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Abstract

Modeling real-life transportation problems usually require the simultaneous incorporation of
different variants of the classical vehicle routing problem (VRP). The periodic VRP (PVRP)
is a classical extension in which routes are determined for a planning period of several days
and each customer has an associated set of allowable visit schedules. This work proposes
a unified model framework for PVRP that consists of multiple attributes or variants not previ-
ously addressed simultaneously, such as time-windows, time-dependence, and consistency
-which guarantees the visits to customer by the same vehicle-, together with three objective
functions that respond to the needs of practical problems. The numerical experimentation is
focused on the effects of three factors: frequency, depot centrality, and the objective func-
tion on the performance of a general-purpose MILP solver, through the analysis of the
achieved relative gaps. Results show higher sensitivity to the objective functions and to the
problem sizes.

Introduction

Transport decisions in modern companies are made in the context of integrated supply chains.
Tactical and operational levels of transport comprise medium and short-term decisions,
including detailed planning of visit schedules, routes and load plans. Correct synergy between
such decision levels contributes to the consolidation of the supply chain and is a recurrent
challenge for planners [1, 2].

The vehicle routing problem (VRP) is a problem that has been widely used for the represen-
tation of distribution activities and transportation of goods [3]. The VRP is based on a set of
points and available vehicles, and for each vehicle the points to be visited and their order are
decided. The classic objective is that the total distance covered by each vehicle is the minimum
and that each point receives exactly one visit. Features of particular case studies are added to
the basic VRP model. A taxonomy of the VRP model family is detailed in [4]. For the study of
supply chain management problems, variants have been created that emphasize tactical aspects
such as the periodic vehicle routing problem (PVRP), while others emphasize operational
aspects, such as the vehicle routing problem with time windows (VRP-TW) and the time
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Table 1. List of acronyms.

dependent vehicle routing problem (TDVRP). Mixed integer linear programming (MILP)
models are proposed to represent these variants, in which points of interest are usually called
customers and the starting point is called depot [3-5]. To ease the reading, Table 1 lists the
meaning of the acronyms used throughout the paper.

In the VRP-TW each customer must be visited within a certain time interval. In TDVRP,
the travel time between two customers depends on the state of traffic at the time of departure.
The PVRP looks for building a plan of optimal routes for the entire planning horizon (i.e.
more than one day), knowing in advance the frequency of visits demanded by each customer.
It involves deciding the pattern of visits for each customer, the selection of the vehicles that
visit each customer, and the visit order. In the literature we find models for the VRP that
simultaneously capture two of these variants: PVRP and VRP-TW or TDVRP and VRP-TW
[6, 7]. Three important variants of the PVRP are revised in [8]: the PVRP with time windows
(PVRP-TW), the multi-depot PVRP, and the PVRP with service choice, which includes the
service frequency as a decision variable, given that customers are visited a given number of
times over the period, with a schedule that is chosen out of a menu of schedule options.

Some papers deal with additional constraints that improve customer service quality in VRP
problems. In [9] a consistent VRP (ConVRP) considers that the same driver visits the same
customers throughout the planning horizon, at roughly the same time on each day that these
customers are visited. In [10] a generalized ConVRP is considered, where each customer is vis-
ited by a limited number of drivers and the variation in the arrival times is penalized in the
objective function. A collection of vehicle routing problems in which consistency consider-
ations are relevant are described in [11]. The consistent PVRP (ConPVRP) problem is referred
with this name in [12] but it was previously addressed in [2, 13]. The problem addressed in [2,
13] is a consistent PVRP with time windows (ConPVRP-TW) where the model selects a pat-
tern of visits to each customer, according to its frequency of visit, which depends on the cus-
tomer’s sales volume: weekly (the same day each week; e.g. every Tuesday), semiweekly (two
visits per week; e.g. Monday and Thursday or Tuesday and Friday), bimonthly (2 times a
month; e.g. in the first and third weeks or in the second and fourth weeks, but always on the
same day of the week), and monthly. The objective function considered is the sum of travel
time needed to supply all customers. In [2], the problem was divided into phases, and a heuris-
tic solution method is highlighted for Phase 2. A non-linear model was solved with a heuristic
method that uses in one of its steps a well-known integer linear problem as a black box. In
[13], a model and two heuristics are proposed to solve the ConPVRP just described.

All the previous ones have been useful for the analysis of prototypical cases, nevertheless,
there are problems that require to consider simultaneously periodicity, time windows and

Acronym Meaning of the acronym Acronym Meaning of the acronym
SPTW Shortest Path Problem with Time Windows ConVRP Consistent VRP

ESPTW Elementary SPTW PVRP Periodic VRP

ESPTWQ ESPTW and capacity constraint TDVRP Time Dependent VRP
TSPTW Traveling Salesman Problem with Time Windows PVRPTW PVRP with Time Windows
CVRP Capacitated VRP TDPVRP Time Dependent PVRP
DCVRP Distance-Constrained VRP TDPVRP-TW TDPVRP with Time Windows
VRPSDP VRP with Simultaneous Pickups and Deliveries ConPVRP Consistent PVRP

VRPB VRP with Backhauls ConPVRP-TW Consistent PVRPTW
VRPTW VRP with Time Windows ConTDPVRP Consistent TDPVRP
VRPTWPD VRPTW with Pickups and Deliveries ConTDPVRP-TW Consistent TDPVRP-TW

https://doi.org/10.1371/journal.pone.0237014.t001
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time dependency, as the design of routes for companies of distribution of goods in urban cen-
ters [2]. In this context, using a model that ignores any of the variants can lead to inefficient
plans that generate additional costs and high percentages of non-compliance.

This article presents a unified modeling framework for the ConPVRP, where the service
pattern for a given frequency is a decision of the model. This modeling framework combines
the variants of ConPVRP-TW, consistent and time dependent PVRP (ConTDPVRP), and
consistent and time dependent PVRP with time windows (ConTDPVRP-TW); taking into
account two different objective functions that are not so usual but important in some real
applications: the minimization of the maximum duration of a route, which is related to operat-
ing costs, the minimization of the time in which the last customer is visited, which is related to
their degree of satisfaction [14], and also an objective function more used in literature: mini-
mization of the total transportation time over the planning horizon [12].

A general real-world context that inspires the development of the framework for ConPVRP
is as follows: The company has a set of sale points (or customers) that must be visited at a fre-
quency determined by its sales volume (or demand) by one of the trucks of the company fleet.
There are 4 types of visit frequency: weekly (the same day each week, for example every Tues-
day), biweekly (two visits per week, e.g. Monday and Thursday or Tuesday and Friday),
bimonthly (2 times a month, e.g. in the first and third weeks or the second and fourth weeks,
but always on the same day of the week), and monthly. Trucks must start and finish their jour-
ney at the central depot. Each customer must always be visited by the same truck. Several cus-
tomers can be visited on the same day by the same truck. The trucks are available from
Monday to Friday. Though the trucks have a limited capacity, it is assumed that the total avail-
able travel time is the dominant constraint [2]. This is why f1 and f2 become relevant objective
functions.

This paper makes two contributions to literature, being the first one of modeling-type, and
the second one a numerical-type contribution; as follows:

1. A unified model framework for the multi-attribute ConPVRP inspired by real problems.
The framework includes variants, and their relationships, not considered simultaneously
before. In addition, it includes the analysis of three objective functions, two of them uncom-
monly discussed but inspired by real problems.

2. The experimentation design includes the simultaneous analysis of three relevant factors to
these types of problems: frequency, depot centrality, and the objective functions. We pro-
vide experimental evidence of how the two non-conventional objective functions are harder
problems to solve, and that some active constraints found in the literature actually do not
improve the performance of the model.

The remainder of this paper is structured as follows: Detailed literature review is presented
in next section. Then we present the formulation of the modeling framework. Next, we
describe the experimental design, the experimental results and their respective analysis.
Finally, we summarize our work and propose lines for future research.

Literature review

This literature review has been divided into three subsections. The first one contains the
main proposals for the modeling and solution of the PVRP, including previous work related
to ConPVRP. Next subsection explores the research dedicated to TDVRP, emphasizing tech-
niques for formulating time dependent travel times or velocities, which inspired the way the
time dependence issue is addressed in the proposed framework. Finally, the last subsection
mentions different researches oriented to obtain modeling frameworks for the multi-
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Table 2. Summary of consistent-VRP review.

attribute VRP. It is worth noting that no previous studies addressing the TDPVRP variant
were found. In particular we have not found MILP formulations for the ConTDPVRP and
ConTDPVRP-TW cases, both included in the modeling framework proposed in the present
work.

Periodic VRP and variants

The PVRP was presented in a seminal article by Beltrami & Bodin at 1974 in the context of a
route design problem for garbage collection [15]. Since its inception, multiple variants have
been added to the PVRP combining tactical and operational features for real case analysis.
Russell et al. [16] addressed a problem close to PVRP for planning weekly visits and balancing
the vehicle requirements. Christofides et al. [17] proposed a formal definition of the PVRP and
identified the three decisions that make up the problem: (i) selection of visit patterns, (ii) selec-
tion of customers that will be visited by each vehicle during each day, and (iii) definition of the
order of visits. They presented an integer programming (IP) formulation, in which the PVRP
problem was interpreted as an extension of the routing problem with a pattern selection deci-
sion included.

In [8] two approaches to the PVRP are distinguished depending on how the decisions are
prioritized: Assignment routing problem if the selection of visit patterns is prioritized, and
periodic routing problem when the construction of routes is prioritized. The first approach is
applied to cases in which tactical decision prevails, as is the case of [2] and [13], while the sec-
ond approach is specific to situations in which the interest lies in operational decisions.

There are several precedents of the inclusion of additional operational features in the
PVRP. In [6] the PVRP was extended to the PVRP-TW and used a modified data set for the
PVRP including randomly generated time windows for each customer. Cantu et al. [18] inves-
tigated a multi-depot periodic vehicle routing problem (MDPVRP) with due dates and time
windows motivated by the case of a Mexican brewing company. The authors used a set of arti-
ficial data constructed from real information provided by the brewing company. Related
works adding the constraint of consistency of the drivers along the visits of the planning hori-
zon can be found in [13] and [12]. Table 2 shows a summary of the features dealt in these
works.

There are some works aimed at obtaining stronger formulations for PVRP variants. In [12]
valid inequalities for a consistent PVRP are derived from the generalized multistar inequalities
presented in [19], where vehicles are considered of unitary capacity. In [20] the authors intro-
duced the flexible periodic vehicle routing problem (FPVRP), and derived valid inequalities
related to the flow balance. They implemented optimality cuts regarding the load of the

Paper | Type of model Attributes Objective function Solution method Number of Dataset
customers
[2] Mixed integer non Scheduling visits to customers Minimizing the total Hybrid heuristic 100-1000 A. Escalera
(2014) | linear non convex located in the same cluster in a given | transportation time over the + CPLEX solver
program period planning horizon
[13] Mixed integer non ConPVRP-TW, PVRP-DC Hybrid heuristic: local | 400-2000 A. Escalera
(2018) | linear program search + Gurobi
solver
[12] Integer program PVRP-DC, capacitated Minimizing the total routing cost | Branch & Cut 11-71 Author’s own
(2019) construction
PVRP: Periodic VRP, ConPVRP: Consistent VRP, TW: Time-windows, DC: Driver Consistent.
https://doi.org/10.1371/journal.pone.0237014.t1002
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vehicles when returning to the depot. Both works incorporated constraints for symmetry
breaking based on the indexation of the customers. It is important to note here that in recent
literature research on valid inequalities has concentrated mainly on variants of the capacitated
VRP, see for example [21].

During the first decade, much of the research on the PVRP followed Beltrami’s [15] two
phase solution methods. Russell et al. [22] presented constructive heuristics while Christofides
[17] introduced relaxations to the problem and a two-phase solution method for them. Tan
[23] used a heuristic algorithm based on a previous work of Fisher & Jaikumar [24] for solving
an IP formulation. Both works prioritized the selection of visiting patterns. Chao et al. [25]
adopted an approach similar to Russell & Igo, using an improvement phase after assigning the
visit pattern to each customer.

Cordeau et al. [26] presented a tabu search algorithm applicable to the PVRP-TW. Subse-
quently Drummond et al. [27] proposed a metaheuristic based on genetic algorithms, where
the intensification strategy was reinforced by local search. Regarding exact solution methods,
Francis et al. [28] developed procedures on Lagrangian relaxation of the PVRP formulation as
a linear programming problem. Mourgaya et al. [29] solved a tactical version of the PVRP
using the column generation method. However, to reduce computational complexity, they
chose to solve the subproblems using heuristic techniques. Finally, Vidal et al. [30] proposed
an algorithmic framework for the multidepot PVRP with capacitated vehicles and constrained
route duration, combining population-based evolutionary search and neighborhood-based
metaheuristics.

Time dependent VRP

The TDVRP was first presented in [31] and [32] in 1991 to address VRPs taking into account
the effect of vehicle congestion on plan performance, in urban contexts. A state of the art
review for the TDVRP variant is presented in [33]. The pioneering work of Malandraki &
Daskin [31] and Ahn & Shin [32] raised the need to include in the models the variation in
travel times due to traffic congestion and occasional factors such as accidents. Ahn & Shin
understood the problem as a natural extension of the VRP-TW, while Malandraki & Daskin
posed a situation without time windows. Both works were interested in the computational
complexity of the variant: The last one by taking the case of the time dependent travelling
salesman problem, while Ahn & Shin investigated the increased complexity of the problem
with respect to a problem with time windows and constant travel time, identifying the non-
passing property, later referred to as FIFO in [34], as a desirable condition also related with the
complexity of the problem.

A MILP-type model for the TDVRP was formulated in [31], and their key contribution was
the division of the day into time intervals and the definition of a stepwise travel speed function
over such intervals. The idea of dividing the day into time intervals was taken up in the work
of several authors such as Ichoua et al. [34] and Figliozzi et al. [7]. However, to ensure the satis-
faction of the FIFO property, these authors proposed stepwise speed functions and calculation
of travel time by integration. Most of the current formulations are based on these models,
highlighting their application to new variants such as the green VRP, which aims to minimize
fuel consumption by establishing routes and appropriate schedules [35-37].

The first solution methods for TDVRP were modifications to constructive algorithms for
VRP. In [31] authors adapted the nearest node insertion heuristics and the sequential route
construction when there is time dependency, to deal with TDVRP. Ahn et al. [32] modified
Clarke & Wright savings algorithm to solve a TDVRP-TW. Ichoua et al. [34] used tabu search
metaheuristics, and adapted operations to account for time dependency in a TDVRP while
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Hashimoto et al. [38] used iterated local search to resolve TDVRP-TW formulation where
time windows are soft, and like Ichoua et al. made significant modifications to address time
dependence.

In [39] authors investigated the adaptation of algorithms used in the VRP to solve the
TDVRP. When they used metaheuristic based on local search, they recognized that the
improvement of a feasible solution does not only affect the travel times of the customers
involved in the operation, but instead impacts all nodes assigned to a route. A similar phenom-
enon was reported in [40] and [41] when trying to solve the TDVRP by tabu search, defining
specific (2-opt) neighborhood movements to deal with time dependence. Donatti’s ant colony
optimization metaheuristics proposal and Figliozzi’s route improvement algorithms [7] were
presented to deal with the TDVRP without relying on standard local search procedures and
reporting solutions at least as good as those of their counterparts.

Multi-attribute VRP and modeling frameworks

In [42] authors coined the term attribute to refer to the variants, characteristics and types of
decisions that appear in real VRPs. They identified fifteen VRP multi-attributes (MA) that
have been the object of intense study in the literature and the heuristic and metaheuristic tech-
niques used for their solution. Later in [43] the authors described the development of a solver
for MA-VRPs, which they called unified hybrid genetic search metaheuristic and evaluated its
performance through computational experimentation on different instances considering mul-
tiple periods, multiple depots, generalized time windows, time dependence, between other
attributes. These authors focused on the approximate methods of solution but didn’t present a
modeling framework that encompasses the variants that were considered.

In the literature there are several works in which “modeling frameworks” are presented for
families of VRP variants. The Table 3 presents a summary of the most relevant works. Desaul-
niers et al. [44] developed a modeling framework based on integer nonlinear mixed program-
ming. Although the authors include the derivation of the VRP-TW from the proposed
framework, they do not account for periodic or time-dependent problems. Irnich [45] present
a unified modeling framework whose formulation makes use of a routing graph in which any
solution to a MA-VRP is represented by a single cycle called a giant tour. The Irnich’s model-
ing framework includes among other problems the VRP-TW and the PVRP-TW. The frame-
work proposed by Desaulniers [44] is designed for the solution using Branch & Bound (B&B)
methods and column generation, while the Irnich’s framework [45] is aimed at the efficient
implementation of metaheuristics.

Subsequently Puranen et al. [46] present a modeling language or metamodel for the
MA-VRP based on formulations on graphs and assignment functions. In this metamodel the

Table 3. Summary of frameworks for VRP variants.

Paper
(44]
(1998)
(45]
(2008)
(46]
(2011)

Type of model framework Included variants Objective function Projected solution method

Mixed integer non linear programming ESPTW, SPTW, ESPTWQ, TSPTW, Minimizing the total cost | Column generation, Lagrangian
VRPTW, VRPTWPD of routes relaxation

Formulation on graphs: routing graph, giant | CVRP, DCVRP, VRPSDP, VRPB, PVRP, Metaheuristics based on local

tour representation PVRPTW search

Metamodel based on formulation on graphs | CVRP, VRPTW, VRPSDP, VRPB, PVRP, Metaheuristcs based on local
TDVRP, PVRPTW search

SP: Shortest Path Problem, E: Elementary, TW: Time Windows, Q: capacity constraint, TSP: Traveling Salesman Problem, B: Backhauling, P: PVRP, TD: Time
Dependent, C: Capacitated, DC: Distance-Constrained VRP, SDP: Simultaneous Pickup and Deliveries.

https://doi.org/10.1371/journal.pone.0237014.t003
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Table 4. Summary of model framework.

VRP variants are not formulated as mathematical programming problems, but it is able to
express many variants among which VRP-TW, PVRP, PVRP-TW, and TDVRP stand out.
Puranen’s modeling language is aimed at the efficient implementation of metaheuristics [46].
The consistency attribute is not mentioned in any of the three modeling frameworks men-
tioned above.

The work of Rodriguez et al. [12] deals with the ConPVRP. However, our proposal presents
multiple differences with respect to this one: In [12] the model considers a minimum number
of customers per route, without clarifying the real-life problem conditions that justify such an
assumption; in contrast, the models in our framework do not necessarily consider a minimum
or maximum number of customers per route. We consider two non-conventional objective
functions, while in [12] it is considered a more classical objective function. There are also
methodological differences: in the experimental phase we evaluate the influence of different
characteristics of the constructed instances on the solution, and the maximum computation
time set is half of the time dedicated in that work.

During the construction of the state of the art we did not find any reference in which a
model is formulated for the ConPVRP that includes the attributes of time windows and time
dependency.

Model framework

The model framework proposed in this work considers the following variants of the
ConPVRP: ConPVRP-TW, ConTDPVRP and ConTDPVRP-TW. First, the structure of the
model framework is schemed in Table 4. Next, the objective functions selected are described
and justified, and finally, the model framework is presented in detail.

Table 4 schematizes the variants that are analyzed and distinguishes the specific constraints
of each variant from the core constraints of the ConPVRP, by indicating the numbers of the
equations that constitute each one. The core VRP constraints reflecting consistency and peri-
odicity are included in the column “all models”. Constraints in the next column are needed in
the models that don’t consider time-dependence, in contrast with the fourth column that iden-
tifies the constraints that are exclusively used if the model considers time-dependence. The
time-windows variant requires the addition of the constraints in the last column. The addi-
tional valid constraints that were revised in the numerical experimentation are also optional
and considered in all models.

The set of constraints shaping all variants considered in this work can be used to optimize
the function that better fulfil the researcher’s needs. The objective functions equations
included in the framework, and the constraints needed to connect them with the rest of the
model, are indicated in their respective cell in Table 4.

The model framework proposed includes three options of objective functions:

Objective Constraints corresponding to conPVRP models included in the framework

functions All models Models without TD Models with TD Models with TW
ConPVRP, ConPVRP-TW, ConTDPVRP, ConPVRP, ConTDPVRP, ConPVRP-TW,
ConTDPVRP-TW ConPVRP-TW ConTDPVRP-TW ConTDPVRP-TW

For all three (4-13), (32) + additionals: (28-30), and (31) instead | (17) (18), (21-25) (14-16)

functions (11)

Only for f1 (1), (26) (20)

Only for f2 2), (27) (19)

Only for f3 (3)

https://doi.org/10.1371/journal.pone.0237014.t004
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o (f1) that minimizes the maximum duration of a route.
« (f2) that minimizes the time in which the last customer is visited.
« (f3) that minimizes the total transportation time over the entire planning horizon.

(f1) and (f2) are functions of the makespan minimization type. According to Braekers et al.
[4], they are not considered standard objective functions although both are based on time or
distance. These functions have been used in parcel applications [47], load balancing in home
health services [48], manufacturing processing times [49]. Other practical problems where (f2)
gains importance is in bus routing, where the maximum travel time of the first student col-
lected in the route wants to be minimized [50, 51]. (f3) has been added in the analysis due that
it is one of the standard and most common objective functions explored in VRP. This inclu-
sion will allow future benchmark or experimental comparisons. Examples of VRP studies con-
sidering this function are [7, 12, 20-22, 39, 52].

The mathematical model

Scalar parameters

n: number of customers

t_days: number of days in the planning horizon

m: number of available vehicles

p_num: number of visiting frequencies

D: maximum working day length

h: number of time intervals in a day

€: A positive small enough number

Indices

i, j: customers, depot

I: days

k: vehicles

p: visiting patterns

u: intervals that make up a day

f: visiting frequencies

Sets

V:={1,-- -, n+ 2}: the first element in V is the initial depot, the last element is the “final”
depot (i.e. the depot “replicated”); and in between are the customers.

VI={1,---, n+ 1}: the initial depot and the n customers.

VF:={2,- -, n+ 2}: the customers and the final depot.

VC:={2,---, n+ 1}: customers.

T: the days considered in the planning horizon.

K: available vehicles.

IT: time intervals that make up a day.

IT™: IT excluding the last element.

VCy: customers to be visited with frequency f.

Py. possible visiting patterns to customers in VCr.

Vectorial parameters

d;;: distance between nodes i and j when considering time dependent models. It denotes the
travel time between nodes i and j when considering models without time dependency.

b;: number of visits in the period to the customer i.

a,: 1if day /is included in visit pattern p, 0 otherwise.

T;: service time at node i.
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e;: left end of the time window on customer i.

r;: right end of the time window on customer i.

0,,: the left-end of time interval u.

v,: the considered standard velocity in the time interval u.
Decision variables

xj;: 1if node j is visited after node i on day J, 0 otherwise.

wye 1 if customer or initial depot i is visited by vehicle k over the entire planning horizon.

t!,: The time at which service starts at customer i on the day I by vehicle k.
Yip 1if customer i is assigned to visit pattern p, 0 otherwise.

st + 1 if the service of customer i is finished on day / in the interval u, 0 otherwise.

zmaxi: the maximum duration of a route.
zcustmaxi: the maximum time at which a customer is visited.
Objective functions

fl: minz = zmaxi.
f2: minz = zcustmaxi.
. hy— o
f3: minz = E E g d; - x;.
ieVI jeVF €T

Constraints

Sy, =1, GeVC, f=1.- pnum.

PpEP;

Z xij:Z(a;~yip),Vi€ VC., f=1,---,pnum VIeT.

JEVF j#i peP;

D x,<m, VIET.

jeve

lelf = Z'xi‘nwvv leT.

jeve i€ve

d ox= >, VieVC VIeT.

JEVLij JEVF,iAj

> wy=1, Vie VC.

keK

wy =1, Vke K.

D A <b - (1—wy+w,), Vije VC, VkeK.

leT

X+ x; <3 — (W +wy), VijeVC, i#j, VIeT, VkeK.
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x,=0,VieVC, VIeT. (13)
#,=0,VIeT, VkeK. (14)
th >e, Vie VC, VIeT, VkeK. (15)
th<r—z,VieVC, VIeT, VkeK. (16)
th>d,—D-(2—x,—w,), Vie VC, VleT, VkeK. (17)
th>(d,/v,))—D-(2—x},—w,), VieVC, VieT, VkeKk. (18)
tht7,+d; <t, +D-(1-x),Vije VC, VIeT, VkeKk. (19)
tht7,+d; <t, +D-(1-x),Vie VC, Vje€VF, VIeT, VkeKk. (20)
> s, <1, VieVC, VIeT. (21)
uelT
] I
Zsiu Z iji’ Vl c ‘/C‘7 Vl S T. (22)
uelT jevi
ty+7,<6,,,—e+tD-(1—s,)+D-(1 _inj)v
JjEVF (23)
Vie VC, VYuell-, VieT, VkeKk.
f+7,20,-D-(1—5)~D-(1- Y %),
jEVF (24)
Vie VC, Yuell, VlIeT, VkeK.
tfk +7,+ Z(dij/vu) : S;u < t;k +D-(1— x;),
uelT (25)
VijeVC, VleT, VkeKk.
typoy < zmaxi,V1€ T, VkeK. (26)
th < zcustmaxi,Vi € VC, Vie T, VkeK. (27)
X +x,.,<1, VievC, VleT. (28)
W11 = L. (29)
; ; . .
x+x, <1, Vijev, i#j VIeT. (30)
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x; < L—wy+wy, VijeVC, VIeT, VkeKk. (31)

x,w,y,s € {0,1}, t,zmaxi, zcustmaxi > 0. (32)

The following are the valid constraints for all models:
1. One pattern per customer Eq (4).
2. Any customer should be visited in all days of his pattern assigned Eq (5).
3. The number of routes on any day should be at most the number of vehicles available Eq (6).

4. The number of routes departing from the initial depot is equal to the number of routes
arriving to the final depot Eq (7).

5. Balance at a node: If a route arrives to a node, it must leave from this node to another one
(perhaps the depot) Eq (8).

6. One vehicle should be assigned to each customer Eq (9).
7. The initial depot is assigned to all available vehicles Eq (10).
8. A vehicle can go from one customer to another if both customers are assigned to it Eq (11).

9. A vehicle cannot go any day from the initial depot to more than one customer associated
with this vehicle Eq (12).

10. A route cannot go from a customer to the same one. Eq (13).
11. Constraint Eq (32) specifies the type of variables.

The following are additional constraints that appear in the variants with time windows: The
beginning time of any route is zero Eq (14), the service start time on any customer must be at
least the lower end of its respective time window Eq (15), the service end time on any customer
must be less or equal than the upper end of its respective time window Eq (16).

The arrival time at the first customer of any route is at least the time it takes to travel the
first edge Eq (17) or Eq (18).

1. In the case without TD, d,; represents the time to go from the depot to customer i Eq (17).
2. In the case with TD, dy; represents the distance between the depot and customer i Eq (18).

For the subtours elimination constraints (some from constraints (19) to (25)) we distin-
guish between the following cases:

1. Case without TD:

(a) With objective function f2: If the vehicles goes from node i to j, it is not possible to start
service in j before the time of reaching node i plus service time in i plus travel time from i
tojEq (19).

(b) With objective function f1: The adequate constraint instead of (19) is (20), where the
domain of j is VF, including the node n + 2 (final depot).

2. Case with TD. The constraints are: (21-25)

(a) Anodeiisreached on a day ! during a single time interval u Eqs (21) and (22).

PLOS ONE | https://doi.org/10.1371/journal.pone.0237014  August 3, 2020 11/27


https://doi.org/10.1371/journal.pone.0237014

PLOS ONE A multi-attribute consistent periodic VRP model framework

(b) The vehicles’ speed on the next route section is determined according with the time inter-
val at which the service was concluded in the previously visited customer i Eqs (23) and
(24).

(c) If the vehicles goes from node i to j, it is not possible to start service in j before the time
for reaching node i plus service time in i plus travel time from i to j Eq (25). It is the vari-
ant of the constraint (19) when considering TD.

The specific constraints associated with objective functions are: With f1: (26), and with f2:
(27). When using objective function f3, it is not necessary to include the constraints (26) and
(27) in the model.

The following constraints can be added to any model: constraint (28) prevents a route from
having a single customer as in [12]. The constraint (29) is a possible strategy for breaking the
symmetry inherent in the PVRP definition, previously used in [12]. The constraint (30) is a
valid inequality which indicates that on any given day an edge can only be traversed in one
direction.

Note that the sum of constraints in (31) originates (11), so the set of constraints given by
(31) can be used in any model instead constraint (11). If this is the case, we are talking about a
disaggregated version of the model [53].

Experimental setup

This section describes the characteristics of the numerical experimentation developed to ana-
lyze the behavior of the ConPVRP-TW, with the three objective functions, as described in the
modeling framework. This study will serve as a basis for future research questions concerning
the performance of other models considered in the framework that involve greater computa-
tional complexity. To analyze the ConPVRP-TW three factors are varied: frequency of visits
per customer, centrality of the depot, and the objective function (i.e. f1, f2 and f3). First, we
describe the instances generated to represent practical PVRP problems and then the design of
the experiments that was later conducted.

Instances description

We chose to build our own data set, given that there are no data sets reported in the literature
that allows explicitly the evaluation of the effect of the depot centrality, and as observed in

[12], the classical data for PVRP are highly symmetric in terms of the spatial distribution of the
nodes and the allowed visit schedules of the customers, which generates solutions to the PVRP
that are already driver consistent.

The horizon of the instances analyzed is a week. We consider two different frequencies:
weekly and semiweekly. The instance size, which is denoted it with w, is determined by the
total number of visits during the planning horizon. Thus, sets of w positions were quasi-ran-
domly generated to locate the customers. For a given w, the positions were used in instances,
with three different visit frequencies each, and therefore, different number of customers, in
this way: Instances with weekly frequency (W) use sets of n = w customer positions; instances
with semiweekly frequency (S) use a subset of n = w/2 customer positions, and instances with a
mix of both frequencies (M) use about a half of the positions for each frequency. To clarify the
last case, let’s take as an example the mixed frequency with w = 30 visits: w/2 — 1 = 14 visits cor-
respond to 14 customers with weekly frequency, and the remaining 16 visits correspond to 8
customers with semiweekly frequency, for a total of n = 22 customers. Similarly, for w = 20 vis-
its, w/2 = 10 visits correspond to 10 customers with weekly frequency and the remaining 10
visits correspond to 5 customers with biweekly frequency, for a total of n = 15 customers.
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Table 6. Instance structure Group B.

Number of visits (w)
Frequency w

Number of customers (n) 60
W: weekly, S: Semiweekly, M: Mixed

https://doi.org/10.1371/journal.pone.0237014.t006

Finally, the sets were duplicated and a central depot (C) and an outer depot (NC) were added
to each one.

Three groups were generated with a total of eight data sets in square areas chosen arbi-
trarily. The customer locations were randomly assigned following operational circumstances
consistent to the real problem addressed. For example, Group A instances seek to include situ-
ations where distribution is over suburban areas, comprising a relatively larger area and a low
density of customers. In contrast, Group B instances are intended to reflect cases of “last mile
distribution” in which zoning involves small distribution areas and varying customer density
over a wider range. Two data sets conform Group C that uses Group A setting to test the effect
of the number of visits w when the number of customers # is fixed. Group A has 2 data sets
with the origin (0, 0) as a vertex of the rectangle: the first one with n = 20 customers located in
the box (0, 200) x (0, 100) and a second set with n = 30 customers located in the box (0, 100) x
(0, 120). Group B has four sets with n = 12, 20, 30, and 40 customers each, randomly located in
the box (-4, 4) x (-4, 4), with the origin (0, 0) in the center of the rectangle. Tables 5 and 6
show the instance structure for these six data sets. The first set in Group C is the same set with
n = 20 customers from Group A, see Fig 1(d), and the second one has n = 16 customers located
in the same area of the Group A’s second set as shown in Fig 2.

Fig 1(a), 1(b) and 1(c) show the locations of #n = 30, n = 22 and n = 15 customers respec-
tively, all of them used in instances with w = 30 visits, with weekly, mixed and semiweekly
frequencies, respectively, being the configurations shown in Fig 1(b) and 1(c) subsets of the
configuration shown in Fig 1(a). Fig 1(d), 1(e) and 1(f) show the locations with n =20, n = 15
and n = 10 customers; all of them used in instances with w = 20 visits, with weekly, mixed and
semiweekly frequencies, respectively, being the last two configurations subsets of the configu-
ration shown in Fig 1(d). Fig 1 also identifies the position of the depot for the runs with cen-
tered depot (C), with a red bullet. For runs with outer depot, the location used for the depot
was the origin.

Fig 3(a) to 3(d) show the set of four generated data sets that belong to Group B, with n = 60,
n =40, n = 20 and n = 12 customers, respectively. These locations are used in instances with
weekly frequency (W), and from each of them two subsets are randomly extracted to form
instances with semiweekly (S) and mixed (M) frequencies with the number of customers
specified in Table 6. For instances with centered depot, the depot coordinates are given by the
geometric median of the customer’s locations, while for instances with outer depot, their coor-
dinates were selected so that the centrality is 10%.

Table 5. Instance structure Group A.

Number of visits (w) 30 20
Frequency \i S M \i S M
Number of customers (n) 30 15 22 20 10 15

W: weekly, S: Semiweekly, M: Mixed

https://doi.org/10.1371/journal.pone.0237014.t1005

60 40 20 12
S M w S M w S M w S M
30 45 40 20 30 20 10 15 12 6 9
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Fig 1. Spatial distribution of customers—Group A—Centered depot.
https://doi.org/10.1371/journal.pone.0237014.g001

Other parameters used in the model are: M = 2 vehicles, T'= 5 days, 7(i) = 10 Vi, r; = 120 Vi.
D =150 for Groups A and C instances with centered depot and D = 180 for instances with
outer depot. For all Group B instances D = 50.

All the information required for the replication of the experiments is housed in the paper
repository https://github.com/jamartinec/Data_Paper_Baldoquin_Diaz_Martinez.
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Fig 2. Spatial distribution of n = 16 customers—Group C—Centered depot.
https://doi.org/10.1371/journal.pone.0237014.g002
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Fig 3. Spatial distribution of customers—Group B—Centered depot.
https://doi.org/10.1371/journal.pone.0237014.9003

Experimental design

With the aim of assessing the performance of the model framework discussed above, we con-
ducted the experimental design described in Table 7.

The factors considered are: the frequency, the optimization function, and depot position.
This means that a complete experimentation for a given size involves 18 runs. We present in
this paper the complete experimentation for the six data sets shown in the Tables 5 and 6.

We also study the effect of using the constraint (28) which prevents a route of having a sin-
gle customer, the constraint for symmetry breakage (29), the valid inequalities given by (30)
which states that and edge can only be traversed in one direction on the same route, and the
influence of using the set of disaggregated constraints (31) instead constraint (11).

Performance measures

In this work, we solved the different instances that we have just described using the general-
purpose MILP solver Gurobi-8.1.1. The modeling language used was Pyomo. The experiments
were run in a computer with 8 CPUs Intel™ Xeon™ E5-2670 2.60GHz, operating system Linux
Rocks 6.2. Under the same parameter tuning of the solver, modeling performance is assessed
with two values: the objective function value (OF) and the relative gap (%). Table 8 shows the
values used for some of the most important parameters that can influence the solution process
of a MILP model [54].

Table 7. Experimental design for each number of visits.

Factor Options
Frequency Weekly Semiweekly Mixed
Optimization function fl 2 3
Depot position Center (C) Outer (NC)

https://doi.org/10.1371/journal.pone.0237014.t007
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Table 8. Gurobi parameter tunning.

Parameter | Description Value Effect
Threads | Controls the number of threads used by the parallel MIP solver Default: 0 | Use all the cores available in the machine
MIPFocus | Allows to decide which aspects to prioritize between finding new feasible solutions and | 3 Focuses on improving the best bound
proving that current solution is optimal
TimeLimit | Limits the runtime 3600 Stops the solution process after 1 hour of starting
the algorithm
MIPGap | Relative MIP optimality gap Default: The solver will therminate when the absolute gap
le-4 is less than MIPGap

https://doi.org/10.1371/journal.pone.0237014.t008

The B&B algorithms used by the solver to solve MIP problems keep the best integer solution
found along with its objective function value z, this is called the incumbent solution. If the
problem is a minimization one, 2 is an upper bound for the optimal solution of the original
MILP formulation. Further details of the B&B algorithms can be found in [55]. At any time
during the B&B search, there is also a lower valid bound, called the best bound z*, which is
obtained by taking the minimum of the optimal values of the objective function on the leaf
nodes. The absolute gap is the difference between the bounds, i.e. gap = z — z*. The relative
gap is obtained by dividing the absolute gap by the best lower bound, that is rel_gap = gap/z*.
When the gap is less than a small value ¢, the incumbent solution is returned as the optimal for
the original problem [54, 56].

The choice of the relative gap as the main performance measure is consistent with Klotz &
Newman [57], who showed that through careful formulation and algorithmic parameter tun-
ing, the optimizer performance can be improved in terms of the optimality gaps (%). In addi-
tion, recognizing that commercial solvers are largely a black box, studying the effect of certain
model constraints, remains a valid research question [58]. On other hand, the OF serves to
compare variants of the same model, and is the typical performance measure of optimization
models (for example, [59, 60]). Results reported are the values obtained after a fixed maximum
computation time of one hour. Time selection obeyed to a preliminary experimentation with
10-hour runs, where it could be observed that the best lower bounds where achieved in this
period, and following [57], good lower bounds better reflect the difficulty of a model solution
than other aspects of the solution process.

Results

This section shows the results of the experimental runs for Groups A, B and C, in Tables 9 to
16, followed by a brief reading of the most outstanding values. Statistical analysis and further
discussion is presented in the following section.

Tables 9 and 10 report the experimental results obtained by using Group A instances, and
Tables 11, 12, 13 and 14 report the results by using Group B instances. The experiments results
in which the frequency is varied given a fixed number of customers n, are recorded in Tables
15 for n = 20 and 16 for n = 16. Each line in the tables specifies the objective function, or the
combination of objective function and additional constraint that has been tested.

Table 9 shows that optimality is reached only with instances with objective function f3 and
variant f3 + (31), centered depot and n = 15 customers. In general, f3 and variant f3 + (31)
present better gap values than instances with f2, and 2 + (31). f1 instances have 100% gap
which usually means that the solver has not yet computed a lower bound obtained as optimal
solution for a linear programming relaxation. No consistent effect of the additional constraints
is observed.
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Table 9. Experimental results w = 30 visits (Group A).

Visits (w) 30
Depot C NC
Frequency W (n =30) M (n=22) S (n=15) W (n =30) M (n=22) S (n=15)

OF % OF % OF % OF % OF % OF %
f1 41,00 100,00 48,00 100,00 54,00 100,00 54,00 100,00 56,00 100,00 63,00 100,00
f2 38,00 78,90 38,00 66,30 46,00 82,60 37,00 64,90 41,99 61,90 46,00 71,70
3 80,00 17,50 110,00 10,00 108,00 0,00 121,00 46,28 136,00 27,94 136,00 19,85
f1 + (28) 48,00 100,00 43,00 100,00 49,00 100,00 52,00 100,00 47,00 100,00 63,00 100,00
2 + (28) 37,00 90,00 39,00 64,10 46,00 65,22 39,00 61,54 47,00 70,22 48,00 68,53
f1 + (30) 45,00 100,00 44,00 100,00 52,00 100,00 51,00 100,00 68,00 100,00 62,00 100,00
2 + (30) 36,00 77,77 41,00 68,29 44,00 72,72 38,99 66,66 33,00 59,46 47,00 70,21
fl + (31) 39,00 100,00 44,00 100,00 48,00 100,00 50,00 100,00 57,00 100,00 61,00 100,00
f2 + (31) 36,00 77,77 38,59 67,81 42,99 69,76 43,00 69,76 45,00 64,44 46,99 70,21
f3 + (31) 78,00 15,38 113,00 2,65 108,00 0,00 116,00 43,95 149,00 29,53 136,00 22,79

OF: objective function value; %: relative gap.

https://doi.org/10.1371/journal.pone.0237014.t009

Table 10 shows that instances with centered depot and objective functions f2 and f3 get to
the optimal or near, except for mixed frequency cases. Objective function values for f1 have

still 100% gap, except for some cases with n = 10. f3 instances with non-centered depot behave
better with constraint (31) than without it. In general, gaps with f3 and f3 + (31) behave better
than with f2 and f2 + (31).
Tables 11 and 12 show that with 60 and 40 visits, objective function f3 and variant f3 + (31)
have a better performance than the other variants, although none of them reaches the opti-

mum. The value of the gap for f3 and its variants behave better for centered instances com-

pared to the non-centered ones. Only the additional constraint (30) for 60 visits instances, and
the constraint (31) for 40 visits instances have slightly but consistent positive effect in f2 gaps.

Table 10. Experimental results w = 20 visits (Group A).

Visits (w) 20
Depot C NC
Frequency W (n=20) M (n=15) S (n=10) W (n=20) M (n=15) S (n=10)

OF % OF % OF % OF % OF % OF %
f1 33,00 100,00 45,00 100,00 41,00 39,00 49,00 100,00 57,00 100,00 56,00 100,00
f2 21,00 0,00 32,00 53,10 34,00 3,00 30,00 23,00 38,00 40,00 35,99 3,00
3 67,00 0,00 113,00 0,00 120,00 0,00 89,00 22,47 148,00 27,02 150,00 13,33
fl + (28) 34,00 100,00 45,00 100,00 41,00 38,00 56,00 100,00 57,00 100,00 56,00 100,00
2 + (28) 21,00 0,00 32,00 43,00 33,00 0,00 33,00 30,00 41,00 44,00 36,00 0,00
f1 + (30) 33,00 100,00 41,00 100,00 41,00 80,00 49,00 100,00 58,00 100,00 56,00 46,00
2 + (30) 21,00 0,00 32,00 66,00 34,00 0,00 30,00 23,00 38,00 39,00 36,00 3,70
fl + (31) 34,00 100,00 44,00 100,00 41,00 100,00 49,00 100,00 58,00 100,00 56,00 100,00
f2 + (31) 21,00 0,00 33,00 61,00 34,00 0,00 30,00 47,00 40,00 53,00 36,00 0,00
3 + (31) 67,00 0,00 113,00 0,00 120,00 0,00 90,00 23,33 78,00 0,00 150,00 0,00
OF: objective function value; %: relative gap.
https://doi.org/10.1371/journal.pone.0237014.t010
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Table 11. Experimental results w = 60 visits (Group B).

Visits (w) 60
Depot C NC
Frequency W (n = 60) M (n =45) S (n=30) W (n = 60) M (n =45) S (n=30)

OF % OF % OF % OF % OF % OF %
f1 37,34 100,00 29,15 100,00 32,55 100,00 37,60 100,00 30,41 100,00 32,68 100,00
f2 21,16 94,25 28,32 94,36 22,34 85,17 21,17 92,42 33,02 95,25 27,51 87,82
3 68,01 28,04 95,11 30,78 82,22 10,99 90,36 45,57 118,15 45,57 97,27 25,68
f1 + (28) 24,53 100,00 37,00 100,00 25,89 100,00 40,33 100,00 30,07 100,00 33,55 100,00
2 + (28) 21,45 91,76 29,56 95,25 24,47 85,26 22,90 91,22 31,06 94,67 26,72 83,44
f1 + (30) 28,85 100,00 26,11 100,00 36,75 100,00 37,40 83,10 30,45 100,00 34,83 100,00
2 + (30) 20,35 90,12 23,27 88,01 24,30 81,93 20,19 88,50 31,37 94,76 24,65 82,14
f1 + (31) 26,03 100,00 28,33 100,00 32,29 100,00 29,50 100,00 29,76 100,00 NAN NAN
f2 + (31) 25,88 94,43 29,15 100,00 20,91 74,02 22,21 91,11 30,15 95,98 29,19 79,50
f3 + (31) 69,50 29,27 82,52 21,67 80,68 8,53 98,27 50,06 124,03 48,79 94,80 23,42

OF: objective function value; %: relative gap.

https:/doi.org/10.1371/journal.pone.0237014.t1011

Table 13 shows that optimality of f1 and f1 + (31) instances is reached for some instances with
n = 10 customers and semiweekly frequency. It is also observed that 2 and f3 gaps behave better
for centered instances compared to the non-centered ones. Centered instances with f2, f3, and
their variants get to the optimal except for most of the f2 cases for which the number of custom-
ers was higher (n = 20). No consistent improvements for the addition of constraints is observed.

In Table 14 it can be seen that f1 and instances weekly frequencies still have 100% gaps.
Additional constraints do not improve any objective function. The remaining instances get to
optimality, except for one f2 instance with the larger value of n = 12, weekly frequency and
non-centered depot.

In Tables 15 and 16, for the established number of customers, f1 instances still have 100%
gaps. With a fixed n, the higher the number of visits (w) the larger the gaps for f2 and f3

Table 12. Experimental results w = 40 visits (Group B).

Visits (w) 40
Depot C NC
Frequency W (n = 40) M (n=30 S (n=20) W (n = 40) M (n =30) S (n=20)

OF % OF % OF % OF % OF % OF %
f1 17,97 100,00 18,01 100,00 20,46 100,00 22,58 100,00 24,23 100,00 24,39 100,00
f2 13,58 80,12 14,55 78,89 12,78 71,13 15,58 84,20 15,99 79,19 15,41 77,22
3 49,37 14,19 66,62 18,75 70,92 13,32 66,50 37,56 81,11 34,22 81,26 25,26
f1 + (28) 18,06 100,00 17,96 100,00 19,13 100,00 28,13 100,00 25,66 100,00 24,29 100,00
2 + (28) 14,29 81,11 15,50 76,90 15,03 72,85 16,25 83,38 19,14 83,44 16,61 72,13
f1 + (30) 17,02 100,00 17,22 100,00 21,70 100,00 29,51 100,00 24,32 100,00 25,14 100,00
2 + (30) 17,95 86,30 17,69 81,54 18,47 74,61 16,44 82,00 18,82 83,53 16,10 72,36
f1 + (31) 16,46 100,00 17,34 100,00 20,97 100,00 23,11 100,00 24,03 100,00 26,44 100,00
f2 + (31) 11,81 77,13 16,71 72,47 15,13 70,06 15,24 82,30 17,55 74,81 18,67 71,14
f3 + (31) 49,37 15,45 65,42 18,14 70,54 14,47 57,97 28,12 86,18 37,87 76,98 20,97

OF: objective function value; %: relative gap.

https:/doi.org/10.1371/journal.pone.0237014.1012
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Table 13. Experimental results w = 20 visits (Group B).

Visits (w) 20
Depot C NC
Frequency W (n =20) M (n=15) S (n=10) W (n =20) M (n=15) S (n=10)

OF % OF % OF % OF % OF % OF %
f1 11,05 100,00 11,04 100,00 11,58 100,00 19,38 100,00 20,38 100,00 20,25 0,00
f2 5,63 5,33 5,93 0,00 6,57 0,00 9,62 65,49 10,03 6,08 10,26 0,00
3 29,86 0,00 38,72 0,00 46,56 0,00 37,67 20,28 47,96 14,97 50,52 0,00
fl + (28) 11,79 100,00 12,17 100,00 11,58 100,00 20,38 100,00 20,38 100,00 20,45 100,00
2 + (28) 6,70 0,00 6,93 0,00 7,57 0,00 11,19 45,67 11,19 0,00 11,26 0,00
f1 + (30) 11,00 100,00 12,17 100,00 11,58 100,00 19,38 100,00 20,05 100,00 20,28 100,00
2 + (30) 6,63 4,52 6,93 0,00 7,57 0,00 10,19 57,61 11,03 2,54 11,26 0,00
f1 + (31) 10,73 100,00 11,04 100,00 11,58 0,00 19,38 100,00 20,45 100,00 20,25 0,00
f2 + (31) 6,63 2,56 6,93 0,00 7,57 0,00 10,19 57,61 10,75 2,54 11,26 0,00
f3 + (31) 29,86 0,00 38,72 0,00 46,56 0,00 37,67 22,23 47,96 15,59 50,52 0,00

OF: objective function value; %: relative gap.

https:/doi.org/10.1371/journal.pone.0237014.1013

instances. For f3 instances, constraint (31) has no effect in the gaps obtained. However, con-
straints (28) and (30) have consistently slight improvements in the f2 gaps.

Analysis and discussion

Having into account that the maximum computation time allowed was 1 hour, next we present
a series of highlights that come out from the results obtained.
Concerning to the additional constraints (28), (30), and (31), statistical two-sample differ-
ence tests were performed to verify if the gap improved when adding the additional con-
straints, one at a time. Every test considered n = 6, with all combinations of centered and non-
centered and frequency for each number of visits. p_values of the tests are shown in Table 17.
Detailed information of the statistical tests can be found in S1 Appendix. With an ¢ = 0.05, the

Table 14. Experimental results w = 12 visits (Group B).

Visits (w) 12
Depot C NC
Frequency W ((n=12) M((n=9) S(n=6) W((n=12) M((n=9) S(n=6)

OF % OF % OF % OF % OF % OF %
f1 9,38 100,00 9,18 0,00 9,18 0,00 19,02 100,00 19,00 0,00 15,90 0,00
f2 4,19 0,00 4,34 0,00 4,34 0,00 9,01 0,00 9,01 0,00 7,45 0,00
3 24,15 0,00 35,05 0,00 32,02 0,00 26,47 0,00 44,08 0,00 38,16 0,00
fl +(28) 10,98 100,00 11,79 0,00 10,18 0,00 20,20 100,00 20,31 0,00 16,90 0,00
2 +(28) 7,52 0,00 7,88 0,00 6,93 0,00 11,19 0,00 11,13 0,00 9,45 0,00
1 + (30) 9,38 100,00 9,18 0,00 9,18 0,00 19,02 100,00 19,01 0,00 15,90 0,00
2 + (30) 5,19 0,00 5,34 0,00 5,34 0,00 10,01 0,00 10,01 0,00 8,45 0,00
fl +(31) 9,38 100,00 9,18 0,00 9,18 0,00 19,02 100,00 19,02 0,00 15,90 0,00
2 + (31) 5,19 0,00 5,34 0,00 5,34 0,00 10,01 0,00 10,01 0,00 8,45 0,00
f3 +(31) 24,15 0,00 35,05 0,00 32,02 0,00 26,47 0,00 44,08 0,00 38,16 0,00
OF: objective function value; %: relative gap.
https://doi.org/10.1371/journal.pone.0237014.t014
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Table 15. Experimental results n = 20 customers (Group C).

Customers (1) 20
Depot C NC
Frequency W (w =20) M (w = 30) S (w = 40) W (w =20) M (w = 30) S (w = 40)
OF % OF % OF % OF % OF % OF %
f1 33,00 100,00 61,00 100,00 73,00 100,00 49,00 100,00 63,00 100,00 91,00 100,00
f2 21,00 0,00 45,00 73,60 72,00 82,52 30,00 33,00 46,00 70,00 75,00 77,33
3 67,00 0,00 121,00 9,92 134,00 2,24 89,00 22,47 153,00 28,76 178,00 26,40
fl +(28) 34,00 100,00 45,99 100,00 74,99 100,00 56,00 100,00 63,90 100,00 86,99 100,00
f2 + (28) 21,00 0,00 40,00 62,50 66,00 80,00 30,00 33,00 45,00 41,07 68,00 75,00
f1 + (30) 33,00 100,00 55,00 100,00 72,00 100,00 49,00 100,00 69,00 100,00 84,00 100,00
2 + (30) 21,00 0,00 47,00 72,19 66,00 79,04 30,00 23,33 47,00 52,20 67,00 73,13
f1 + (31) 34,00 100,00 52,00 100,00 71,00 100,00 49,00 100,00 63,00 100,00 87,00 100,00
f2 + (31) 21,00 42,00 42,00 69,40 58,99 75,85 30,00 47,00 46,00 58,70 70,00 67,14
f3 + (31) 67,00 0,00 121,00 9,09 134,00 2,98 90,00 23,33 153,00 28,10 178,00 25,84
OF: objective function value; %: relative gap.
https://doi.org/10.1371/journal.pone.0237014.1015
Table 16. Experimental results n = 16 customers (Group C).
Customers (n) 16
Depot C NC
Frequency W (w =16) M (w =24) S (w=32) W (w=16) M (w =24) S (w=32)
OF % OF % OF % OF % OF % OF %
f1 28,00 100,00 44,00 100,00 60,00 100,00 48,00 100,00 59,00 100,00 78,00 100,00
f2 20,00 0,00 35,00 60,00 51,00 80,39 28,00 7,14 39,00 43,59 58,00 79,31
3 69,00 0,00 124,00 0,81 138,00 0,00 84,00 11,91 138,00 16,67 168,00 21,43
fl +(28) 34,00 100,00 44,99 100,00 64,90 100,00 57,00 100,00 62,00 100,00 73,00 100,00
2 +(28) 22,00 0,00 33,00 30,00 52,00 75,00 33,00 0,00 38,00 60,52 56,00 71,40
f1 + (30) 32,00 100,00 44,00 100,00 62,00 100,00 48,00 100,00 60,00 100,00 79,00 100,00
2 + (30) 20,00 0,00 33,99 58,82 51,00 70,58 28,00 0,00 36,00 22,22 55,00 70,91
fl + (31) 36,00 100,00 44,00 100,00 58,00 100,00 48,00 100,00 59,00 100,00 73,00 100,00
f2 + (31) 20,00 0,00 33,00 52,00 47,00 72,00 28,00 0,00 39,00 47,59 55,00 71,00
3 + (31) 69,00 0,00 124,00 0,00 138,00 0,00 84,00 0,00 136,00 13,97 168,00 19,64
OF: objective function value; %: relative gap.
https://doi.org/10.1371/journal.pone.0237014.1016
Table 17. Two-sample mean test p values of comparison of gaps for additional constraints (28), (30), and (31).
Visits flvsfl +(31) 2vsf2+(31) fBvsf3+(31) 2vsf2 +(28) 2vsf2 +(30)
Group A 30 NA 0.6853 0.4521 0.7983 0.3385
20 0.3632 0.2013 0.2161 0.1953 0.3212
Group B 60 0.3632 0.3937 0.703 0.1517 0.0053
40 NA 0.0081 0.5083 0.9096 0.3972
20 NA 0.1228 0.2393 0.1582 0.1767
12 NA 0.3632 NA 0.3632 0.3632
n
Table 15 16 NA 0.0854 0.1834 0.4069 0.0511
Table 16 20 NA 0.6620 0.8122 0.0797 0.0739
NA: Not apply due to equal samples means. f1 vs f1 + (28) and f1 vs f1 + (30): NA for the same reason.
https://doi.org/10.1371/journal.pone.0237014.t017
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t-tests shows that the additional constraints do not have an effect on the quality of the model,
since they do not significantly improve the value of the gap.

o Constraint (29), which is devised as a strategy for breaking symmetry, had no effect on the
value of the gap reached in any of the analyzed instances, and therefore the replicated results
were not included in the Tables 9-14. One possible reason for this is that such a strategy is
already covered in the automatic symmetry management techniques currently included in a
commercial solver such as Gurobi, which are probably based on sophisticated ideas such as
orbital branching [61].

For f2 only, the addition of the set of dis-aggregated constraints (31) achieves a slight
decrease in the gap of less than 4% with 40 visits. The same does constraint (28), which pre-
vents a route from containing a single customer, with 60 visits. For f1, no instance with n >
16 gets a gap lower than 100% in one hour, so there is no significant difference between add-
ing valid restrictions or not.

o The addition of valid inequality (30), which establishes that each arc is traversed in a single
direction on each route that includes it, had no effect on the value of the gap when f1 was
used. The addition of such constraint in models with f2 only had a positive effect by reducing
the value of the gap in instances with more than 40 customers.

« No significant effect of restrictions (30) and (31) can be explained despite the so-called prop-
agation algorithms used in current commercial solvers, in which formulation changes that
probably improve performance during the solution stage are detected automatically [58].

Based on the experimental designed shown in Table 7, we performed analysis of variance
(ANOVA) to test the significance of the four factors considered (i.e. objective function, cen-
trality, frequency, and number of visits), for each number of visits: 20 and 30 for group A and
12, 20, 40, and 60 for group B. Taking advantages of the previous findings about no significant
differences when adding constraint (31), we used those experiments as the second blocked rep-
licate. Detailed ANOV As are included in S2 Appendix. Among the more relevant findings are:

« With p values <0.001, the size (i.e. either number of visits or n) and the objective function
are significant in both groups, as it is expected; however, depot location and frequency
appeared to be significant in some cases, but explaining the gap only with contributions
from less than 1% to 4.8%. Centrality in group B has p value of 0.07.

« The objective function to be solved is the factor with the greatest effect on the value of the
gap. As observed in Fig 4, minimizing the total duration of route f1 is by far the most difficult
objective function to solve. As the size of the problem increases (number of visits or custom-
ers), the difference between the effects on the value of the gap of f1 versus f2 and f3 becomes
more pronounced. The outstanding performance of f2 over f1 is confirmed. The gaps of the
three objective functions vary almost proportionally; this is, gaps when solving f2 are almost
35% greater than when solving f3 and 45% less than when solving f1.

o For instances with more than 10 customers, the models with f1 or f2 are more sensitive to
the size of the problem (measured in number of customers), than the models with the usual
/3. With f1, only instances with n < 10 reached gaps lower than 100% as is shown in Tables
13 and 14.

o Gaps are consistently better for semiweekly frequencies. This means that for a given number
of visits, a larger number of customers increases the complexity. However, the effect of the
frequency type on the gaps is only significant for small instances of Group B, with 12 and
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Fig 4. Main effects plots for gap (fitted means). Groups A and B, respectively.
https://doi.org/10.1371/journal.pone.0237014.g004

20 visits, for which the contribution is close to 10%. For the instances with the highest num-

ber of visits, the contribution of this factor is less than 1%. This suggests that the influence of
the periodic assignment problem on the complexity of the model is quickly surpassed by the
one corresponding to the routing problem.

In general, the centrality of depot location appears to be not significant. It contributes only
1% to the variability of the gap. Only f3 is affected by centrality. When the depot is centered,
20% lower gaps are obtained.

Significant interactions are identified in both groups. The interaction plots shown in Fig 5

indicate that frequency impacts gaps more when the number of visits is smaller; the effect of
the number of visits is accentuated with f2; and double visit frequencies impact gaps more
when the number of visits is larger and for f1. Finally, for f3 gaps behave better with centered
depot.

Finally, with information from Tables 15 and 16, where the visits increases as the number
of customers and the frequency do, the more significant factors are again the size of the
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Fig 5. Interaction plots of significant factors. Groups A and B, respectively.
https://doi.org/10.1371/journal.pone.0237014.9005

PLOS ONE | https://doi.org/10.1371/journal.pone.0237014  August 3, 2020 22/27


https://doi.org/10.1371/journal.pone.0237014.g004
https://doi.org/10.1371/journal.pone.0237014.g005
https://doi.org/10.1371/journal.pone.0237014

PLOS ONE

A multi-attribute consistent periodic VRP model framework

problem, measured in frequency and the objective function. Centrality appears now to be sig-
nificant, suggesting that the gaps are slightly better with centered depot. The frequency affects
gaps for f2 but not for f3.

Conclusions and further work

This paper presents a MILP model framework for several variants of ConPVRP, and carried
out numerical experimentation on one of the models included in the Framework. The frame-
work presented includes models for ConPVRP, ConPVRP-TW, ConTDPVRP, ConTDPVRP-
TW. According to our review, the cases of ConTDPVRP and ConTDPVRP-TW had not been
previously modeled. For the different models of the framework, two unusual objective func-
tions were formulated and a third objective function of common use was incorporated for
comparison purposes.

The ConPVRP-TW, one of the variants included in the framework, was validated through
an experimental design where 4 factors were considered: objective function, number of visits,
types of frequencies, and depot centrality. The analysis helped identify the significant factors,
showed that the models performance is very sensitive to a relatively small sample size increase;
and suggests future research directions in this type of problems. It has been demonstrated how
the use of the non-conventional objective functions f1 and f2 lead to models of significantly
higher complexity than those in which the conventional function f3 is used. One result that is
worth noting is that the performance of the models that that minimizes the time in which the
last customer is visited f2 far exceeds the option of minimizing the maximum duration of a
route f1. In addition, results showed that the complexity of the problem is better explained by
the routing problem than the periodic assignment problem.

Among the potential research lines derived from this work is the improvement of the math-
ematical formulations for all models considered in the framework, by including adequate cuts
that allow finding in less time better lower bounds, with the consequent reduction of relative
gaps. Such effort is necessary especially for the objective function f1. Finally, it is worthwhile
developing a more comprehensive experimental design that incorporates the other types of
problems raised in the proposed model framework for ConPVRPs.
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S1 Appendix. Statistical two-sample difference tests. It was applied to evaluate the effect of
the inclusion of each of the additional constraints (28), (30), and (31) on the gap.
(PDF)

S2 Appendix. Summary of ANOVA test. It was applied to evaluate the significance of the
four factors considered in the experimental design: objective function, centrality, frequency,
and number of visits.
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