wall synthesis and decreased virulence
in a mouse model of necrotizing fasciitis (Flores et al., 2015).
An M3 strain with the R135G substitution in LiaS expressed
pili at a higher level when exposed to bacitracin, a condition
which is known to promote liaFSR expression. It seems that
bacitracin did not promote the pilus gene expression in the
R135G mutant (Flores et al., 2017). On the other hand, LiaS
was demonstrated to play an important role in virulence and to
sense acidic conditions, as an liaS mutant of an M1 strain had
reduced growth at pH 6.0 (Ichikawa et al., 2011). Also, an liaS
mutant produced less acid during sugar fermentation (Isaka et al.,
2016). LiaS also controls pilus production and biofilm formation
under acidic conditions. Introduction of the D26N substitution
into a predicted extracellular region of LiaS compromised acid
production and biofilm formation. This indicates that sensing
organic acid by the LiaS extracellular domain is connected
to the relationship between pilus expression and pH (Manetti
et al., 2010; Isaka et al., 2016). It is not known if LiaS directly
regulates pilus gene expression. Deletion of the homologue of
liaS in S. pneumoniae and S. agalactiae also showed altered pilus
expression (Rosch et al., 2008; Klinzing et al., 2013).

Non-coding RNA (ncRNA) is a crucial element in modulating
virulence factor expression (Caldelari et al., 2013). Genome-wide
tiling array and differential RNA sequencing analyses of GAS
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ncRNAs together with bioinformatic and expression analyses
revealed a bona fide expression of ncRNA in M1, M3, and M49
strains, including crRNA and trans-activating RNA of the Cas9-
CRISPR system (Perez et al., 2009; Raasch et al., 2010; Deltcheva
et al., 2011; Patenge et al., 2012, 2015; Tesorero et al., 2013).
Among GAS ncRNA fasX negatively regulates translation of cpa
in an M1 strain, tee6 in an M6 strain, the gene encoding a
minor subunit (ap1) in an M2 strain, and fctA in an M28 strain
(Liu et al., 2012; Danger et al., 2015). The mechanism involves
base pairing of fasX with ribosome-binding sites, which leads
to a reduction in mRNA stability and translation. fasX ncRNA
is under the control of the FasBCA two-component system,
originally reported to promote streptokinase production and
haemolysis, and downregulating fibronectin/fibrinogen binding
(Kreikemeyer et al., 2001). The environmental cues leading to
expression of fasBCAX remain unknown. The levels of fasX
expression show intraspecies variability as well as differences
among FCT-3-associated serotypes including M3. For example,
many M3 strains harbor a 4 bp deletion in the fasC gene
encoding a histidine sensor kinase and consequently fasX
expression is relatively low, which promotes pilus expression
(Perez et al., 2009). However, inter-serotype transcriptome results
demonstrated that several M3 strains have lower amounts of pili
compared to several M1 and M49 strains due to a lower level
of nra expression (Calfee et al., 2018). Together with frameshift
mutations in rocA and rivR encoding a pseudo-kinase and
transcriptional regulator, respectively (Biswas and Scott, 2003;
Roberts et al., 2007), the loss of fasX regulation contributes to a
selective advantage for M3 strains (Sarkar and Sumby, 2017).

The CovRS (or CsrRS) system is one of the most studied two-
component systems and known to regulate approximately 15%
of GAS genes (Graham et al., 2002). A prominent feature of this
system is downregulation of several different virulence factors
and natural mutations of these genes are strongly correlated with
the onset of invasive diseases. A mutation of covR encoding the

response regulator promoted pilus expression in several FCT-
3 strains of serotypes M3 and M49, but not in an FCT-2 M1
strain (Kreth et al., 2011; Horstmann et al., 2015; Calfee et al.,
2018) reflecting the fact that the intergenic regions of nra-cpa
and rofA-cpa are divergent. Thus, counteractive modulation of
pilus expression is governed by Nra and CovRS in large numbers
of FCT-3 strains.

As shown by these findings, regulation of pilus expression is
governed by various factors, including transcriptional regulators,
ncRNA, and the mRNA thermometer. An intricate interplay
among those factors shapes expression in response to the
extracellular milieu and intracellular metabolic activity of the
infected host cell. The FCT form exhibiting specific patterns
of pilus expression highlights the importance of pili in regard
to adaptation to host environments and their requirement
for causing a variety of diseases. Further elucidation of these
regulatory mechanisms is warranted.

BIOLOGICAL FUNCTIONS OF GAS PILI

The various functions of the GAS pili are summarized in Table 1.

Adhesion to Host Cells
A diverse array of secreted and surface-anchored components can
mediate host cell adherence. These include cell wall anchored
surface proteins, namely MSCRAMMs (microbial surface
components recognizing adhesive matrix molecules, Patti et al.,
1994), such as M proteins and a variety of fibronectin-binding,
laminin-binding, and collagen-binding proteins. Other surface
components are lipoteichoic acid, a hyaluronic acid capsule,
and moonlighting proteins, including streptococcal enolase
and glyceraldehyde-3-phosphate dehydrogenase (Brouwer et al.,
2016). Cultured cell lines such as HEp-2 (HeLa derivative) and
A549 (human alveolar adenocarcinoma cell line) have been

TABLE 1 | Involvement of GAS pili in host cell adherence, interactions with host molecules, biofilm formation, and virulence.

FCT form M type (T type) Host cell
ADHERENCE Cell
lines/tissues—
adhesin

Interactions between
host molecules and pilin

Involvement in
biofilm formation*

Effects of pilus gene deletion on
virulence in infection models
(Host)*

FCT-1 M6 (T6) A549—FctX Gp340—FctA + Decreased virulence I. p. infection
(CD1 mouse)

FCT-2 M1 (T1) HaCaT,
Detroit-562—Cpa
Tonsil epithelium

Gp340—FctA + Increased virulence S. c. infection
(CD1 mouse)

FCT-3 M3 (T3) M49 M53 HaCaT Human collagen type
I—Cpa (M49) Gp340—FctA
(M3)

– (M49) Decreased virulence S. c. infection
(Human skin-engrafted SCID
mouse) (M53)

FCT-5 M4 (T4) HaCaT, RPMI 2650 Haptoglobin—
SPyM4_0116a

+ Decreased virulence S. c. and i.p.
infection (CD1 mouse)

FCT-6 M2 (T2) HaCaT, Detroit-562 -
SPyM2_0109#

Fibronectin and
Fibrinogen—SPyM2_0109#

Decreased virulence Infection into
the lower left proleg (Galleria
mellonella)

*I. p., intraperitoneal; S. c., subcutaneous.
aTag number of MGAS10750 (genome accession number, NC_008024).
#Tag number of MGAS10270 (genome accession number, NC_008022).
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frequently used to identify and analyze those factors. Abbot
et al. (2007) utilized both cell lines and showed that an fctA
deletion in the M1 strain SF370 had no effect on bacterial
adherence. On the other hand, Crotty Alexander et al. reported
that an fctA deletion in M1 strain 5448 induced a slight though
statistically significant decrease in bacterial adherence to HEp-
2 cells, although complementation failed to recover completely
the reduction in adherence (Crotty Alexander et al., 2010).
Importantly, T1 pili promoted adhesion to clinically relevant
tissues in the throat and skin. Abbot et al. (2007) clearly
demonstrated T1 pili binding to freshly isolated human tonsil
tissues and to primary human keratinocytes, as well as to the
human keratinocyte cell line HaCaT. Adhesion of M1 strain
SF370 to the pharyngeal cell line Detroit 562 also showed T1 pili
dependence (Manetti et al., 2007; Smith et al., 2010).

The above-mentioned findings raised questions regarding
how T1 pili recognize host cells and which pilin component
is responsible for binding. Flow cytometric analyses with
recombinant pilin components revealed that recombinant Cpa
and FctB, but not FctA, bound to the surface of Detroit 562
cells (Manetti et al., 2007). However, inhibition assays with
antisera against each pilus subunit indicated that only anti-Cpa1
serum significantly inhibited bacterial adherence to both HaCaT
cells and human tonsil epithelium (Smith et al., 2010). The
central region of Cpa1 extending from Asn286 to Pro559 was
responsible for bacterial adhesion via pili. Indeed, Cpa in T9 pili
was considered to be a molecular harpoon that exerts adhesion
via its own amine-reactive thioester bonds (Linke-Winnebeck
et al., 2014), suggesting that Cpa plays a central role in cell
recognition. It is likely that FctA polymerization allows Cpa to
be located away from the cell surface and placed in the vicinity of
host cells. This scheme would also be applicable to cpa operon-
positive FCT-3 and FCT-4 forms. Involvement of either a major
or minor subunit of other FCT-form pili in host cell adherence
has also been reported. Regarding FCT-1 pili, the minor subunit
FctX was shown to contribute to adherence of an M6 strain
to A549 cells (Becherelli et al., 2012). In contrast, the tip pilin
protein (SPyM2_0113) of an M2 strain (FCT-6) did not promote
adhesion to HaCaT or Detroit-562 cells (Tsai et al., 2017). Instead,
the major subunit T2 (SPyM2_0109) promoted adherence. Thus,
in general, GAS pili can function as primary adhesins during the
initial stages of colonization in the upper respiratory tract or skin.

Details regarding pilus receptors remain elusive, though some
interactions between tip pilin and host molecules have been
reported. The tip pilin Cpa from an M49 strain binds human
collagen type I (Kreikemeyer et al., 2005). A high affinity
interaction with a Kd in the nanomolar to low micromolar
range was measured by ELISA-type assays and surface plasmon
resonance (Kreikemeyer et al., 2005). This somehow resembles
function of the collagen adhesion Cna of Staphylococcus aures.
Interestingly, binding of major pilus subunits to host proteins
has also been reported. FCT-1, FCT-2, and FCT-3 pili bind the
salivary glycoprotein gp340 and the major subunit T2 binds
fibronectin and fibrinogen (Edwards et al., 2008; Tsai et al.,
2017). FctA plays a major role in interactions between FCT-2
T1 pili, but not FCT-4, and gp340. Binding of gp340 to bacteria
mediates bacterial aggregation and it also inhibits bacterial

adhesion to Detroit-562 and HeLa cells. Since gp340 binds
to secretory IgA and complement C1q (Madsen et al., 2010)
bacterial aggregation via gp340 binding may promote bacterial
clearance and contribute to innate immunity.

Bacterial Aggregation and Biofilm
Formation
Similar to many other pathogenic bacteria, GAS forms micro-
colonies and biofilm on both biotic and abiotic surfaces. These
actvities have been shown in numerous in vitro studies as
well as in vivo infection models with various hosts, including
mice, zebrafish, and chinchillas (Neely et al., 2002; Roberts
et al., 2010; Connolly et al., 2011). More importantly, micro-
colonies and biofilm-like structures have been found in clinical
specimens of human impetigo lesions and tonsil tissues (Akiyama
et al., 2003; Roberts et al., 2012). The 3-D structure of
bacterial biofilm is defined by sessile cells being encased
in a matrix of extracellular polymeric substances comprising
proteins, DNA, and a glycocalyx. Biofilm-embedded bacteria
exhibit a low growth rate and reduced metabolism, which
poses problems when attempting antibiotic therapy (Donlan
and Costerton, 2002). Moreover, several clinical studies have
noted that the ability of GAS to form biofilm is related to
recurrent infection episodes (Roberts et al., 2010; Torretta et al.,
2012). Therefore, GAS biofilms are likely to be clinically relevant
and therapeutic approaches against them may be effective for
infection control. The ability of GAS strains to form biofilm
varies and in vitro conditions required for biofilm development
differ among strains. A coating of matrix or serum proteins
can promote biofilm formation on an abiotic surface (Lembke
et al., 2006) so adhesins such as MSCRAMMS likely contribute
to biofilm formation.

A systemic evaluation of relationships between biofilm
formation and FCT forms was conducted using 183 clinical
isolates in Germany (Köller et al., 2010). This study showed
that all tested FCT-1 strains, including M6 strains, efficiently
formed massive biofilms in peptide-rich but carbohydrate-poor
C medium, as well as in enrichment medium such as brain
heart infusion (BHI) broth. Several FCT-2, FCT-5, and FCT-
6 strains also formed biofilms in BHI, though to a lesser
extent in C-medium, while two FCT-9 strains formed weak
biofilms regardless of the culture medium. Furthermore, FCT-
3 and FCT-4 strains showed a widely varying ability to form
biofilm in both types of media. These phenotypic variations
indicate that the ability to form biofilm is affected, at least
in part, by culture conditions and can be roughly grouped
by FCT form, although strain specificity occurs within some
FCT forms. Several studies have shown a direct role for pili
in biofilm formation (Manetti et al., 2007; Becherelli et al.,
2012; Kimura et al., 2012; Chen et al., 2020). In the study of
Manetti et al., T1 pili promoted in vitro biofilm formation by
an M1 strain on polylysine-coated glass via aggregation and
microcolony formation. On the other hand, biofilm formation of
a M49 strain (FCT-3) was not affected by several mutations of
pilus-related genes (Nakata et al., 2009). The remarkable ability
of M6 strains to form biofilm was shown to be attributable
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to T6 pilus production (Kimura et al., 2012). Deletion of
the gene encoding either the major (T6) or minor (FctX)
subunit decreased biofilm formation, while the same was true
when the srtB gene encoding the pilus-specific sortase was
deleted. Surprisingly, as compared with the parental strain, these
mutant showed increased bacterial aggregation. When the entire
group of T6 pilus-related genes was ectopically expressed in
the M1 strain SF370, biofilm formation was promoted and
aggregation inhibited (Kimura et al., 2012). It seems that T1
and T6 pili mediate biofilm formation by different mechanisms.
FctA pili mediate biofilm formation by auto-aggregation and
microcolony formation, while the T6 pilus functions as an
adhesin responsible for initial attachment leading to biofilm
formation. However, the contribution of pili to aggregation
remains controversial. Becherelli et al. (2012) reported that
FctX exhibited homophilic interactions that mediated inter-
bacterial contact, thereby mediating aggregation. The phenotypic
difference in aggregation of the fctX mutant strain could be
attributable to differences in experimental conditions. Further
analysis is required before drawing a final conclusion. Becherelli
et al. (2012) also reported that homophilic interactions were
observed for Cpa with serotypes M1 and M3 strains, suggesting
a general mechanism of aggregation via homophilic interactions
between minor subunits.

Among culture conditions examined, an acidic environment
facilitates biofilm formation by specific FCT form strains
(Manetti et al., 2010). The authors compared the biofilm forming
ability in C-medium at pH 6.4 and 7.5, and found that the
lower pH condition was favorable for biofilm development with
strains from FCT-2 (M1), FCT-3 (M3 and M5), FCT-5 (M4), and
FCT-6 (M2). Pilus production was also upregulated at the lower
pH, indicating a pH-dependent relationship between biofilm
formation and pilus production. On the other hand, pH levels
did not influence the biofilm forming ability of M28 and M89
strains belonging to FCT-4 or M75 strains belonging to FCT-
9, though biofilm mass was relatively low. FCT-1 strains (M6
and M109) efficiently formed biofilms under both conditions.
Thus, strains with specific FCT forms have the ability to sense
the environmental acidity and form biofilm via increased pilus
production. Such differential response to environmental signals
influences variations in biofilm formation. For more details
regarding GAS factors involved in biofilm formation please refer
to the review of Fiedler et al. (2015).

Virulence in Infection Models
The relationship between GAS pilin expression and virulence
has been examined in strains belonging to FCT-1, FTC-2, FCT-
3, FCT-5, and FCT-6. The extent to which each pilus type
promotes or attenuates virulence varies, indicating differences
among the forms (Lizano et al., 2007; Luo et al., 2008; Nakata
et al., 2009; Crotty Alexander et al., 2010; Becherelli et al.,
2012; Rouchon et al., 2017; Tsai et al., 2017; Chen et al.,
2020). The contribution of FCT-1 T6 pili to pathogenesis was
examined in a mouse intraperitoneal infection model, which
indicated that the minor subunit FctX contributes to bacterial
dissemination to the spleen, lungs, and kidneys, as well as survival
in blood (Becherelli et al., 2012). In contrast, FCT-2 T1 pili

reduced virulence in a murine subcutaneous infection model and
decreased bacterial survival in human blood. Additionally, FCT-2
T1 pili had no influence on neutrophil phagocytosis, complement
deposition in human sera, or sensitivity to the cathelicidin-related
antimicrobial peptide LL-37. However, FCT-2 T1 pili induced
neutrophil IL-8 production, neutrophil endothelial transcytosis,
and neutrophil extracellular traps (NETs), thereby promoting
entrapment and killing of GAS via NETs. Utilizing a human
skin-engrafted SCID mouse line and an M53 skin-tropic strain
(FCT-3), Lizano et al. evaluated the role of the Cpa and
FctA pilus subunits in superficial skin infection. Deletion of
the gene encoding Cpa attenuated virulence, while the fctA
mutant showed virulence comparable to that of the parent strain
(Lizano et al., 2007).

T4 pili of an M4 non-encapsulated strain (FCT-5) promoted
adherence to HaCaT cells and human nasal septum RPMI
2,650 cells, survival in human blood, and virulence in both
mouse skin and peritoneal infection models (Chen et al., 2020).
Other studies have showed that the major subunit of T4 pili
sequesters the serum protein haptoglobin to confer M4 GAS
resistance to antimicrobial peptides released by neutrophils
and platelets (Köhler and Prokop, 1978; Lämmler et al., 1988;
Chen et al., 2020). Binding to haptoglobin was not observed
for M1 strains. Increased expression of the major subunit
gene was also associated with virulence of a non-encapsulated
M4 GAS strain in an intraperitoneal mouse infection model
(Galloway-Pena et al., 2018).

Virulence of an M2 strain (FCT-6) was examined using
a Galleria mellonella infection model. Survival of infected
G. mellonella was decreased by deletion of all pilus-related
genes (Tsai et al., 2017). The mutation compromised the ability
to survive in both macrophage cell lines and human whole
blood. The major pilin subunit bound fibrinogen, and fibrin
clot formation in human plasma was partially inhibited in the
presence of the recombinant major pilin.

THE STRUCTURES OF PILUS SUBUNITS
AND OTHER PROTEINS ENCODED IN
FCT REGION

The structures of several pilus proteins have been solved by X-ray
crystallography. This has been instrumental in understanding
the mechanisms of assembly and the trypsin-resistant property
of pili. With pilin structures of other Gram-positive pathogens
revealed, it has become evident that major and minor pilins are
assembled in a modular fashion with tandem Ig-like domains
of CnaA and/or CnaB domains, which are present in the
Staphylococcus aureus adhesin Cna (Deivanayagam et al., 2002;
Zong et al., 2005). Crystal structure analysis of the major subunit
FctA from an M1 strain revealed that it is comprised of two
immunoglobulin (Ig) folds, each of which contains a CnaB
domain (Kang et al., 2007). Crystal packing of FctA showed
a head-to-tail orientation, with the side chain of the lysine
residue K161 adjacent to the C terminus of the next molecule
(Kang et al., 2007). Mass spectrometry analysis of fragmented
pili and gene mutagenesis analyses demonstrated that a covalent
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linkage is formed between K161 and T311 on adjacent subunits.
Those residues are positioned in the omega loop of the CnaB
fold and the LPXTG-like sortase recognition motif, respectively
(Kang et al., 2007). Linkage between K161 and T311 allows
polymerization of FctA by the class B sortase SrtC1 (Spy0129)
(Barnett et al., 2004). The canonical YPKN pilin motif is not
present in FctA (Ton-That and Schneewind, 2003) and the
K161 position is different from that observed in major subunits
of other bacterial species such as SpaA of Corynebacterium
diphtheriae (Kang et al., 2009). The SpaA acceptor lysine in
a YPKN pilin motif is located on the last β-strand of the
N-terminal domain, close to the junction between domains,
whereas the location of the acceptor lysine of FctA is near
the top of the N-terminal domain. Thus, it is speculated that
the difference in position of the acceptor lysine is correlated
with type of pilus-specific sortase, i.e., class B or class C
(Kang et al., 2011).

In an earlier study, Kang et al. (2007) also uncovered a
striking characteristic feature of Gram-positive pilus subunits,
namely formation of intramolecular isopeptide bonds between
side chains of lysine and asparagine. Unlike the sortase-mediated
linkage between subunits, this isopeptide bond is autocatalytically
formed close to the domain boundary by an intramolecular
reaction that involves a glutamic acid residue and surrounding
aromatic residues. One intramolecular isopeptide bond is formed
in each of the two CnaB domains (K36-N168 in the N terminal
domain and K179-N303). A lysine residue in the first β-strand
is linked to an asparagine residue in the last β-strand, endowing
the pilin with thermal stability, resistance to proteolysis and
mechanical stress (Kang and Baker, 2009; Alegre-Cebollada et al.,
2010). Also, an intramolecular isopeptide bond occurs in the
minor pilus subunit Cpa and in other Gram-positive bacterial
Antigen I/II family of proteins (Forsgren et al., 2010; Hagan et al.,
2010; Larson et al., 2011; Walden et al., 2014).

A minor subunit located at the pilus tip is considered to
play a critical role in binding to host cells because of its
positional advantage to reach the cell surface. The tip protein
in FCT-2, FCT-3, and FCT-4 strains is Cpa (Figure 2). The
C terminus (carboxyl group of C-terminal threonine residue)
of Cpa (Spy0125) is linked to the above-mentioned lysine
residue (K161) responsible for intermolecular linkage of FctA.
Examination of the crystal structure of the Cpa C-terminal
region (SPy0125, N286-T723) from an M1 strain revealed a
three-domain structure, two of which contain an intramolecular
isopeptide bond, K297-D595 and K610- N715 (Pointon et al.,
2010). Moreover, an unusual thioester bond is internally formed
between the side chains of a cysteine and a glutamine residue.
This type of thioester bond has only been reported in proteins
of the immune system, such as complement C3 and C4,
complement-like proteins, and α2-macroglobulin (Chu and
Pizzo, 1994; Law and Dodds, 1997; Cherry and Silverman,
2006), suggesting potential for covalent binding of Cpa to
host factors. As in the case of FctA, intramolecular isopeptide
bonds contribute to resistance to proteolysis and thermostability,
whereas an alteration affecting the thioester bond had less
influence on protein stability (Walden et al., 2014). Prevention of
the thioester from Cpa compromised the ability of an M1 strain

to bind to HaCaT cells, indicating a direct role in interaction with
the host (Pointon et al., 2010). Linke-Winnebeck et al. (2014)
reported that the N-terminal domain of Cpa (CpaN) from an
emm ST6030.1 strain contains an additional thioester bond. X-ray
crystallography and mass spectrometry analyses found that CpaN
forms a dimer cross-linked by a polyamine spermidine, which
was derived from Escherichia coli during recombinant protein
preparation. They also reported that both thioesters contribute to
binding to spermidine. This indicates that the reactive thioester
has a preference for amine groups although the mechanism of
covalent receptor binding has yet to elucidated.

SfbI/PrtF1 and PrtF2/FbaB are fibronectin binding proteins
whose genes are located in the FCT genomic region that contain
N-terminal domains homologous to the thioester-containing
domain of Cpa. A homology search using the domain revealed
that similar thioester domains are also present in diverse Gram-
positive bacterial cell wall proteins, suggesting that the reactivity
of thioester bonds is exploited by other surface proteins in other
pathogens (Linke-Winnebeck et al., 2014; Walden et al., 2015).
SfbI/PrtF1 also binds to the A subunit of fibrinogen in a thioester-
dependent manner (Walden et al., 2015). Together, these studies
provide a paradigm shift in understanding interactions between
host and pathogens. It is likely that Gram-positive bacterial
adhesins evolved to use covalent binding to host cells. Future
studies are needed to determine the host target molecules of
pilus adhesins, such as Cpa, which may provide information
about GAS tissue tropism and provide the basis for effective
therapeutic intervention.

The crystal structure of the minor subunit FctB from a
T9 strain (Linke et al., 2010) comprises Ig-like and proline-
rich tail domains and has no intramolecular isopeptide bond.
The lysine residue responsible for linkage to FctA resides in
the final β-strand of the Ig-like domain. The LPXTG motif of
FctB in an M1 strain is LPSTG while the LPXTG-like tripartite
motif (LPLAG) was found in other serotypes (Janulczyk and
Rasmussen, 2001). This motif is recognized by the house-keeping
sortase SrtA and promotes cross-linking to an alanine residue
in cell wall peptidoglycan. The incorporation of the basal pilin
into growing pili halts polymerization of FctA. Thus, all pilus
components are connected by isopeptide bonds and finally
become anchored to the cell wall.

Although the exact function of SipA/LepA remains unknown
some predictions can be made from structural and biochemical
data previously reported by Young et al. (2013; 2014b). SPase-
I and SipA/LepA have a peptide-binding groove. In the crystal
packing of SipA/LepA, the peptide-binding groove of one
molecule is associated with the N-terminal peptide chain of
the other molecule, indicating an ability of SipA/LepA to
bind peptides. Young et al. also performed pull-down assays
with recombinant FctA containing extracellular regions of both
the signal-peptide and sortase motif, but no association of
SipA/LepA and FctA was noted. Additionally, there was no
interaction between SipA/LepA and the pilus-specific sortase.
The same was true for synthesized peptides encompassing
the extracellular region of the signal-peptides of Cpa, FctA,
and FctB and the sorting motif region of FctA. The authors
speculated that no detectable association was attributable to the
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non-physiological octameric structure of recombinant SipA and a
possible requirement of the membrane-spanning region for fully
functional SipA/LepA, as seen with SPase I (Carlos et al., 2000).
Also, they speculated that SipA/LepA might recognize sorting
signals of pilus subunits coordinately with SrtC, or provide a
scaffold that modifies or deploys pilin proteins for SrtC enzymatic
activity. Thus, the interactions between SipA/LepA and pilus-
related factors remain unclear and further exploration is needed.

Finally, the crystal structure of SrtC1 (class B family) has also
been reported (Kang et al., 2011). SrtC1 has a canonical sortase
fold, in which 8-stranded β-sheets mainly in C-terminal regions
generate a core β-barrel, with the surface modified with loops
and helices. This β-barrel structure has a concave surface that
provides an active site comprising the key catalytic residues Cys,
His, and Arg. Differences occurred in conformation of β4/β5
and β7/β8 loops between two molecules in the crystal, which
suggested a level of flexibility important for SrtC1 function. The
catalytic residue His126 located at the start of the β4/β5 loop
was positioned differently in the two molecules in the crystal,
thus potentially enabling a dual acid/base role by protonating
the leaving group in the cleavage reaction and deprotonating
the attacking amine in the transfer reaction (Suree et al., 2009).
The corresponding region of B. anthracis SrtA is also flexible
(Weiner et al., 2010). Conformational flexibility also occurs in
the β7/β8 loop of B. anthracis and S. aureus SrtA, which may
be a lipid II-binding site (Suree et al., 2009; Weiner et al., 2010).
The length and conformation of the β7/β8 loop is highly variable
among different sortases, suggesting a role in binding the second
substrate. The structure of SrtC1 is closely related to class B
sortases from S. aureus and B. anthracis, which anchor NPQTN
motif-containing surface proteins to the cell wall, and those share
the same surface loops and helices (Zhang et al., 2004; Zong
et al., 2004; Kang et al., 2011). On the other hand, the unique
characteristics of pneumococcal pilus-specific class C sortases,
including flexible lids and a C-terminal transmembrane region,
were not observed in SrtC1. It was concluded that the pilus
polymerizing activity is a consequence of the co-evolution of the
pilin and the cognate sortase, thus enabling substrate selection
(Kang et al., 2011).

It is not clear why FCT-2, FCT-3, and FCT-4 GAS use a
class B sortase and SipA/LepA for pilus biogenesis. It may be
associated with differences in domain structures (two domains
in FctA compared to three to four domains in others) and
positions of the nucleophilic lysine residues for intermolecular
linkage. Additional biochemical and biophysical analysis of the
interactions of pilin, SipA, and SrtC are needed to unravel
the exact mechanism of assembly of these pili. Additionally,
analysis of other FCT-form pili will provide insights regarding
the biological consequences of GAS pilus diversity.

PROSPECTS FOR A PILUS-BASED
VACCINE

No vaccines are currently available for GAS. The M protein
has been proposed as a primary vaccine candidate since
IgG reactive to the hypervariable N-terminal region induces

complement deposition and phagocytosis (Jones and Fischetti,
1988). Thus, construction of N-terminal peptide chimeras
from multiple M proteins formed 26- and 30-valent M
protein-based vaccines (Steer et al., 2009a; Dale et al., 2013).
These were designed to provide coverage against strains
circulating in developed countries. They also exhibit protection
against some strains expressing M proteins that are not
included among the targets of the vaccine (Dale et al.,
2013). However, efficacy remains uncertain in countries where
circulating strains exhibit a high level of diversity (Steer et al.,
2009b).

There are 21 known T serotypes. While any protective
effects of antibodies in T-type specific serum have not been
reported, vaccination with recombinant pilin proteins can be
effective, as noted below. T-typing serum is directed to trypsin-
digested pili and it is likely that epitopes for typing are not
necessarily equivalent to those exposed on the surface of native
pili. One possible reason is that different epitopes exposed by
trypsinization are responsible for T typing. Development of
a pilus-based vaccine would be beneficial since there is less
variation of T-antigenicity than observed with M-antigenicity
or emm-typing, and fewer antigens would provide comparable
coverage. Faulgi et al. sequenced tee genes of 39 strains
representing 23 emm types and classified the tee genes into 15
clusters, with a sequence identity of greater than 90% within
each cluster. The authors suggested that a vaccine containing
epitopes from 12 types of T antigens would provide 90%
coverage in the United States and EU (Falugi et al., 2008).
Thereafter, the tee genotype was extended to 18 types and six
subtypes, and it is expected that protective epitopes from these
18 T antigens could provide nearly full coverage for globally
disseminated strains (Steemson et al., 2014). Individual tee alleles
are highly stable over time and among geographical locations,
further supporting T antigens as suitable vaccine candidates.
Moreover, pili protrude from the bacterial surface by up to 2
µm (Mora et al., 2005; Kang et al., 2007), leading to unimpeded
accessibility by the immune system and allowing exposure of
many epitopes. Recently, whole-genome sequence analyses of
1,454 invasive GAS strains in the United States showed that
1,388 (95.5%) had one of the 21 different pilus (tee) types
(Chochua et al., 2017).

Immunization with pilus subunit proteins confers protective
immunity in mouse infection models (Mora et al., 2005; Loh
et al., 2017). When serum reactivity against pilus components
was tested using 100 serum samples obtained from children
recovering from GAS pharyngitis using a protein array carrying
four kinds of major pilin subunits and seven minor subunits, 76
of the samples reacted with at least one pilin protein (Manetti
et al., 2007). Also, IgG in five of six serum samples from acute
rheumatic fever patients reacted with T6 (Young et al., 2014a).
Those studies indicated that pili are produced in vivo during
infection and elicit specific antibody responses which supports
their relevance as vaccine targets. However, since invasive GAS
strains of FCT-3 may not produce pili in vivo at the inner
body temperature of 37◦C, a potential drawback of a pilus-
based vaccine is lack of effectiveness for a subset of strains.
Furthermore, it is not clear whether vaccination with pilus-based
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antigens generates autoantibodies, which was problematic with
M protein-based vaccines.

An important concern related to development of a type-
specific epitope-based vaccine is the potential of the bacterium
to generate new epitopes by intragenic recombination leading
to loss of opsonizing ability of antibodies directed toward this
region (Jones et al., 1988). This has not been reported thus far for
pilus genes. However, the FCT region is a recombination hotspot.
The possibility that interaction with the immune system induces
antigenic drift should be examined.

Since a major site of GAS infection is the mucosal surface
of the upper respiratory tract, generation of a mucosal immune
response might be important for providing protection against
infection (D’Alessandri et al., 1978; Batzloff et al., 2005).
The food-grade organism Lactococcus lactis has been used
as a vehicle to deliver vaccine antigens without adjuvants
to the mucosal surface and elicits immune responses in
animal models (Robinson et al., 1997). L. lactis has also been
tested for delivering mucosal vaccines against pili (Buccato
et al., 2006). Immunization of rabbits with a heat-killed
L. lactis strain expressing either FCT-3 or FCT-4 pili via
the oral gavage elicited specific antibody responses (Loh
et al., 2017). Anti-pilus antibodies inhibited bacterial adhesion
and immune serum efficiently promoted opsonophagocytic
killing of bacteria. The authors speculated that the T antigen
was the most likely target for opsonophagocytic killing.
Furthermore, intranasal immunization of mice with a pilus-
expressing L. lactis strain also improved clearance rates
of GAS following nasopharyngeal challenge. These results
demonstrate the potential for a pilus-based vaccine to protect
against GAS infection.

Exploitation of the pilus biogenesis system and L. lactis has
been utilized to present non-pilus related antigens (Quigley et al.,
2010; Chamcha et al., 2015). The E. coli maltose-binding protein
(MBP) was fused to the C-terminal region of the pilus tip protein
(Cpa) of GAS T3 pili and expressed with pilus genes in L. lactis
allowing the MBP to be presented on the tip of pili. This strain
induced both systemic and mucosal responses against the MBP.
Localization of a vaccine antigen on the pilus tip and covalent
fixation to the lactococcal cell wall may be an effective strategy
to promote exposure of vaccine antigens, though the influence of
pilus-biogenesis factors on immunization must be considered.

The group of Thomas Proft developed PilVax, another vaccine
platform that uses the GAS pilus and L. lactis. Immunogenic
peptides were inserted into 3 different loop regions of FctA,
resulting in assembly of pili and presentation of multiple peptides
on the surface of L. lactis. Mouse intranasal immunization was
shown to elicit both systemic and mucosal responses (Wagachchi
et al., 2018; Clow et al., 2020).

BIOTECHNOLOGICAL APPLICATIONS
OF FCT PROTEINS

Covalent linkage between proteins has been employed in
therapeutics, biomaterials, diagnostics, and vaccines (Reddington
and Howarth, 2015). Several methods have been used to

generate stable protein complexes with diverse features related
to efficiency, specificity, and stability (Rashidian et al., 2013;
Antos et al., 2016; Stevens et al., 2016). For example, a
cross-linking method based on an intramolecular isopeptide
bond of FctA from an M1 strain has been reported (Zakeri
and Howarth, 2010; Abe et al., 2013). FctA was split into
two fragments at the final b-strand, with one fragment
(pilin-C, residues 18–299) containing the reactive K179 and
the other termed isopeptag consisting of 16 amino acids
including reactive N303. These two fragments spontaneously
formed an isopeptide bond in vitro and in E. coli as well
as on the surface of mammalian cells. The reaction yield
and rate were independent of temperature (range 4–37◦C)
and pH (range 6–8) in several conventional buffer systems,
thus highlighting numerous advantages over other methods
(Zakeri and Howarth, 2010).

Attempts of applying engineered FctA of an M1 strain as
a protein shackle have also been reported (Matsunaga et al.,
2013). By utilizing the intramolecular isopeptide linkage of FctA,
the molecule could spontaneously polymerize into nanochains
under reductive conditions. Later, the Howarth laboratory
investigated the feasibility of exploiting fragments of other
proteins containing isopeptide bonds. The SpyCatcher-SpyTag
system is based on the isopeptide bond formed in the CnaB2
domain (K31-D117) of FbaB of FCT-3 strains (Terao et al., 2002;
Hagan et al., 2010; Zakeri et al., 2012). The CnaB2 domain
was split into two fragments, a 13-residue peptide from the
C-terminal β-strand containing reactive D117 (SpyTag), and the
rest of the 138-residue fragment termed SpyCatcher containing
the reactive K31 and catalytic E77. Those fragments formed a
covalent bond with high affinity under a wide range of conditions
(Zakeri et al., 2012). A distinct tag-catcher system, SdyTag-
SdyCatcher, has also been engineered from the CnaB domain of a
fibronectin-binding protein from S. dysgalactiae (Tan et al., 2016).
Subsequently, the SpyLigase-SpyTag-KTag system was developed
from the SpyCatcher-SpyTag system (Fierer et al., 2014). Briefly,
SpyCatcher was split into two factors, the scaffold protein
SpyLigase, and the 10-residue peptide KTag containing catalytic
E77 and K31, so that the active lysine, aspartic acid, and catalytic
glutamic acid residues could be separately distributed into three
factors. A mixture of the three factors generated a linkage between
SpyTag and KTag, though the formation was dependent on strict
buffer conditions and low temperature (Veggiani et al., 2016).
The SpyCatcher-SpyTag system was then further modified with a
phage display selection as well as more rational design to reach an
improved affinity, and applied to the Spy&Go protein purification
system with a non-reactive SPyCatcher mutant (SpyDock) for
affinity purification of Spy-tagged proteins (Keeble et al., 2019;
Khairil Anuar et al., 2019; Keeble and Howarth, 2020).

Similar systems have also been developed using the D4
domain of the pneumococcal pilin RrgA (Izoré et al., 2010;
Veggiani et al., 2016). This domain contains an isopeptide bond
formed between K742 and N854, which is catalyzed by the
adjacent catalytic residue E803. Two fragments, SnoopCatcher
and the 12-residue peptide SnoopTag, are generated, which
contain N854/E803 and K742, respectively. This system can
be simultaneously used with the SpyCatcher-SpyTag system
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(Veggiani et al., 2016). The SnoopCatcher-SnoopTag system
was also developed into the SnoopLigase-SnoopTagJr-DogTag
three-component system (Buldun et al., 2018), and showed
a higher level of efficiency and required less strict buffer
conditions as compared to the SpyLigase-SpyTag-KTag system.
SpyCatcher-SpyTag and related systems have been used in a wide
variety of applications, including protein labeling, stable and
directional protein display on surfaces and particles, modular
covalent assembly with scaffolds of multimeric structures of
other proteins, and increasing enzyme resilience by cyclisation
(Keeble and Howarth, 2020), as well as for the study of bacterial
proteins (Hatlem et al., 2019). These systems can also be
used in GAS research, such as generation of modular vaccine
antigens, and promoting protein complexes for structural and
functional analyses.

An attempt has also been made to introduce an isopeptide
bond into a non-isopeptide-containing protein. Kwon et al.
introduced lysine, glutamic acid, and asparagine residues, N13K,
Q67E, and P117N, respectively, into rational positions in the non-
isopeptide-containing CnaB-type fold of FctB, with one more
change (V26F) that restricted movement of the engineered lysine
residue to bring it closer to N117 and entrap it in a hydrophobic
environment. Spontaneous formation of an isopeptide bond was
observed and thermal stability was increased. This method for
stabilizing IgG-like proteins could be adopted for engineering
of antibodies that share similar β-clasp Ig-type domains (Kwon
et al., 2017; Young and Baker, 2020).

DISCUSSION

Recent research with streptococcal pili has revealed the
diversity of structure, function, and control of expression and
revealed their potential as vaccines antigens. The revelation
that the major pilin subunit is the T antigen underscored the
importance of pili as an epidemiological marker. Combined
with epidemiological and evolutionary studies, analyses
of the diversity of the genetic organization of the FCT
region indicate a relationship of its components with tissue
tropism (Bessen, 2016). Furthermore, unexpected finding
of an intramolecular isopeptide bond allowed development
of tools with a wide range of applications (Keeble and
Howarth, 2020). However, important pilus-related issues
with regard to clinical and biological consequences await
experimental confirmation.

Important questions have arisen related to pilus binding
partners. In consideration of the positional advantage over
other MSCRAMMs, primary contact with host molecules
and interactions with host cells might be initiated by pili.
In other words, bacteria may evolve to locate an adhesin
at the tip of a long shaft, despite pilus synthesis being an
energy-consuming process. This has inspired a hypothesis
where host cell adherence determines both host specificity
and tissue preference (Bessen, 2016). An especially intriguing
question is which host molecules are targets of the thioester-
containing domain (TED)-mediated linkage of the pilin
adhesin Cpa. Binding partners for some pilin proteins have

been reported although it is unclear if those interactions
confer tissue specificity. Although TED-mediated binding
of the fibronectin-binding protein PrtF1/SfbI to the human
fibrinogen Aα subunit has been revealed, notable differences
seen between structures of TED from various molecules hint
at the presence of target specificity (Walden et al., 2015). The
most prominent differences in Cpa proteins from different
serotypes lie in the N-terminal region that contains a TED
domain, which also raises the possibility of variations in
ligands or binding affinity (Kreikemeyer et al., 2005). To
clarify the relevance of TED-mediated binding for GAS
pathogenesis, further research is needed for identification of
binding partners of Cpa as well as other adhesive pilins whose
ligands remain unknown.

Despite remarkable advances in structural analyses of pilin
and related factors in several different bacterial species it
is not well understood how Gram-positive pilus assembly is
spatially and temporally organized on the cell wall. Detailed
knowledge of the structures of protein complexes, such as
the sortase/full-length pilin complex, will be required to gain
insight into the functionality of sortases, including substrate
specificity. Furthermore, SipA/LepA only exists in FCT-2, FCT-
3, and FCT-4, with the class B sortase SrtC and requirement
of SipA/LepA for pilus assembly in certain FCT forms remains
to be addressed. It has been speculated that the function of
SipA is recognition of pilin sorting signals in a coordinated
manner with SrtC or that it constitutes a scaffold that positions
pilin proteins for optimal sortase transpeptidase activity (Young
et al., 2014b). Solving the structure in complex with full-
length pilin and detailed mutagenesis analyses are expected to
reveal the function.

The regulation of pilus biogenesis is complex and occurs
at several different levels. Temperature dependent regulation
is important in FCT-3 strains. This is primarily governed
by post-transcriptional control of nra mRNA translation via
a stem loop structure in the coding region (Nakata et al.,
2020). The stem loop is positioned proximal to the ribosome
border and is considered to be important for promoting
translation, although other factors such as its distance from
the translation start codon and other mRNA structures around
the Shine and Dalgarno sequence may contribute. This type
of translational regulation leads to the hypothesis that larger
and likely specific subsets of the GAS mRNA repertoire is
thermoregulated during the initial stage of infection in the
throat and skin, where the temperature is lower than core
body temperature. Such information may provide insight into
the contribution of pili to tissue tropism. Differences in the
mechanisms of controlling pilus gene expression between FCT-
3 and other forms may be attributable to variations in pilus
functions, such as sensitivity to the human immune system and
relative contribution to virulence and fitness in the host. In other
FCT forms, nra is replaced with rofA and molecular epidemiology
suggests that these genes have undergone balancing selection
(Bessen et al., 2005).

A long-standing goal of GAS research is development of an
effective vaccine. Clinical trials of a multivalent M protein vaccine
have been conducted (Kotloff et al., 2004). Along with factors

Frontiers in Microbiology | www.frontiersin.org 13 February 2021 | Volume 12 | Article 616508

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-616508 February 2, 2021 Time: 20:12 # 14

Nakata and Kreikemeyer Group A Streptococcal Pili

extracted by use of a population-derived sequence approach
(Davies et al., 2019) and antigens shown to be effective in
animal studies (Azuar et al., 2019), T antigens have also been
demonstrated to be viable vaccine antigen candidates. Unlike a
multivalent M protein vaccine, there are fewer T type variations.
However, comparative structural analyses of three two-domain
T antigens (FctA), including T3, T13, and T18, revealed that the
overall core structure is conserved and variations are distributed
through the entire region (Young et al., 2019). Ideally, a candidate
vaccine antigen would comprise a multivalent linkage of whole
T antigens or domains. Further comparative crystal structure
analyses and examination of pilin regions for antigenicity may
lead to refinement of protective epitopes and development of a
peptide-based pilin vaccine. Theoretical findings of combinations
of a multivalent vaccine with other antigens, such as a family
of M-related proteins (Frost et al., 2020), have demonstrated
increased vaccine coverage and enhanced effectiveness (Courtney
et al., 2017). Such combinations with other vaccine antigens
might offer potentiating effects on prophylactic efforts for
combatting GAS infections.
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