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Abstract

Modeling real-life transportation problems usually require the simultaneous incorporation of

different variants of the classical vehicle routing problem (VRP). The periodic VRP (PVRP)

is a classical extension in which routes are determined for a planning period of several days

and each customer has an associated set of allowable visit schedules. This work proposes

a unified model framework for PVRP that consists of multiple attributes or variants not previ-

ously addressed simultaneously, such as time-windows, time-dependence, and consistency

-which guarantees the visits to customer by the same vehicle-, together with three objective

functions that respond to the needs of practical problems. The numerical experimentation is

focused on the effects of three factors: frequency, depot centrality, and the objective func-

tion on the performance of a general–purpose MILP solver, through the analysis of the

achieved relative gaps. Results show higher sensitivity to the objective functions and to the

problem sizes.

Introduction

Transport decisions in modern companies are made in the context of integrated supply chains.

Tactical and operational levels of transport comprise medium and short-term decisions,

including detailed planning of visit schedules, routes and load plans. Correct synergy between

such decision levels contributes to the consolidation of the supply chain and is a recurrent

challenge for planners [1, 2].

The vehicle routing problem (VRP) is a problem that has been widely used for the represen-

tation of distribution activities and transportation of goods [3]. The VRP is based on a set of

points and available vehicles, and for each vehicle the points to be visited and their order are

decided. The classic objective is that the total distance covered by each vehicle is the minimum

and that each point receives exactly one visit. Features of particular case studies are added to

the basic VRP model. A taxonomy of the VRP model family is detailed in [4]. For the study of

supply chain management problems, variants have been created that emphasize tactical aspects

such as the periodic vehicle routing problem (PVRP), while others emphasize operational

aspects, such as the vehicle routing problem with time windows (VRP-TW) and the time
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dependent vehicle routing problem (TDVRP). Mixed integer linear programming (MILP)

models are proposed to represent these variants, in which points of interest are usually called

customers and the starting point is called depot [3–5]. To ease the reading, Table 1 lists the

meaning of the acronyms used throughout the paper.

In the VRP-TW each customer must be visited within a certain time interval. In TDVRP,

the travel time between two customers depends on the state of traffic at the time of departure.

The PVRP looks for building a plan of optimal routes for the entire planning horizon (i.e.

more than one day), knowing in advance the frequency of visits demanded by each customer.

It involves deciding the pattern of visits for each customer, the selection of the vehicles that

visit each customer, and the visit order. In the literature we find models for the VRP that

simultaneously capture two of these variants: PVRP and VRP-TW or TDVRP and VRP-TW

[6, 7]. Three important variants of the PVRP are revised in [8]: the PVRP with time windows

(PVRP-TW), the multi-depot PVRP, and the PVRP with service choice, which includes the

service frequency as a decision variable, given that customers are visited a given number of

times over the period, with a schedule that is chosen out of a menu of schedule options.

Some papers deal with additional constraints that improve customer service quality in VRP

problems. In [9] a consistent VRP (ConVRP) considers that the same driver visits the same

customers throughout the planning horizon, at roughly the same time on each day that these

customers are visited. In [10] a generalized ConVRP is considered, where each customer is vis-

ited by a limited number of drivers and the variation in the arrival times is penalized in the

objective function. A collection of vehicle routing problems in which consistency consider-

ations are relevant are described in [11]. The consistent PVRP (ConPVRP) problem is referred

with this name in [12] but it was previously addressed in [2, 13]. The problem addressed in [2,

13] is a consistent PVRP with time windows (ConPVRP-TW) where the model selects a pat-

tern of visits to each customer, according to its frequency of visit, which depends on the cus-

tomer’s sales volume: weekly (the same day each week; e.g. every Tuesday), semiweekly (two

visits per week; e.g. Monday and Thursday or Tuesday and Friday), bimonthly (2 times a

month; e.g. in the first and third weeks or in the second and fourth weeks, but always on the

same day of the week), and monthly. The objective function considered is the sum of travel

time needed to supply all customers. In [2], the problem was divided into phases, and a heuris-

tic solution method is highlighted for Phase 2. A non-linear model was solved with a heuristic

method that uses in one of its steps a well-known integer linear problem as a black box. In

[13], a model and two heuristics are proposed to solve the ConPVRP just described.

All the previous ones have been useful for the analysis of prototypical cases, nevertheless,

there are problems that require to consider simultaneously periodicity, time windows and

Table 1. List of acronyms.

Acronym Meaning of the acronym Acronym Meaning of the acronym

SPTW Shortest Path Problem with Time Windows ConVRP Consistent VRP

ESPTW Elementary SPTW PVRP Periodic VRP

ESPTWQ ESPTW and capacity constraint TDVRP Time Dependent VRP

TSPTW Traveling Salesman Problem with Time Windows PVRPTW PVRP with Time Windows

CVRP Capacitated VRP TDPVRP Time Dependent PVRP

DCVRP Distance-Constrained VRP TDPVRP-TW TDPVRP with Time Windows

VRPSDP VRP with Simultaneous Pickups and Deliveries ConPVRP Consistent PVRP

VRPB VRP with Backhauls ConPVRP-TW Consistent PVRPTW

VRPTW VRP with Time Windows ConTDPVRP Consistent TDPVRP

VRPTWPD VRPTW with Pickups and Deliveries ConTDPVRP-TW Consistent TDPVRP-TW

https://doi.org/10.1371/journal.pone.0237014.t001
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time dependency, as the design of routes for companies of distribution of goods in urban cen-

ters [2]. In this context, using a model that ignores any of the variants can lead to inefficient

plans that generate additional costs and high percentages of non-compliance.

This article presents a unified modeling framework for the ConPVRP, where the service

pattern for a given frequency is a decision of the model. This modeling framework combines

the variants of ConPVRP-TW, consistent and time dependent PVRP (ConTDPVRP), and

consistent and time dependent PVRP with time windows (ConTDPVRP-TW); taking into

account two different objective functions that are not so usual but important in some real

applications: the minimization of the maximum duration of a route, which is related to operat-

ing costs, the minimization of the time in which the last customer is visited, which is related to

their degree of satisfaction [14], and also an objective function more used in literature: mini-

mization of the total transportation time over the planning horizon [12].

A general real-world context that inspires the development of the framework for ConPVRP

is as follows: The company has a set of sale points (or customers) that must be visited at a fre-

quency determined by its sales volume (or demand) by one of the trucks of the company fleet.

There are 4 types of visit frequency: weekly (the same day each week, for example every Tues-

day), biweekly (two visits per week, e.g. Monday and Thursday or Tuesday and Friday),

bimonthly (2 times a month, e.g. in the first and third weeks or the second and fourth weeks,

but always on the same day of the week), and monthly. Trucks must start and finish their jour-

ney at the central depot. Each customer must always be visited by the same truck. Several cus-

tomers can be visited on the same day by the same truck. The trucks are available from

Monday to Friday. Though the trucks have a limited capacity, it is assumed that the total avail-

able travel time is the dominant constraint [2]. This is why f1 and f2 become relevant objective

functions.

This paper makes two contributions to literature, being the first one of modeling-type, and

the second one a numerical-type contribution; as follows:

1. A unified model framework for the multi-attribute ConPVRP inspired by real problems.

The framework includes variants, and their relationships, not considered simultaneously

before. In addition, it includes the analysis of three objective functions, two of them uncom-

monly discussed but inspired by real problems.

2. The experimentation design includes the simultaneous analysis of three relevant factors to

these types of problems: frequency, depot centrality, and the objective functions. We pro-

vide experimental evidence of how the two non-conventional objective functions are harder

problems to solve, and that some active constraints found in the literature actually do not

improve the performance of the model.

The remainder of this paper is structured as follows: Detailed literature review is presented

in next section. Then we present the formulation of the modeling framework. Next, we

describe the experimental design, the experimental results and their respective analysis.

Finally, we summarize our work and propose lines for future research.

Literature review

This literature review has been divided into three subsections. The first one contains the

main proposals for the modeling and solution of the PVRP, including previous work related

to ConPVRP. Next subsection explores the research dedicated to TDVRP, emphasizing tech-

niques for formulating time dependent travel times or velocities, which inspired the way the

time dependence issue is addressed in the proposed framework. Finally, the last subsection

mentions different researches oriented to obtain modeling frameworks for the multi-
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attribute VRP. It is worth noting that no previous studies addressing the TDPVRP variant

were found. In particular we have not found MILP formulations for the ConTDPVRP and

ConTDPVRP-TW cases, both included in the modeling framework proposed in the present

work.

Periodic VRP and variants

The PVRP was presented in a seminal article by Beltrami & Bodin at 1974 in the context of a

route design problem for garbage collection [15]. Since its inception, multiple variants have

been added to the PVRP combining tactical and operational features for real case analysis.

Russell et al. [16] addressed a problem close to PVRP for planning weekly visits and balancing

the vehicle requirements. Christofides et al. [17] proposed a formal definition of the PVRP and

identified the three decisions that make up the problem: (i) selection of visit patterns, (ii) selec-

tion of customers that will be visited by each vehicle during each day, and (iii) definition of the

order of visits. They presented an integer programming (IP) formulation, in which the PVRP

problem was interpreted as an extension of the routing problem with a pattern selection deci-

sion included.

In [8] two approaches to the PVRP are distinguished depending on how the decisions are

prioritized: Assignment routing problem if the selection of visit patterns is prioritized, and

periodic routing problem when the construction of routes is prioritized. The first approach is

applied to cases in which tactical decision prevails, as is the case of [2] and [13], while the sec-

ond approach is specific to situations in which the interest lies in operational decisions.

There are several precedents of the inclusion of additional operational features in the

PVRP. In [6] the PVRP was extended to the PVRP-TW and used a modified data set for the

PVRP including randomly generated time windows for each customer. Cantu et al. [18] inves-

tigated a multi-depot periodic vehicle routing problem (MDPVRP) with due dates and time

windows motivated by the case of a Mexican brewing company. The authors used a set of arti-

ficial data constructed from real information provided by the brewing company. Related

works adding the constraint of consistency of the drivers along the visits of the planning hori-

zon can be found in [13] and [12]. Table 2 shows a summary of the features dealt in these

works.

There are some works aimed at obtaining stronger formulations for PVRP variants. In [12]

valid inequalities for a consistent PVRP are derived from the generalized multistar inequalities

presented in [19], where vehicles are considered of unitary capacity. In [20] the authors intro-

duced the flexible periodic vehicle routing problem (FPVRP), and derived valid inequalities

related to the flow balance. They implemented optimality cuts regarding the load of the

Table 2. Summary of consistent-VRP review.

Paper Type of model Attributes Objective function Solution method Number of

customers

Dataset

[2]

(2014)

Mixed integer non

linear non convex

program

Scheduling visits to customers

located in the same cluster in a given

period

Minimizing the total

transportation time over the

planning horizon

Hybrid heuristic

+ CPLEX solver

100-1000 A. Escalera

[13]

(2018)

Mixed integer non

linear program

ConPVRP-TW, PVRP-DC Hybrid heuristic: local

search + Gurobi

solver

400-2000 A. Escalera

[12]

(2019)

Integer program PVRP-DC, capacitated Minimizing the total routing cost Branch & Cut 11-71 Author’s own

construction

PVRP: Periodic VRP, ConPVRP: Consistent VRP, TW: Time-windows, DC: Driver Consistent.

https://doi.org/10.1371/journal.pone.0237014.t002
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vehicles when returning to the depot. Both works incorporated constraints for symmetry

breaking based on the indexation of the customers. It is important to note here that in recent

literature research on valid inequalities has concentrated mainly on variants of the capacitated

VRP, see for example [21].

During the first decade, much of the research on the PVRP followed Beltrami’s [15] two

phase solution methods. Russell et al. [22] presented constructive heuristics while Christofides

[17] introduced relaxations to the problem and a two-phase solution method for them. Tan

[23] used a heuristic algorithm based on a previous work of Fisher & Jaikumar [24] for solving

an IP formulation. Both works prioritized the selection of visiting patterns. Chao et al. [25]

adopted an approach similar to Russell & Igo, using an improvement phase after assigning the

visit pattern to each customer.

Cordeau et al. [26] presented a tabu search algorithm applicable to the PVRP-TW. Subse-

quently Drummond et al. [27] proposed a metaheuristic based on genetic algorithms, where

the intensification strategy was reinforced by local search. Regarding exact solution methods,

Francis et al. [28] developed procedures on Lagrangian relaxation of the PVRP formulation as

a linear programming problem. Mourgaya et al. [29] solved a tactical version of the PVRP

using the column generation method. However, to reduce computational complexity, they

chose to solve the subproblems using heuristic techniques. Finally, Vidal et al. [30] proposed

an algorithmic framework for the multidepot PVRP with capacitated vehicles and constrained

route duration, combining population-based evolutionary search and neighborhood-based

metaheuristics.

Time dependent VRP

The TDVRP was first presented in [31] and [32] in 1991 to address VRPs taking into account

the effect of vehicle congestion on plan performance, in urban contexts. A state of the art

review for the TDVRP variant is presented in [33]. The pioneering work of Malandraki &

Daskin [31] and Ahn & Shin [32] raised the need to include in the models the variation in

travel times due to traffic congestion and occasional factors such as accidents. Ahn & Shin

understood the problem as a natural extension of the VRP-TW, while Malandraki & Daskin

posed a situation without time windows. Both works were interested in the computational

complexity of the variant: The last one by taking the case of the time dependent travelling

salesman problem, while Ahn & Shin investigated the increased complexity of the problem

with respect to a problem with time windows and constant travel time, identifying the non-

passing property, later referred to as FIFO in [34], as a desirable condition also related with the

complexity of the problem.

A MILP-type model for the TDVRP was formulated in [31], and their key contribution was

the division of the day into time intervals and the definition of a stepwise travel speed function

over such intervals. The idea of dividing the day into time intervals was taken up in the work

of several authors such as Ichoua et al. [34] and Figliozzi et al. [7]. However, to ensure the satis-

faction of the FIFO property, these authors proposed stepwise speed functions and calculation

of travel time by integration. Most of the current formulations are based on these models,

highlighting their application to new variants such as the green VRP, which aims to minimize

fuel consumption by establishing routes and appropriate schedules [35–37].

The first solution methods for TDVRP were modifications to constructive algorithms for

VRP. In [31] authors adapted the nearest node insertion heuristics and the sequential route

construction when there is time dependency, to deal with TDVRP. Ahn et al. [32] modified

Clarke & Wright savings algorithm to solve a TDVRP-TW. Ichoua et al. [34] used tabu search

metaheuristics, and adapted operations to account for time dependency in a TDVRP while
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Hashimoto et al. [38] used iterated local search to resolve TDVRP-TW formulation where

time windows are soft, and like Ichoua et al. made significant modifications to address time

dependence.

In [39] authors investigated the adaptation of algorithms used in the VRP to solve the

TDVRP. When they used metaheuristic based on local search, they recognized that the

improvement of a feasible solution does not only affect the travel times of the customers

involved in the operation, but instead impacts all nodes assigned to a route. A similar phenom-

enon was reported in [40] and [41] when trying to solve the TDVRP by tabu search, defining

specific (2-opt) neighborhood movements to deal with time dependence. Donatti’s ant colony

optimization metaheuristics proposal and Figliozzi’s route improvement algorithms [7] were

presented to deal with the TDVRP without relying on standard local search procedures and

reporting solutions at least as good as those of their counterparts.

Multi-attribute VRP and modeling frameworks

In [42] authors coined the term attribute to refer to the variants, characteristics and types of

decisions that appear in real VRPs. They identified fifteen VRP multi-attributes (MA) that

have been the object of intense study in the literature and the heuristic and metaheuristic tech-

niques used for their solution. Later in [43] the authors described the development of a solver

for MA-VRPs, which they called unified hybrid genetic search metaheuristic and evaluated its

performance through computational experimentation on different instances considering mul-

tiple periods, multiple depots, generalized time windows, time dependence, between other

attributes. These authors focused on the approximate methods of solution but didn’t present a

modeling framework that encompasses the variants that were considered.

In the literature there are several works in which “modeling frameworks” are presented for

families of VRP variants. The Table 3 presents a summary of the most relevant works. Desaul-

niers et al. [44] developed a modeling framework based on integer nonlinear mixed program-

ming. Although the authors include the derivation of the VRP-TW from the proposed

framework, they do not account for periodic or time-dependent problems. Irnich [45] present

a unified modeling framework whose formulation makes use of a routing graph in which any

solution to a MA-VRP is represented by a single cycle called a giant tour. The Irnich’s model-

ing framework includes among other problems the VRP-TW and the PVRP-TW. The frame-

work proposed by Desaulniers [44] is designed for the solution using Branch & Bound (B&B)

methods and column generation, while the Irnich’s framework [45] is aimed at the efficient

implementation of metaheuristics.

Subsequently Puranen et al. [46] present a modeling language or metamodel for the

MA-VRP based on formulations on graphs and assignment functions. In this metamodel the

Table 3. Summary of frameworks for VRP variants.

Paper Type of model framework Included variants Objective function Projected solution method

[44]

(1998)

Mixed integer non linear programming ESPTW, SPTW, ESPTWQ, TSPTW,

VRPTW, VRPTWPD

Minimizing the total cost

of routes

Column generation, Lagrangian

relaxation

[45]

(2008)

Formulation on graphs: routing graph, giant

tour representation

CVRP, DCVRP, VRPSDP, VRPB, PVRP,

PVRPTW

Metaheuristics based on local

search

[46]

(2011)

Metamodel based on formulation on graphs CVRP, VRPTW, VRPSDP, VRPB, PVRP,

TDVRP, PVRPTW

Metaheuristcs based on local

search

SP: Shortest Path Problem, E: Elementary, TW: Time Windows, Q: capacity constraint, TSP: Traveling Salesman Problem, B: Backhauling, P: PVRP, TD: Time

Dependent, C: Capacitated, DC: Distance-Constrained VRP, SDP: Simultaneous Pickup and Deliveries.

https://doi.org/10.1371/journal.pone.0237014.t003
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VRP variants are not formulated as mathematical programming problems, but it is able to

express many variants among which VRP-TW, PVRP, PVRP-TW, and TDVRP stand out.

Puranen’s modeling language is aimed at the efficient implementation of metaheuristics [46].

The consistency attribute is not mentioned in any of the three modeling frameworks men-

tioned above.

The work of Rodrı́guez et al. [12] deals with the ConPVRP. However, our proposal presents

multiple differences with respect to this one: In [12] the model considers a minimum number

of customers per route, without clarifying the real-life problem conditions that justify such an

assumption; in contrast, the models in our framework do not necessarily consider a minimum

or maximum number of customers per route. We consider two non-conventional objective

functions, while in [12] it is considered a more classical objective function. There are also

methodological differences: in the experimental phase we evaluate the influence of different

characteristics of the constructed instances on the solution, and the maximum computation

time set is half of the time dedicated in that work.

During the construction of the state of the art we did not find any reference in which a

model is formulated for the ConPVRP that includes the attributes of time windows and time

dependency.

Model framework

The model framework proposed in this work considers the following variants of the

ConPVRP: ConPVRP-TW, ConTDPVRP and ConTDPVRP-TW. First, the structure of the

model framework is schemed in Table 4. Next, the objective functions selected are described

and justified, and finally, the model framework is presented in detail.

Table 4 schematizes the variants that are analyzed and distinguishes the specific constraints

of each variant from the core constraints of the ConPVRP, by indicating the numbers of the

equations that constitute each one. The core VRP constraints reflecting consistency and peri-

odicity are included in the column “all models”. Constraints in the next column are needed in

the models that don’t consider time-dependence, in contrast with the fourth column that iden-

tifies the constraints that are exclusively used if the model considers time-dependence. The

time-windows variant requires the addition of the constraints in the last column. The addi-

tional valid constraints that were revised in the numerical experimentation are also optional

and considered in all models.

The set of constraints shaping all variants considered in this work can be used to optimize

the function that better fulfil the researcher’s needs. The objective functions equations

included in the framework, and the constraints needed to connect them with the rest of the

model, are indicated in their respective cell in Table 4.

The model framework proposed includes three options of objective functions:

Table 4. Summary of model framework.

Objective

functions

Constraints corresponding to conPVRP models included in the framework

All models Models without TD Models with TD Models with TW

ConPVRP, ConPVRP-TW, ConTDPVRP,

ConTDPVRP-TW

ConPVRP,

ConPVRP-TW

ConTDPVRP,

ConTDPVRP-TW

ConPVRP-TW,

ConTDPVRP-TW

For all three

functions

(4–13), (32) + additionals: (28–30), and (31) instead

(11)

(17) (18), (21–25) (14–16)

Only for f1 (1), (26) (20)

Only for f2 (2), (27) (19)

Only for f3 (3)

https://doi.org/10.1371/journal.pone.0237014.t004
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• (f1) that minimizes the maximum duration of a route.

• (f2) that minimizes the time in which the last customer is visited.

• (f3) that minimizes the total transportation time over the entire planning horizon.

(f1) and (f2) are functions of the makespan minimization type. According to Braekers et al.

[4], they are not considered standard objective functions although both are based on time or

distance. These functions have been used in parcel applications [47], load balancing in home

health services [48], manufacturing processing times [49]. Other practical problems where (f2)

gains importance is in bus routing, where the maximum travel time of the first student col-

lected in the route wants to be minimized [50, 51]. (f3) has been added in the analysis due that

it is one of the standard and most common objective functions explored in VRP. This inclu-

sion will allow future benchmark or experimental comparisons. Examples of VRP studies con-

sidering this function are [7, 12, 20–22, 39, 52].

The mathematical model

Scalar parameters

n: number of customers

t_days: number of days in the planning horizon

m: number of available vehicles

p_num: number of visiting frequencies

D: maximum working day length

h: number of time intervals in a day

�: A positive small enough number

Indices

i, j: customers, depot

l: days

k: vehicles

p: visiting patterns

u: intervals that make up a day

f: visiting frequencies

Sets

V≔ {1, � � �, n + 2}: the first element in V is the initial depot, the last element is the “final”

depot (i.e. the depot “replicated”); and in between are the customers.

VI≔ {1, � � �, n + 1}: the initial depot and the n customers.

VF≔ {2, � � �, n + 2}: the customers and the final depot.

VC≔ {2, � � �, n + 1}: customers.

T: the days considered in the planning horizon.

K: available vehicles.

IT: time intervals that make up a day.

IT−: IT excluding the last element.

VCf: customers to be visited with frequency f.
Pf: possible visiting patterns to customers in VCf.

Vectorial parameters

dij: distance between nodes i and j when considering time dependent models. It denotes the

travel time between nodes i and j when considering models without time dependency.

bi: number of visits in the period to the customer i.
al
p: 1 if day l is included in visit pattern p, 0 otherwise.

τi: service time at node i.
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ei: left end of the time window on customer i.
ri: right end of the time window on customer i.
θu: the left-end of time interval u.

vu: the considered standard velocity in the time interval u.

Decision variables

xlij: 1 if node j is visited after node i on day l, 0 otherwise.

wik: 1 if customer or initial depot i is visited by vehicle k over the entire planning horizon.

tlik: The time at which service starts at customer i on the day l by vehicle k.

yip: 1 if customer i is assigned to visit pattern p, 0 otherwise.

sliu: 1 if the service of customer i is finished on day l in the interval u, 0 otherwise.

zmaxi: the maximum duration of a route.

zcustmaxi: the maximum time at which a customer is visited.

Objective functions

f 1 : min z ¼ zmaxi: ð1Þ

f 2 : min z ¼ zcustmaxi: ð2Þ

f 3 : min z ¼
X

i2VI

X

j2VF

X

l2T

dij � x
l
ij: ð3Þ

Constraints

X

p2Pf

yjp ¼ 1; 8j 2 VCf ; f ¼ 1; � � � ; p num:
ð4Þ

X

j2VF;j6¼i

xlij ¼
X

p2Pf

ðal
p � yipÞ; 8i 2 VCf ; f ¼ 1; � � � ; p num 8l 2 T:

ð5Þ

X

j2VC

xl
1j � m; 8l 2 T: ð6Þ

X

j2VC

xl
1j ¼

X

i2VC

xli;nþ2
; 8 l 2 T: ð7Þ

X

j2VI;i6¼j

xlji ¼
X

j2VF;i6¼j

xlij; 8i 2 VC; 8l 2 T: ð8Þ

X

k2K

wik ¼ 1; 8i 2 VC: ð9Þ

w1k ¼ 1; 8k 2 K: ð10Þ

X

l2T

xlij � bi � ð1 � wik þ wjkÞ; 8i; j 2 VC; 8k 2 K: ð11Þ

xl
1i þ xl

1j � 3 � ðwik þ wjkÞ; 8i; j 2 VC; i 6¼ j; 8l 2 T; 8k 2 K: ð12Þ
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xlii ¼ 0; 8i 2 VC; 8l 2 T: ð13Þ

tl
1k ¼ 0; 8 l 2 T; 8k 2 K: ð14Þ

tlik � ei; 8i 2 VC; 8l 2 T; 8k 2 K: ð15Þ

tlik � ri � τi; 8i 2 VC; 8l 2 T; 8k 2 K: ð16Þ

tlik � d1i � D � ð2 � xl
1i � wikÞ; 8i 2 VC; 8l 2 T; 8k 2 K: ð17Þ

tlik � ðd1i=v1Þ � D � ð2 � xl
1i � wikÞ; 8i 2 VC; 8l 2 T; 8k 2 K: ð18Þ

tlik þ τi þ dij � tljk þ D � ð1 � xlijÞ; 8i; j 2 VC; 8l 2 T; 8k 2 K: ð19Þ

tlik þ τi þ dij � tljk þ D � ð1 � xlijÞ; 8i 2 VC; 8j 2 VF; 8l 2 T; 8k 2 K: ð20Þ

X

u2IT

sliu � 1; 8i 2 VC; 8l 2 T: ð21Þ

X

u2IT

sliu �
X

j2VI

xlji; 8i 2 VC; 8l 2 T: ð22Þ

tlik þ τi � θuþ1 � �þ D � ð1 � sliuÞ þ D � ð1 �
X

j2VF

xlijÞ;

8i 2 VC; 8u 2 IT� ; 8l 2 T; 8k 2 K:

ð23Þ

tlik þ τi � θu � D � ð1 � sliuÞ � D � ð1 �
X

j2VF

xlijÞ;

8i 2 VC; 8u 2 IT; 8l 2 T; 8k 2 K:

ð24Þ

tlik þ τi þ
X

u2IT

ðdij=vuÞ � s
l
iu � tljk þ D � ð1 � xlijÞ;

8 i; j 2 VC; 8l 2 T; 8k 2 K:
ð25Þ

tlnþ2;k � zmaxi; 8l 2 T; 8k 2 K: ð26Þ

tlil � zcustmaxi;8i 2 VC; 8l 2 T; 8k 2 K: ð27Þ

xl
1i þ xli;nþ2

� 1; 8i 2 VC; 8l 2 T: ð28Þ

wnþ1;1 ¼ 1: ð29Þ

xlij þ xlji � 1; 8i; j 2 V; i 6¼ j 8l 2 T: ð30Þ
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xlij � 1 � wik þ wjk; 8i; j 2 VC; 8l 2 T; 8k 2 K: ð31Þ

x;w; y; s 2 f0; 1g; t; zmaxi; zcustmaxi � 0: ð32Þ

The following are the valid constraints for all models:

1. One pattern per customer Eq (4).

2. Any customer should be visited in all days of his pattern assigned Eq (5).

3. The number of routes on any day should be at most the number of vehicles available Eq (6).

4. The number of routes departing from the initial depot is equal to the number of routes

arriving to the final depot Eq (7).

5. Balance at a node: If a route arrives to a node, it must leave from this node to another one

(perhaps the depot) Eq (8).

6. One vehicle should be assigned to each customer Eq (9).

7. The initial depot is assigned to all available vehicles Eq (10).

8. A vehicle can go from one customer to another if both customers are assigned to it Eq (11).

9. A vehicle cannot go any day from the initial depot to more than one customer associated

with this vehicle Eq (12).

10. A route cannot go from a customer to the same one. Eq (13).

11. Constraint Eq (32) specifies the type of variables.

The following are additional constraints that appear in the variants with time windows: The

beginning time of any route is zero Eq (14), the service start time on any customer must be at

least the lower end of its respective time window Eq (15), the service end time on any customer

must be less or equal than the upper end of its respective time window Eq (16).

The arrival time at the first customer of any route is at least the time it takes to travel the

first edge Eq (17) or Eq (18).

1. In the case without TD, d1i represents the time to go from the depot to customer i Eq (17).

2. In the case with TD, d1i represents the distance between the depot and customer i Eq (18).

For the subtours elimination constraints (some from constraints (19) to (25)) we distin-

guish between the following cases:

1. Case without TD:

(a) With objective function f2: If the vehicles goes from node i to j, it is not possible to start

service in j before the time of reaching node i plus service time in i plus travel time from i
to j Eq (19).

(b) With objective function f1: The adequate constraint instead of (19) is (20), where the

domain of j is VF, including the node n + 2 (final depot).

2. Case with TD. The constraints are: (21–25)

(a) A node i is reached on a day l during a single time interval u Eqs (21) and (22).
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(b) The vehicles’ speed on the next route section is determined according with the time inter-

val at which the service was concluded in the previously visited customer i Eqs (23) and

(24).

(c) If the vehicles goes from node i to j, it is not possible to start service in j before the time

for reaching node i plus service time in i plus travel time from i to j Eq (25). It is the vari-

ant of the constraint (19) when considering TD.

The specific constraints associated with objective functions are: With f1: (26), and with f2:

(27). When using objective function f3, it is not necessary to include the constraints (26) and

(27) in the model.

The following constraints can be added to any model: constraint (28) prevents a route from

having a single customer as in [12]. The constraint (29) is a possible strategy for breaking the

symmetry inherent in the PVRP definition, previously used in [12]. The constraint (30) is a

valid inequality which indicates that on any given day an edge can only be traversed in one

direction.

Note that the sum of constraints in (31) originates (11), so the set of constraints given by

(31) can be used in any model instead constraint (11). If this is the case, we are talking about a

disaggregated version of the model [53].

Experimental setup

This section describes the characteristics of the numerical experimentation developed to ana-

lyze the behavior of the ConPVRP-TW, with the three objective functions, as described in the

modeling framework. This study will serve as a basis for future research questions concerning

the performance of other models considered in the framework that involve greater computa-

tional complexity. To analyze the ConPVRP-TW three factors are varied: frequency of visits

per customer, centrality of the depot, and the objective function (i.e. f1, f2 and f3). First, we

describe the instances generated to represent practical PVRP problems and then the design of

the experiments that was later conducted.

Instances description

We chose to build our own data set, given that there are no data sets reported in the literature

that allows explicitly the evaluation of the effect of the depot centrality, and as observed in

[12], the classical data for PVRP are highly symmetric in terms of the spatial distribution of the

nodes and the allowed visit schedules of the customers, which generates solutions to the PVRP

that are already driver consistent.

The horizon of the instances analyzed is a week. We consider two different frequencies:

weekly and semiweekly. The instance size, which is denoted it with ω, is determined by the

total number of visits during the planning horizon. Thus, sets of ω positions were quasi-ran-

domly generated to locate the customers. For a given ω, the positions were used in instances,

with three different visit frequencies each, and therefore, different number of customers, in

this way: Instances with weekly frequency (W) use sets of n = ω customer positions; instances

with semiweekly frequency (S) use a subset of n = ω/2 customer positions, and instances with a

mix of both frequencies (M) use about a half of the positions for each frequency. To clarify the

last case, let’s take as an example the mixed frequency with ω = 30 visits: ω/2 − 1 = 14 visits cor-

respond to 14 customers with weekly frequency, and the remaining 16 visits correspond to 8

customers with semiweekly frequency, for a total of n = 22 customers. Similarly, for ω = 20 vis-

its, ω/2 = 10 visits correspond to 10 customers with weekly frequency and the remaining 10

visits correspond to 5 customers with biweekly frequency, for a total of n = 15 customers.
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Finally, the sets were duplicated and a central depot (C) and an outer depot (NC) were added

to each one.

Three groups were generated with a total of eight data sets in square areas chosen arbi-

trarily. The customer locations were randomly assigned following operational circumstances

consistent to the real problem addressed. For example, Group A instances seek to include situ-

ations where distribution is over suburban areas, comprising a relatively larger area and a low

density of customers. In contrast, Group B instances are intended to reflect cases of “last mile

distribution” in which zoning involves small distribution areas and varying customer density

over a wider range. Two data sets conform Group C that uses Group A setting to test the effect

of the number of visits ω when the number of customers n is fixed. Group A has 2 data sets

with the origin (0, 0) as a vertex of the rectangle: the first one with n = 20 customers located in

the box (0, 200) × (0, 100) and a second set with n = 30 customers located in the box (0, 100) ×
(0, 120). Group B has four sets with n = 12, 20, 30, and 40 customers each, randomly located in

the box (−4, 4) × (−4, 4), with the origin (0, 0) in the center of the rectangle. Tables 5 and 6

show the instance structure for these six data sets. The first set in Group C is the same set with

n = 20 customers from Group A, see Fig 1(d), and the second one has n = 16 customers located

in the same area of the Group A’s second set as shown in Fig 2.

Fig 1(a), 1(b) and 1(c) show the locations of n = 30, n = 22 and n = 15 customers respec-

tively, all of them used in instances with ω = 30 visits, with weekly, mixed and semiweekly

frequencies, respectively, being the configurations shown in Fig 1(b) and 1(c) subsets of the

configuration shown in Fig 1(a). Fig 1(d), 1(e) and 1(f) show the locations with n = 20, n = 15

and n = 10 customers; all of them used in instances with ω = 20 visits, with weekly, mixed and

semiweekly frequencies, respectively, being the last two configurations subsets of the configu-

ration shown in Fig 1(d). Fig 1 also identifies the position of the depot for the runs with cen-

tered depot (C), with a red bullet. For runs with outer depot, the location used for the depot

was the origin.

Fig 3(a) to 3(d) show the set of four generated data sets that belong to Group B, with n = 60,

n = 40, n = 20 and n = 12 customers, respectively. These locations are used in instances with

weekly frequency (W), and from each of them two subsets are randomly extracted to form

instances with semiweekly (S) and mixed (M) frequencies with the number of customers

specified in Table 6. For instances with centered depot, the depot coordinates are given by the

geometric median of the customer’s locations, while for instances with outer depot, their coor-

dinates were selected so that the centrality is 10%.

Table 5. Instance structure Group A.

Number of visits (ω) 30 20

Frequency W S M W S M

Number of customers (n) 30 15 22 20 10 15

W: weekly, S: Semiweekly, M: Mixed

https://doi.org/10.1371/journal.pone.0237014.t005

Table 6. Instance structure Group B.

Number of visits (ω) 60 40 20 12

Frequency W S M W S M W S M W S M

Number of customers (n) 60 30 45 40 20 30 20 10 15 12 6 9

W: weekly, S: Semiweekly, M: Mixed

https://doi.org/10.1371/journal.pone.0237014.t006
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Other parameters used in the model are: M = 2 vehicles, T = 5 days, τ(i) = 10 8i, ri = 120 8i.
D = 150 for Groups A and C instances with centered depot and D = 180 for instances with

outer depot. For all Group B instances D = 50.

All the information required for the replication of the experiments is housed in the paper

repository https://github.com/jamartinec/Data_Paper_Baldoquin_Diaz_Martinez.

Fig 1. Spatial distribution of customers—Group A—Centered depot.

https://doi.org/10.1371/journal.pone.0237014.g001

Fig 2. Spatial distribution of n = 16 customers—Group C—Centered depot.

https://doi.org/10.1371/journal.pone.0237014.g002
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Experimental design

With the aim of assessing the performance of the model framework discussed above, we con-

ducted the experimental design described in Table 7.

The factors considered are: the frequency, the optimization function, and depot position.

This means that a complete experimentation for a given size involves 18 runs. We present in

this paper the complete experimentation for the six data sets shown in the Tables 5 and 6.

We also study the effect of using the constraint (28) which prevents a route of having a sin-

gle customer, the constraint for symmetry breakage (29), the valid inequalities given by (30)

which states that and edge can only be traversed in one direction on the same route, and the

influence of using the set of disaggregated constraints (31) instead constraint (11).

Performance measures

In this work, we solved the different instances that we have just described using the general-

purpose MILP solver Gurobi-8.1.1. The modeling language used was Pyomo. The experiments

were run in a computer with 8 CPUs Intel1 Xeon1 E5-2670 2.60GHz, operating system Linux

Rocks 6.2. Under the same parameter tuning of the solver, modeling performance is assessed

with two values: the objective function value (OF) and the relative gap (%). Table 8 shows the

values used for some of the most important parameters that can influence the solution process

of a MILP model [54].

Fig 3. Spatial distribution of customers—Group B—Centered depot.

https://doi.org/10.1371/journal.pone.0237014.g003

Table 7. Experimental design for each number of visits.

Factor Options

Frequency Weekly Semiweekly Mixed

Optimization function f1 f2 f3
Depot position Center (C) Outer (NC)

https://doi.org/10.1371/journal.pone.0237014.t007
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The B&B algorithms used by the solver to solve MIP problems keep the best integer solution

found along with its objective function value ẑ , this is called the incumbent solution. If the

problem is a minimization one, ẑ is an upper bound for the optimal solution of the original

MILP formulation. Further details of the B&B algorithms can be found in [55]. At any time

during the B&B search, there is also a lower valid bound, called the best bound z�, which is

obtained by taking the minimum of the optimal values of the objective function on the leaf

nodes. The absolute gap is the difference between the bounds, i.e. gap ¼ ẑ � z�. The relative

gap is obtained by dividing the absolute gap by the best lower bound, that is rel_gap = gap/z�.
When the gap is less than a small value �, the incumbent solution is returned as the optimal for

the original problem [54, 56].

The choice of the relative gap as the main performance measure is consistent with Klotz &

Newman [57], who showed that through careful formulation and algorithmic parameter tun-

ing, the optimizer performance can be improved in terms of the optimality gaps (%). In addi-

tion, recognizing that commercial solvers are largely a black box, studying the effect of certain

model constraints, remains a valid research question [58]. On other hand, the OF serves to

compare variants of the same model, and is the typical performance measure of optimization

models (for example, [59, 60]). Results reported are the values obtained after a fixed maximum

computation time of one hour. Time selection obeyed to a preliminary experimentation with

10-hour runs, where it could be observed that the best lower bounds where achieved in this

period, and following [57], good lower bounds better reflect the difficulty of a model solution

than other aspects of the solution process.

Results

This section shows the results of the experimental runs for Groups A, B and C, in Tables 9 to

16, followed by a brief reading of the most outstanding values. Statistical analysis and further

discussion is presented in the following section.

Tables 9 and 10 report the experimental results obtained by using Group A instances, and

Tables 11, 12, 13 and 14 report the results by using Group B instances. The experiments results

in which the frequency is varied given a fixed number of customers n, are recorded in Tables

15 for n = 20 and 16 for n = 16. Each line in the tables specifies the objective function, or the

combination of objective function and additional constraint that has been tested.

Table 9 shows that optimality is reached only with instances with objective function f3 and

variant f3 + (31), centered depot and n = 15 customers. In general, f3 and variant f3 + (31)

present better gap values than instances with f2, and f2 + (31). f1 instances have 100% gap

which usually means that the solver has not yet computed a lower bound obtained as optimal

solution for a linear programming relaxation. No consistent effect of the additional constraints

is observed.

Table 8. Gurobi parameter tunning.

Parameter Description Value Effect

Threads Controls the number of threads used by the parallel MIP solver Default: 0 Use all the cores available in the machine

MIPFocus Allows to decide which aspects to prioritize between finding new feasible solutions and

proving that current solution is optimal

3 Focuses on improving the best bound

TimeLimit Limits the runtime 3600 Stops the solution process after 1 hour of starting

the algorithm

MIPGap Relative MIP optimality gap Default:

1e-4

The solver will therminate when the absolute gap

is less than MIPGap

https://doi.org/10.1371/journal.pone.0237014.t008
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Table 10 shows that instances with centered depot and objective functions f2 and f3 get to

the optimal or near, except for mixed frequency cases. Objective function values for f1 have

still 100% gap, except for some cases with n = 10. f3 instances with non-centered depot behave

better with constraint (31) than without it. In general, gaps with f3 and f3 + (31) behave better

than with f2 and f2 + (31).

Tables 11 and 12 show that with 60 and 40 visits, objective function f3 and variant f3 + (31)

have a better performance than the other variants, although none of them reaches the opti-

mum. The value of the gap for f3 and its variants behave better for centered instances com-

pared to the non-centered ones. Only the additional constraint (30) for 60 visits instances, and

the constraint (31) for 40 visits instances have slightly but consistent positive effect in f2 gaps.

Table 9. Experimental results ω = 30 visits (Group A).

Visits (ω) 30

Depot C NC

Frequency W (n = 30) M (n = 22) S (n = 15) W (n = 30) M (n = 22) S (n = 15)

OF % OF % OF % OF % OF % OF %

f1 41,00 100,00 48,00 100,00 54,00 100,00 54,00 100,00 56,00 100,00 63,00 100,00

f2 38,00 78,90 38,00 66,30 46,00 82,60 37,00 64,90 41,99 61,90 46,00 71,70

f3 80,00 17,50 110,00 10,00 108,00 0,00 121,00 46,28 136,00 27,94 136,00 19,85

f1 + (28) 48,00 100,00 43,00 100,00 49,00 100,00 52,00 100,00 47,00 100,00 63,00 100,00

f2 + (28) 37,00 90,00 39,00 64,10 46,00 65,22 39,00 61,54 47,00 70,22 48,00 68,53

f1 + (30) 45,00 100,00 44,00 100,00 52,00 100,00 51,00 100,00 68,00 100,00 62,00 100,00

f2 + (30) 36,00 77,77 41,00 68,29 44,00 72,72 38,99 66,66 33,00 59,46 47,00 70,21

f1 + (31) 39,00 100,00 44,00 100,00 48,00 100,00 50,00 100,00 57,00 100,00 61,00 100,00

f2 + (31) 36,00 77,77 38,59 67,81 42,99 69,76 43,00 69,76 45,00 64,44 46,99 70,21

f3 + (31) 78,00 15,38 113,00 2,65 108,00 0,00 116,00 43,95 149,00 29,53 136,00 22,79

OF: objective function value; %: relative gap.

https://doi.org/10.1371/journal.pone.0237014.t009

Table 10. Experimental results ω = 20 visits (Group A).

Visits (ω) 20

Depot C NC

Frequency W (n = 20) M (n = 15) S (n = 10) W (n = 20) M (n = 15) S (n = 10)

OF % OF % OF % OF % OF % OF %

f1 33,00 100,00 45,00 100,00 41,00 39,00 49,00 100,00 57,00 100,00 56,00 100,00

f2 21,00 0,00 32,00 53,10 34,00 3,00 30,00 23,00 38,00 40,00 35,99 3,00

f3 67,00 0,00 113,00 0,00 120,00 0,00 89,00 22,47 148,00 27,02 150,00 13,33

f1 + (28) 34,00 100,00 45,00 100,00 41,00 38,00 56,00 100,00 57,00 100,00 56,00 100,00

f2 + (28) 21,00 0,00 32,00 43,00 33,00 0,00 33,00 30,00 41,00 44,00 36,00 0,00

f1 + (30) 33,00 100,00 41,00 100,00 41,00 80,00 49,00 100,00 58,00 100,00 56,00 46,00

f2 + (30) 21,00 0,00 32,00 66,00 34,00 0,00 30,00 23,00 38,00 39,00 36,00 3,70

f1 + (31) 34,00 100,00 44,00 100,00 41,00 100,00 49,00 100,00 58,00 100,00 56,00 100,00

f2 + (31) 21,00 0,00 33,00 61,00 34,00 0,00 30,00 47,00 40,00 53,00 36,00 0,00

f3 + (31) 67,00 0,00 113,00 0,00 120,00 0,00 90,00 23,33 78,00 0,00 150,00 0,00

OF: objective function value; %: relative gap.

https://doi.org/10.1371/journal.pone.0237014.t010
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Table 13 shows that optimality of f1 and f1 + (31) instances is reached for some instances with

n = 10 customers and semiweekly frequency. It is also observed that f2 and f3 gaps behave better

for centered instances compared to the non-centered ones. Centered instances with f2, f3, and

their variants get to the optimal except for most of the f2 cases for which the number of custom-

ers was higher (n = 20). No consistent improvements for the addition of constraints is observed.

In Table 14 it can be seen that f1 and instances weekly frequencies still have 100% gaps.

Additional constraints do not improve any objective function. The remaining instances get to

optimality, except for one f2 instance with the larger value of n = 12, weekly frequency and

non-centered depot.

In Tables 15 and 16, for the established number of customers, f1 instances still have 100%

gaps. With a fixed n, the higher the number of visits (ω) the larger the gaps for f2 and f3

Table 11. Experimental results ω = 60 visits (Group B).

Visits (ω) 60

Depot C NC

Frequency W (n = 60) M (n = 45) S (n = 30) W (n = 60) M (n = 45) S (n = 30)

OF % OF % OF % OF % OF % OF %

f1 37,34 100,00 29,15 100,00 32,55 100,00 37,60 100,00 30,41 100,00 32,68 100,00

f2 21,16 94,25 28,32 94,36 22,34 85,17 21,17 92,42 33,02 95,25 27,51 87,82

f3 68,01 28,04 95,11 30,78 82,22 10,99 90,36 45,57 118,15 45,57 97,27 25,68

f1 + (28) 24,53 100,00 37,00 100,00 25,89 100,00 40,33 100,00 30,07 100,00 33,55 100,00

f2 + (28) 21,45 91,76 29,56 95,25 24,47 85,26 22,90 91,22 31,06 94,67 26,72 83,44

f1 + (30) 28,85 100,00 26,11 100,00 36,75 100,00 37,40 83,10 30,45 100,00 34,83 100,00

f2 + (30) 20,35 90,12 23,27 88,01 24,30 81,93 20,19 88,50 31,37 94,76 24,65 82,14

f1 + (31) 26,03 100,00 28,33 100,00 32,29 100,00 29,50 100,00 29,76 100,00 NAN NAN

f2 + (31) 25,88 94,43 29,15 100,00 20,91 74,02 22,21 91,11 30,15 95,98 29,19 79,50

f3 + (31) 69,50 29,27 82,52 21,67 80,68 8,53 98,27 50,06 124,03 48,79 94,80 23,42

OF: objective function value; %: relative gap.

https://doi.org/10.1371/journal.pone.0237014.t011

Table 12. Experimental results ω = 40 visits (Group B).

Visits (ω) 40

Depot C NC

Frequency W (n = 40) M (n = 30 S (n = 20) W (n = 40) M (n = 30) S (n = 20)

OF % OF % OF % OF % OF % OF %

f1 17,97 100,00 18,01 100,00 20,46 100,00 22,58 100,00 24,23 100,00 24,39 100,00

f2 13,58 80,12 14,55 78,89 12,78 71,13 15,58 84,20 15,99 79,19 15,41 77,22

f3 49,37 14,19 66,62 18,75 70,92 13,32 66,50 37,56 81,11 34,22 81,26 25,26

f1 + (28) 18,06 100,00 17,96 100,00 19,13 100,00 28,13 100,00 25,66 100,00 24,29 100,00

f2 + (28) 14,29 81,11 15,50 76,90 15,03 72,85 16,25 83,38 19,14 83,44 16,61 72,13

f1 + (30) 17,02 100,00 17,22 100,00 21,70 100,00 29,51 100,00 24,32 100,00 25,14 100,00

f2 + (30) 17,95 86,30 17,69 81,54 18,47 74,61 16,44 82,00 18,82 83,53 16,10 72,36

f1 + (31) 16,46 100,00 17,34 100,00 20,97 100,00 23,11 100,00 24,03 100,00 26,44 100,00

f2 + (31) 11,81 77,13 16,71 72,47 15,13 70,06 15,24 82,30 17,55 74,81 18,67 71,14

f3 + (31) 49,37 15,45 65,42 18,14 70,54 14,47 57,97 28,12 86,18 37,87 76,98 20,97

OF: objective function value; %: relative gap.

https://doi.org/10.1371/journal.pone.0237014.t012

PLOS ONE A multi-attribute consistent periodic VRP model framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0237014 August 3, 2020 18 / 27

https://doi.org/10.1371/journal.pone.0237014.t011
https://doi.org/10.1371/journal.pone.0237014.t012
https://doi.org/10.1371/journal.pone.0237014


instances. For f3 instances, constraint (31) has no effect in the gaps obtained. However, con-

straints (28) and (30) have consistently slight improvements in the f2 gaps.

Analysis and discussion

Having into account that the maximum computation time allowed was 1 hour, next we present

a series of highlights that come out from the results obtained.

Concerning to the additional constraints (28), (30), and (31), statistical two-sample differ-

ence tests were performed to verify if the gap improved when adding the additional con-

straints, one at a time. Every test considered n = 6, with all combinations of centered and non-

centered and frequency for each number of visits. p_values of the tests are shown in Table 17.

Detailed information of the statistical tests can be found in S1 Appendix. With an α = 0.05, the

Table 13. Experimental results ω = 20 visits (Group B).

Visits (ω) 20

Depot C NC

Frequency W (n = 20) M (n = 15) S (n = 10) W (n = 20) M (n = 15) S (n = 10)

OF % OF % OF % OF % OF % OF %

f1 11,05 100,00 11,04 100,00 11,58 100,00 19,38 100,00 20,38 100,00 20,25 0,00

f2 5,63 5,33 5,93 0,00 6,57 0,00 9,62 65,49 10,03 6,08 10,26 0,00

f3 29,86 0,00 38,72 0,00 46,56 0,00 37,67 20,28 47,96 14,97 50,52 0,00

f1 + (28) 11,79 100,00 12,17 100,00 11,58 100,00 20,38 100,00 20,38 100,00 20,45 100,00

f2 + (28) 6,70 0,00 6,93 0,00 7,57 0,00 11,19 45,67 11,19 0,00 11,26 0,00

f1 + (30) 11,00 100,00 12,17 100,00 11,58 100,00 19,38 100,00 20,05 100,00 20,28 100,00

f2 + (30) 6,63 4,52 6,93 0,00 7,57 0,00 10,19 57,61 11,03 2,54 11,26 0,00

f1 + (31) 10,73 100,00 11,04 100,00 11,58 0,00 19,38 100,00 20,45 100,00 20,25 0,00

f2 + (31) 6,63 2,56 6,93 0,00 7,57 0,00 10,19 57,61 10,75 2,54 11,26 0,00

f3 + (31) 29,86 0,00 38,72 0,00 46,56 0,00 37,67 22,23 47,96 15,59 50,52 0,00

OF: objective function value; %: relative gap.

https://doi.org/10.1371/journal.pone.0237014.t013

Table 14. Experimental results ω = 12 visits (Group B).

Visits (ω) 12

Depot C NC

Frequency W (n = 12) M (n = 9) S (n = 6) W (n = 12) M (n = 9) S (n = 6)

OF % OF % OF % OF % OF % OF %

f1 9,38 100,00 9,18 0,00 9,18 0,00 19,02 100,00 19,00 0,00 15,90 0,00

f2 4,19 0,00 4,34 0,00 4,34 0,00 9,01 0,00 9,01 0,00 7,45 0,00

f3 24,15 0,00 35,05 0,00 32,02 0,00 26,47 0,00 44,08 0,00 38,16 0,00

f1 + (28) 10,98 100,00 11,79 0,00 10,18 0,00 20,20 100,00 20,31 0,00 16,90 0,00

f2 + (28) 7,52 0,00 7,88 0,00 6,93 0,00 11,19 0,00 11,13 0,00 9,45 0,00

f1 + (30) 9,38 100,00 9,18 0,00 9,18 0,00 19,02 100,00 19,01 0,00 15,90 0,00

f2 + (30) 5,19 0,00 5,34 0,00 5,34 0,00 10,01 0,00 10,01 0,00 8,45 0,00

f1 + (31) 9,38 100,00 9,18 0,00 9,18 0,00 19,02 100,00 19,02 0,00 15,90 0,00

f2 + (31) 5,19 0,00 5,34 0,00 5,34 0,00 10,01 0,00 10,01 0,00 8,45 0,00

f3 + (31) 24,15 0,00 35,05 0,00 32,02 0,00 26,47 0,00 44,08 0,00 38,16 0,00

OF: objective function value; %: relative gap.

https://doi.org/10.1371/journal.pone.0237014.t014

PLOS ONE A multi-attribute consistent periodic VRP model framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0237014 August 3, 2020 19 / 27

https://doi.org/10.1371/journal.pone.0237014.t013
https://doi.org/10.1371/journal.pone.0237014.t014
https://doi.org/10.1371/journal.pone.0237014


Table 15. Experimental results n = 20 customers (Group C).

Customers (n) 20

Depot C NC

Frequency W (ω = 20) M (ω = 30) S (ω = 40) W (ω = 20) M (ω = 30) S (ω = 40)

OF % OF % OF % OF % OF % OF %

f1 33,00 100,00 61,00 100,00 73,00 100,00 49,00 100,00 63,00 100,00 91,00 100,00

f2 21,00 0,00 45,00 73,60 72,00 82,52 30,00 33,00 46,00 70,00 75,00 77,33

f3 67,00 0,00 121,00 9,92 134,00 2,24 89,00 22,47 153,00 28,76 178,00 26,40

f1 + (28) 34,00 100,00 45,99 100,00 74,99 100,00 56,00 100,00 63,90 100,00 86,99 100,00

f2 + (28) 21,00 0,00 40,00 62,50 66,00 80,00 30,00 33,00 45,00 41,07 68,00 75,00

f1 + (30) 33,00 100,00 55,00 100,00 72,00 100,00 49,00 100,00 69,00 100,00 84,00 100,00

f2 + (30) 21,00 0,00 47,00 72,19 66,00 79,04 30,00 23,33 47,00 52,20 67,00 73,13

f1 + (31) 34,00 100,00 52,00 100,00 71,00 100,00 49,00 100,00 63,00 100,00 87,00 100,00

f2 + (31) 21,00 42,00 42,00 69,40 58,99 75,85 30,00 47,00 46,00 58,70 70,00 67,14

f3 + (31) 67,00 0,00 121,00 9,09 134,00 2,98 90,00 23,33 153,00 28,10 178,00 25,84

OF: objective function value; %: relative gap.

https://doi.org/10.1371/journal.pone.0237014.t015

Table 17. Two-sample mean test p values of comparison of gaps for additional constraints (28), (30), and (31).

Visits f1 vs f1 + (31) f2 vs f2 + (31) f3 vs f3 + (31) f2 vs f2 + (28) f2 vs f2 + (30)

Group A 30 NA 0.6853 0.4521 0.7983 0.3385

20 0.3632 0.2013 0.2161 0.1953 0.3212

Group B 60 0.3632 0.3937 0.703 0.1517 0.0053

40 NA 0.0081 0.5083 0.9096 0.3972

20 NA 0.1228 0.2393 0.1582 0.1767

12 NA 0.3632 NA 0.3632 0.3632

n

Table 15 16 NA 0.0854 0.1834 0.4069 0.0511

Table 16 20 NA 0.6620 0.8122 0.0797 0.0739

NA: Not apply due to equal samples means. f1 vs f1 + (28) and f1 vs f1 + (30): NA for the same reason.

https://doi.org/10.1371/journal.pone.0237014.t017

Table 16. Experimental results n = 16 customers (Group C).

Customers (n) 16

Depot C NC

Frequency W (ω = 16) M (ω = 24) S (ω = 32) W (ω = 16) M (ω = 24) S (ω = 32)

OF % OF % OF % OF % OF % OF %

f1 28,00 100,00 44,00 100,00 60,00 100,00 48,00 100,00 59,00 100,00 78,00 100,00

f2 20,00 0,00 35,00 60,00 51,00 80,39 28,00 7,14 39,00 43,59 58,00 79,31

f3 69,00 0,00 124,00 0,81 138,00 0,00 84,00 11,91 138,00 16,67 168,00 21,43

f1 + (28) 34,00 100,00 44,99 100,00 64,90 100,00 57,00 100,00 62,00 100,00 73,00 100,00

f2 + (28) 22,00 0,00 33,00 30,00 52,00 75,00 33,00 0,00 38,00 60,52 56,00 71,40

f1 + (30) 32,00 100,00 44,00 100,00 62,00 100,00 48,00 100,00 60,00 100,00 79,00 100,00

f2 + (30) 20,00 0,00 33,99 58,82 51,00 70,58 28,00 0,00 36,00 22,22 55,00 70,91

f1 + (31) 36,00 100,00 44,00 100,00 58,00 100,00 48,00 100,00 59,00 100,00 73,00 100,00

f2 + (31) 20,00 0,00 33,00 52,00 47,00 72,00 28,00 0,00 39,00 47,59 55,00 71,00

f3 + (31) 69,00 0,00 124,00 0,00 138,00 0,00 84,00 0,00 136,00 13,97 168,00 19,64

OF: objective function value; %: relative gap.

https://doi.org/10.1371/journal.pone.0237014.t016
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t-tests shows that the additional constraints do not have an effect on the quality of the model,

since they do not significantly improve the value of the gap.

• Constraint (29), which is devised as a strategy for breaking symmetry, had no effect on the

value of the gap reached in any of the analyzed instances, and therefore the replicated results

were not included in the Tables 9–14. One possible reason for this is that such a strategy is

already covered in the automatic symmetry management techniques currently included in a

commercial solver such as Gurobi, which are probably based on sophisticated ideas such as

orbital branching [61].

• For f2 only, the addition of the set of dis-aggregated constraints (31) achieves a slight

decrease in the gap of less than 4% with 40 visits. The same does constraint (28), which pre-

vents a route from containing a single customer, with 60 visits. For f1, no instance with n�
16 gets a gap lower than 100% in one hour, so there is no significant difference between add-

ing valid restrictions or not.

• The addition of valid inequality (30), which establishes that each arc is traversed in a single

direction on each route that includes it, had no effect on the value of the gap when f1 was

used. The addition of such constraint in models with f2 only had a positive effect by reducing

the value of the gap in instances with more than 40 customers.

• No significant effect of restrictions (30) and (31) can be explained despite the so-called prop-

agation algorithms used in current commercial solvers, in which formulation changes that

probably improve performance during the solution stage are detected automatically [58].

Based on the experimental designed shown in Table 7, we performed analysis of variance

(ANOVA) to test the significance of the four factors considered (i.e. objective function, cen-

trality, frequency, and number of visits), for each number of visits: 20 and 30 for group A and

12, 20, 40, and 60 for group B. Taking advantages of the previous findings about no significant

differences when adding constraint (31), we used those experiments as the second blocked rep-

licate. Detailed ANOVAs are included in S2 Appendix. Among the more relevant findings are:

• With p values <0.001, the size (i.e. either number of visits or n) and the objective function

are significant in both groups, as it is expected; however, depot location and frequency

appeared to be significant in some cases, but explaining the gap only with contributions

from less than 1% to 4.8%. Centrality in group B has p value of 0.07.

• The objective function to be solved is the factor with the greatest effect on the value of the

gap. As observed in Fig 4, minimizing the total duration of route f1 is by far the most difficult

objective function to solve. As the size of the problem increases (number of visits or custom-

ers), the difference between the effects on the value of the gap of f1 versus f2 and f3 becomes

more pronounced. The outstanding performance of f2 over f1 is confirmed. The gaps of the

three objective functions vary almost proportionally; this is, gaps when solving f2 are almost

35% greater than when solving f3 and 45% less than when solving f1.

• For instances with more than 10 customers, the models with f1 or f2 are more sensitive to

the size of the problem (measured in number of customers), than the models with the usual

f3. With f1, only instances with n� 10 reached gaps lower than 100% as is shown in Tables

13 and 14.

• Gaps are consistently better for semiweekly frequencies. This means that for a given number

of visits, a larger number of customers increases the complexity. However, the effect of the

frequency type on the gaps is only significant for small instances of Group B, with 12 and
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20 visits, for which the contribution is close to 10%. For the instances with the highest num-

ber of visits, the contribution of this factor is less than 1%. This suggests that the influence of

the periodic assignment problem on the complexity of the model is quickly surpassed by the

one corresponding to the routing problem.

• In general, the centrality of depot location appears to be not significant. It contributes only

1% to the variability of the gap. Only f3 is affected by centrality. When the depot is centered,

20% lower gaps are obtained.

• Significant interactions are identified in both groups. The interaction plots shown in Fig 5

indicate that frequency impacts gaps more when the number of visits is smaller; the effect of

the number of visits is accentuated with f2; and double visit frequencies impact gaps more

when the number of visits is larger and for f1. Finally, for f3 gaps behave better with centered

depot.

Finally, with information from Tables 15 and 16, where the visits increases as the number

of customers and the frequency do, the more significant factors are again the size of the

Fig 4. Main effects plots for gap (fitted means). Groups A and B, respectively.

https://doi.org/10.1371/journal.pone.0237014.g004

Fig 5. Interaction plots of significant factors. Groups A and B, respectively.

https://doi.org/10.1371/journal.pone.0237014.g005
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problem, measured in frequency and the objective function. Centrality appears now to be sig-

nificant, suggesting that the gaps are slightly better with centered depot. The frequency affects

gaps for f2 but not for f3.

Conclusions and further work

This paper presents a MILP model framework for several variants of ConPVRP, and carried

out numerical experimentation on one of the models included in the Framework. The frame-

work presented includes models for ConPVRP, ConPVRP-TW, ConTDPVRP, ConTDPVRP-

TW. According to our review, the cases of ConTDPVRP and ConTDPVRP-TW had not been

previously modeled. For the different models of the framework, two unusual objective func-

tions were formulated and a third objective function of common use was incorporated for

comparison purposes.

The ConPVRP-TW, one of the variants included in the framework, was validated through

an experimental design where 4 factors were considered: objective function, number of visits,

types of frequencies, and depot centrality. The analysis helped identify the significant factors,

showed that the models performance is very sensitive to a relatively small sample size increase;

and suggests future research directions in this type of problems. It has been demonstrated how

the use of the non-conventional objective functions f1 and f2 lead to models of significantly

higher complexity than those in which the conventional function f3 is used. One result that is

worth noting is that the performance of the models that that minimizes the time in which the

last customer is visited f2 far exceeds the option of minimizing the maximum duration of a

route f1. In addition, results showed that the complexity of the problem is better explained by

the routing problem than the periodic assignment problem.

Among the potential research lines derived from this work is the improvement of the math-

ematical formulations for all models considered in the framework, by including adequate cuts

that allow finding in less time better lower bounds, with the consequent reduction of relative

gaps. Such effort is necessary especially for the objective function f1. Finally, it is worthwhile

developing a more comprehensive experimental design that incorporates the other types of

problems raised in the proposed model framework for ConPVRPs.
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