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Abstract

Myopia has become a major cause for concern globally, particularly in East Asian countries. The

increasing prevalence of myopia has been associated with a high socioeconomic burden owing to

severe ocular complications that may occur with progressive myopia. There is an urgent need to

identify effective and safe measures to address the growing number of people with myopia in the

general population. Among the numerous strategies implemented to slow the progression of

myopia, longer time spent outdoors has come to be recognized as a protective factor against this

disorder. Although our understanding of the protective effects of outdoor time has increased in

the past decade, considerably more research is needed to understand the mechanisms of action.

Here, we summarize the main potential factors associated with the protective effects against

myopia of increased outdoor time, namely, exposure to elevated levels and shorter wavelengths

of light, and increased dopamine and vitamin D levels. In this review, we aimed to identify safe and

effective therapeutic interventions to prevent myopia-related complications and vision loss.
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Introduction

The increasing prevalence of myopia over

the past few decades has become a signifi-

cant cause for public health concern glob-

ally. In Singapore, the prevalence of myopia

among adults older than age 40 years is

38.9%,1 contrary to most Western countries

such as the United States (25.1%),2

Barbados (21.9%),3 and Australia (15%).4

Moreover, the percentage is much higher
among children in East Asia. Research in
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Singapore revealed that the prevalence of
myopia is 62.0% in children age 7 to 9
years5 and in Guangzhou, China, the prev-
alence is 49.7%.6 Among university stu-
dents in central China, the myopia
prevalence is 83.2%,7 and it is 96.5% in
19-year-old men in Seoul, Korea.8 The
reported prevalence of myopia is 11.9% in
Australia,9 20.0% in the United States,10

21.1% in urban India,11 and 16.5% in
Nepal.12 Considering the high prevalence
of myopia in Singapore, the average cost
of eye examinations and visual aid devices13

is 148 USD/child/annum and 709 USD/
adult/annum, with additional costs for
laser in-situ keratomileusis (LASIK) surgi-
cal procedures in adults.14 Similarly, the
economic costs associated with myopia are
relatively high among adults in the United
States, estimated to be USD 4.6 billion/
year.15 Additionally, it has been projected
that by the end of this decade, 2.5 billion
people, accounting for one-third of the
world’s population, will be diagnosed with
myopia.16

Owing to the increasing global popula-
tion together with the financial burden
caused by myopia, it is crucial to promptly
develop safe and effective therapeutic inter-
ventions for myopia. A considerable
amount of research has been conducted
and a number of interventions implemented
to prevent the onset or slow the progression
of myopia; these include atropine, special
multifocal-like soft contact lenses, executive
bifocal or progressive addition lenses, and
overnight orthokeratology.17–23 Increasing
the amount of time spent outdoors has
demonstrated protective effects against the
onset and progression of myopia.24,25

Therefore, in this paper, we provide a
review of the major mechanisms that are
potentially involved in the protective effects
of increased outdoor time against myopia.
We performed a search of the published lit-
erature and identified four main mecha-
nisms, those involving high light levels,

light chromaticity and spectral composi-
tion, dopamine, and vitamin D. We sum-
marize each below.

High light levels

Over the past century, high daylight levels
have come to be considered an effective
method to prevent myopia.26 Numerous
eye specialists have suggested that an ade-
quate amount of daylight at school is nec-
essary for children.27

With rapid technological development,
several studies have been performed to
identify the evidence and potential mecha-
nisms of the protective effect of high levels
of daylight. Animal studies in guinea pigs,28

chicks,29–31 and monkeys32,33 have revealed
that high light levels (15,000 to 30,000 lux),
both in the form of natural daylight and
artificial laboratory light, could retard
experimental myopia. In population-based
studies, a greater degree of exposure to day-
light was observed to be associated with less
axial eye growth.34

In a number of epidemiological and
animal studies, dopamine (DA) release has
been suggested to be triggered by high-
intensity outdoor light and rapid changes
in luminance. Because DA is an ocular
growth inhibitor,35–38 this release may
inhibit myopic development.39 This mecha-
nism may explain the protective effect of
high light levels. The characteristics of relat-
ed studies are shown in Table 1.

Light chromaticity and spectral
composition

Studies in chicks40 and guinea pigs41–43

(Table 2) have revealed that the spectral
composition of light can impact ocular
growth. Exposing guinea pigs to short
wavelength light led to hyperopic refrac-
tion, and exposing chicks to long wave-
length light resulted in shorter axial
length. In these studies, because the light
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was not uniformly focused on the retina,

there was a remarkable reduction in the

contrast of wavelengths that were focused

away from the retina.14 Short wavelengths

of light (blue light) are focused closer to the

lens owing to dispersion produced by

the longitudinal chromatic aberration of

the human eye; to compensate for this, the

eyes develop hyperopic refraction.

According to another study,44 myopia is

caused by an excess of red light and hyper-

opia by excess blue light, also suggesting

that shorter light wavelengths may be pro-

tective against myopia. Because daylight is

primarily composed of blue light, myopic

inhibition may be attributable to longer

time spent outdoors (Figure 1).

Dopamine (DA)

DA is a neurotransmitter that has an

important role in the retina, mediating eye

functions such as visual signaling, ocular

development, and refractive adjustment.
Over the past few decades, a considerable

amount of research in vertebrates has

revealed that light and endogenous circadian

rhythms may affect the release of DA.45–47

Additionally, scientists believe that retinal

DA concentrations indicate the release and

synthesis of DA.46,48 Furthermore, pharma-

cological and genetic studies have provided

additional clues about the importance of

light or visual input in retinal DA signaling

and refractive development.37

Light affects dopamine

Several studies have previously reported

that bright light has a protective effect

against myopia,49–53 which had been attrib-

uted to increased levels of retinal DA and

the activation of DA receptors. A 2010

study suggested that blocking D2-like

receptor antagonist and spiperone has a

Table 2. Characteristics of studies investigating
the spectral composition of light and myopia.

First author (year) Location Sample type (size)

Rucker FJ (2012) United States Chicks (n¼ 45)

Long Q (2009) China Guinea pigs (n¼ 30)

Liu R (2011) China Guinea pigs (n¼ 54)

Jiang L (2014) China Guinea pigs (n¼ 81) Figure 1. Hypothesis: Daylight composed of
shorter-wavelength light impacts ocular growth.

Table 1. Characteristics of studies investigating the relationship of high light levels with myopia.

First author (year) Location Sample type (size)

Jiang L (2014) China Albino guinea pigs (n¼ 303)

Cohen Y (2012) Israel Chicks (n¼ 166)

Backhouse S (2013) New Zealand Chicks (n¼ 52)

Li T (1995) United States Chicks (n¼ 38)

Iii ELS (2012) United States Infant rhesus monkeys (n¼ 58)

Smith EL 3rd (2013) United States Monkeys (n¼ 64)

Read SA (2015) Australia Children (n¼ 101)

Rose K (2008) Australia Children (n¼ 752)

Rose K (2008) Australia Children (n¼ 4132)
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protective effect against bright light.52

Image contrast and light intensity, detected
by photoreceptors, have been implicated in
the release of DA and development of
myopia. Therefore, by increasing retinal
DA levels, exposure to bright light may
limit myopia development, as an environ-
mental intervention.

Typically, two steps are involved in the
synthesis of DA from tyrosine, in which
tyrosine hydroxylation is considered the
highly-regulated and rate-limiting step. It
has also been suggested that with concom-
itant activation of tyrosine hydroxylation,
which maintains steady-state reserves of
DA upon the enhancement of neuronal
activity, light may stimulate the synthesis
and release of DA.54,55

The above results indicate that outdoor
time may affect the concentration and
release of DA.

Dopamine affects myopia

After birth, the growth and refractive devel-
opment of the eyes are regulated by several
messenger molecules, as explained by the
biochemical pathways elucidated in several
studies using animal models.56–58 DA,
released by amacrine and interplexiform
cells,59 plays a particularly important role
in the modulation of the vertebrate visual
system.60

In a number of experiments, DA levels
have been raised by either injecting DA
directly into the eye or increasing DA syn-
thesis with L-dopamine (L-DOPA).61,62

Furthermore, DA signaling has also been
increased with the use of apomorphine, a
nonselective DA receptor agonist,63 and
2-amino-6,7-dihydroxy-1,2,3,4-tetrahydro-
naphthalene hydrobromide.49,64 These
results support the hypothesis that increas-
ing DA receptor activity or DA levels has a
protective role in myopia.

Considering the findings of genetic and
pharmacological studies using mouse

models of myopia, a working hypothesis

about homeostatic control of myopia had

recently been proposed, which suggests

that D1- and D2-like receptors have contra-

dictory roles in maintaining homeostasis of

the emmetropization process; activation of

D1-like receptors leads to hyperopia and

that of D2-like receptors leads to myopia

(Figure 2).65

Dopamine-based strategies

DA-based strategies have been used to pre-

vent the occurrence and to delay the prog-

ress of myopia in several studies.

Reportedly, DA agonists may induce selec-

tive inhibition of form-deprivation myopia,

without affecting normal visual develop-

ment in mice.63 Additionally, the influence

of L-DOPA on amblyopic vision has been

reported in three studies.66–69 However,

some researchers disagree with those con-

clusions;69 there is a need for further studies

using larger sample sizes of children with

myopia, to clarify the effect of L-DOPA

in the prevention of myopia.
The inhibitory effect of DA on myopic

eye growth has been evidenced in several

works and has recently been considered as

a target for treating myopia. However, in

Figure 2. Hypothesis: Homeostatic control of
myopia via the opposing effects of D1-like and D2-
like receptors.
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the development of myopia, several key
questions regarding DA signaling need to
be addressed. Further research is necessary
to elucidate the exact mechanism of action
and potential interactions with retinal path-
ways of DA.

Vitamin D

Vitamin D is considered a powerful cellular
differentiation regulator with strong anti-
cancer and antiproliferative effects.70

Vitamin D may regulate the length and
refractive degree of the eye,71 which has a
protective effect on myopia. Ciliary muscle
enlargement is considered to structurally
and functionally affect the eyes by increas-
ing the risk of myopia.72 A recent study
demonstrated that the smooth muscle was
found to be larger in the eyes of children
with myopia.73 Vitamin D, which is benefi-
cial to the functioning of smooth muscle,
may subsequently inhibit myopia.
Exposure to solar ultraviolet B radiation
may trigger vitamin D synthesis,74 which
may explain the protective effect of outdoor
activities against the disorder.

It has also been suggested that higher
levels of vitamin D may inhibit myopia
via the following processes: regulating the
growth of the sclera, adjusting the smooth
ciliary muscle (necessary to achieve a clear
retinal image), signaling and regulating the
cell cycle,71,75–77 as well as the antiprolifer-
ative effect of vitamin D. Studies performed

in British children revealed that those who
spent more time outdoors appeared to have
increased total vitamin D levels, although
after controlling for the amount of outdoor
time, blood vitamin D levels were not sig-
nificantly associated with the incidence of
myopia. This indicates that vitamin D
may be a biomarker for the amount of
time spent outdoors. Thus, there is a need
for further research to separate the direct
effect of vitamin D and its use an alterna-
tive to outdoor sunlight exposure.

Other potential mechanisms

According to another hypothesis, the
dioptric pattern of the outdoor visual envi-
ronment has been suggested to inhibit
myopia.78

A more uniform pattern of retinal defo-
cus has been considered to be beneficial in
protecting against myopia and may influ-
ence ocular growth. Additionally, in an out-
door environment, objects are typically
further away with fewer dioptric variations
across the visual scene, providing a more
uniform pattern of retinal defocus. On the
contrary, in an indoor visual environment,
objects are much closer; the dioptric value is
higher at the fixation point and decreases
towards the periphery, which leads to
higher levels of retinal defocus.

Several studies have proposed potential
mechanisms associated with the protective
effect of time spent outdoors. In an outdoor

Table 3. Main potential mechanisms involved in the protective effect against myopia of time spent
outdoors.

Possible mechanism Summary

High light levels Affects axial eye growth and the release of dopamine.

Light chromaticity and

spectral composition

Shorter wavelengths (daylight) can prevent myopia.

Dopamine Outdoor time affects the concentration and release

of dopamine, which inhibit myopic development.

Vitamin D Vitamin D synthesis may be triggered when outdoors,

which inhibits myopia.

Zhang and Deng 5



visual environment, the pupil constricts
under high light intensity, and there is an
increase in the accommodative demand for
viewing distant objects, resulting in better
clarity of the retinal image and an increased
depth of focus.35,36,79

Conclusion

Currently, approximately 25% of the global
population has myopia.80 If the current
increasing trend continues, this percentage
will reach 50% (4.76 billion people) by
2050, including nearly one billion people
with severe myopia. This situation amounts
to a state of emergency. It is therefore cru-
cial to find effective ways to address
myopia-related complications.65

Population-based data have demonstrat-
ed the protective effect of time spent out-
doors, similar to the results of outdoor
intervention programs. In this review, we
have summarized four possible mechanisms
involved in the protective effect against
myopia of longer duration of time spent
outdoors (Table 3). Further research is
needed to explain these mechanisms, and
DA-based strategies have yet to be used
successfully in clinical settings. To prevent
myopia at younger ages, measures must be
implemented, such as conducting school
classes outdoors, incorporating more out-
door activities into the school curriculum,
and providing additional outdoor programs
for children on weekends.
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