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Abstract

A Compton camera is a device for imaging a radio-source distribution without using a

mechanical collimator. Ordered-subset expectation-maximization (OS-EM) is widely used

to reconstruct Compton images. However, the OS-EM algorithm tends to over-concentrate

and amplify noise in the reconstructed image. It is, thus, necessary to optimize the number

of iterations to develop high-quality images, but this has not yet been achieved. In this

paper, we apply a median filter to an OS-EM algorithm and introduce a median root prior

expectation-maximization (MRP-EM) algorithm to overcome this problem. In MRP-EM, the

median filter is used to update the image in each iteration. We evaluated the quality of

images reconstructed by our proposed method and compared them with those recon-

structed by conventional algorithms using mathematical phantoms. The spatial resolution

was estimated using the images of two point sources. Reproducibility was evaluated on an

ellipsoidal phantom by calculating the residual sum of squares, zero-mean normalized

cross-correlation, and mutual information. In addition, we evaluated the semi-quantitative

performance and uniformity on the ellipsoidal phantom. MRP-EM reduces the generated

noise and is robust with respect to the number of iterations. An evaluation of the recon-

structed image quality using some statistical indices shows that our proposed method deliv-

ers better results than conventional techniques.

1. Introduction

A Compton camera is a device for imaging a radio-source distribution without using a

mechanical collimator. An elementary Compton camera contains two types of position-sensi-

tive detectors. A Compton event consists of Compton scattering in the first detector (scatterer)

and absorption in the second detector (absorber). The scatterer and the absorber record the

interaction positions and deposited energies for each event. When an electron is assumed to

be free and at rest, the scattering angle θ in the scatterer can be calculated from

cosy ¼ 1 �
mec2E1

E2ðE1 þ E2Þ
ð1Þ
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wheremec
2 is the mass-energy of an electron, E1 is the energy of the recoiled electron in the

scatterer, and E2 is the energy deposited in the absorber. The direction of the incident gamma

ray is restricted to an area called a “Compton cone”.

An application of this type of camera in nuclear medicine was first proposed by Todd et al.

[1]. As no mechanical collimator is required in a Compton camera, simultaneous imaging of

multiple radionuclides is possible over a wide field of view, with high efficiency, and across a

wide energy range (from several tens of keV to a few MeV). Thus, Compton cameras are a

promising mode of medical imaging [2].

Compton cameras have been developed for use in the field of γ-ray astronomy [3, 4]. We

have been developing a semiconductor-based Compton camera for a nuclear medical imaging

system that was originally developed by the Japan Aerospace eXploration Agency (JAXA) [5–

7]. Our Compton camera used a silicon (Si) semiconductor detector with low noise, allowing

low-energy gamma emitters to be imaged with high accuracy [8].

In recent years, the imaging ability of Compton cameras has rapidly improved and realistic

experiments have been performed, even though the development of medical Compton cam-

eras has a long history. Several reconstruction methods have been proposed for Compton

imaging. Unfortunately, the current research on reconstruction methods for Compton cam-

eras has, to date, not made significant progress. Among them, maximum-likelihood expecta-

tion-maximization (ML-EM) and ordered-subset expectation-maximization (OS-EM) are

commonly used imaging algorithms. However, ML-EM and OS-EM are prone to amplifying

the noise through excessive iterations, leading to difficulties in evaluating the imaging ability

because the optimal number of iterations is not known in advance. In recent studies, the num-

ber of iterations tends to be arbitrarily assigned, considering noise and calculation time. This

makes it difficult to compare the image qualities in a fair and scientific manner. Thus, we

developed a reconstruction algorithm, which can reduce the emphasis on noise. Iterative post-

smoothed methods reduce the noise, but cannot solve the problem of over-convergence funda-

mentally. Therefore, in clinical use, it would be beneficial to use a priori knowledge that could

supress the noisy parameters in image reconstruction. This prior knowledge is somehow

inserted in the reconstruction algorithms for single photon emission computed tomography

(SPECT) and positron emission tomography (PET) images [9–12], but not utilized in Comp-

ton imaging. Median filters can efficiently reduce noise levels. Therefore, in this study, we

developed a noise-reducing imaging algorithm by adding a median filter to the OS-EM algo-

rithm (median root prior EM, MRP-EM) for Compton imaging. The quality of the images

reconstructed by implementing the proposed advanced method was tested using computer

simulations. Spatial resolution, several image quality indices, the semi-quantitative ability, and

uniformity of MRP-EM were evaluated using an ellipsoid phantom to ensure that the pro-

posed method can be used effectively in nuclear medicine. MRP-EM was compared with sim-

ple backprojection (BP), OS-EM, and the stochastic origin ensemble (SOE) method [13–15] as

well as with the analytical method developed by Tomitani and Hirasawa [16–18].

2. Methods

2.1 Monte Carlo simulations

To generate data for testing our algorithm, Geant4-based Monte Carlo simulations were con-

ducted [19]. The simulation codes used to emulate our existing Compton camera have already

been verified in previous studies [6, 7, 20, 21]. Fig 1(A) shows the geometry of the simulation

model. The Compton camera consists of a single-layer Si detector and a three-layer cadmium

telluride (CdTe) detector. The active area of each detector is 32 × 32 mm2 divided into 128

strips on each side. The Si and CdTe detectors were 500 μm and 750 μm thick, respectively,
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with 4-mm spaces between them. Simulations were performed considering the realistic condi-

tions that usually occur during Compton camera measurements, where the data are affected

by segmented position determination, limited resolution, and Doppler broadening. The typical

energy resolution (full width at half-maximum) was 3.8 keV at 81.0 keV and the angular reso-

lution measurement (ARM) was 4.9˚ at 511 keV [7]. Further specifications have been

described by Odaka et al. [22].

In this study, only successive events, involving the Si scatterer and one of the CdTe

absorbers, were considered in list mode for image reconstruction. A photo-peak energy win-

dow of 20 keV (501–521 keV) was applied to sum the measured energies in the scatterer and

absorber.

We performed simulations on two types of mathematical phantoms. The first one con-

tained two point sources of 511 keV gamma rays placed in line at y = 0, with a separation dis-

tance ranging from 5–15 mm, shifted by 1 mm each. The reconstructed images obtained

through this simulation were used to evaluate the spatial resolution. The other phantom was

an ellipsoidal phantom, similar to a Shepp-phantom [23]. As shown in Fig 1(B), this consisted

of a hot-spot (HS) (yellow region) and two cold spots (CS1, CS2) (black region) in a large ellip-

soid region (LE) (dark red region). The activity concentration of HS was 3.5 times that in LE,

and the activity concentration of the remaining parts, including the two cold spots, was zero.

All sources were placed in a plane parallel to the plane of the detectors and were 100 mm apart

from the plane of the first detector (Si scatterer).

2.2 Imaging algorithms

2.2.1 General parameters. Images were reconstructed on the plane parallel to that of the

detectors at a distance of 100 mm. The field-of-view (FOV) was 300 × 300 mm2 with a 1 × 1

mm2 pixel size. The reconstructed images were normalized by the sum of pixel values to trans-

form the probability distribution so as to compare with the source distribution. Calculations

were performed using a 2.7 GHz 12-core Intel Xeon E5 processor (using only one core).

2.2.2 Simple backprojection. In Compton imaging, a Compton cone is reconstructed

from the vector joining two interaction points and the scattering angle (calculated from the

Compton kinematics of (1)). In general, the quadric curve described by the interaction

between the Compton cone and imaging plane suggests the origin of the gamma ray. Because

of the finite angular resolution of the Compton camera, there are some uncertainties regarding

the original point. Therefore, we adopt a Voigt function to consider the uncertainty. The pixel

value λj at the jth pixel can then be expressed as:

li;j ¼ jD
!
j
� 2Vðyi ;s;gÞ ð2Þ

lj ¼
P

ili;j ð3Þ

where i expresses the number of the event, D! represents the vector from the apex of the

Compton cone to the reference point, V(θi;σ,γ) represents the Voigt profile, σ and γ are the

parameters of ARM determined by a point source imaging examination, jD!j� 2
corrects the

distance effect in near-field imaging, and θi is the minimum angular difference between D!

and the vector on the surface of the Compton cone of the ith event [7, 24].

2.2.3 Ordered-subset expectation-maximization. The ML-EM algorithm is widely used

for image reconstruction. Although OS-EM works in a similar way to ML-EM, the algorithm

is optimized by performing an update after each subset of the total amount of data has been
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processed [25, 26]. For L subsets, these steps are calculated as follows:

l
ðk;lþ1Þ

j ¼
l
ðk;lÞ
j

Sj

P
i2Sl

tij
P

mtimV
ðk;lÞ
m

ð4Þ

l
ðkþ1;0Þ

j ¼ l
ðk;LÞ
j ð5Þ

where l
ðk;0Þ
j is the pixel value in the image of the kth iteration, l

ðk;lÞ
j is the updated value of the

kth image using l subsets, Sj is the detection efficiency vector, and tij is the transition probabil-

ity of the ith event at the reference point. tij is calculated in the same manner as in Eq (2). The

detection efficiency vector Sj was calculated analytically, considering geometrical and physical

conditions [7]. In this study, the BP image was considered as the initial image and the number

of subsets was set to four on considering the number of Compton events and improvement of

calculation time.

2.2.4 Median root prior expectation-maximization. MRP is based on the one-step-late

(OSL) algorithm [27]. OSL modifies OS-EM by incorporating prior information. MRP

assumes that the most probable value of the pixel is close to the local median. In MRP-EM, the

pixel value is calculated by the following equation:

l
ðk;lþ1Þ

j ¼
l
ðk;lÞ
j

Sj 1þ b
l
ðk;lÞ
j � medðljÞ

medðljÞ

� �
P

i2Sl

tij
P

mtiml
ðk;lÞ
m

ð6ÞÞ

where β is a hyperparameter that influences the degree of smoothness of the estimated images,

andmed(λj) is the median of the image pixels over a neighbourhood around the jth pixel. In

this study, β was set to 1 to accent the effect of median filter, and the size of the median mask

was set to 7 × 7 (S1 Fig).

Fig 1. Imaging setup (a) and source distribution of ellipsoid phantom (b). The blue dotted line in (b) represents the region of interest for the semi-quantitative and

uniformity tests.

https://doi.org/10.1371/journal.pone.0229366.g001
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2.2.5 Stochastic Origin Ensemble method. The SOE approach to Compton imaging

based on Markov chains was developed by Andreyev [14, 15]. It does not require forward and

backward projection operations. To make an initial image, the possible origin-points of all

measured events are selected randomly on the corresponding conical surface in the imaging

area. A new location of the ith event is then randomly selected from the possible origin posi-

tions. Finally, the pixel values (event density in the neighbourhood) λi,k and λ’i,k of the former

and the new candidate points in the kth image are compared, and the acceptance probability A
is calculated as:

A ¼ min 1;
li;k þ 1

l
0

i;k

 !

ð7Þ

According to A, the presumed origin-point is changed to the new point or remains at the

current location. After all values of A have been estimated for all events, the k+1th image is

reconstructed. As the number of iterations increases, the SOE algorithm produces high-fre-

quency noise. A Gaussian filter can be applied to the reconstructed images to suppress this

noise.

2.2.6 Analytical method. Tomitani and Hirasawa developed an analytical method using

spherical harmonics. Their algorithm was later extended to compensate for angular uncertain-

ties [16–18]. They computed

lj ¼
R coso1

coso2
d coso

R

S d t
! k� 1ð t!; p!;oÞgð t!;oÞ ð8Þ

where ω1 and ω2 are the minimum and maximum scattering angles, respectively, in the recon-

struction, S is a unit sphere centred at the scattered point, t! denotes the direction of the unit

vector on the projection, gð t!;oÞ is the projection data, and k� 1ð t!; p!;oÞ represents the

cone transform, which is described as:

k� 1 t!; p!;o
� �

¼
P1

n¼0

2nþ 1

4p

1

Hn
PnðcosoÞPn ð t

!
; p!Þ

� �
ð9Þ

Hn ¼
R o1

o2
sðcosoÞPnðcosoÞ

2dcoso ð10Þ

s cosoð Þ ¼
1þ cos2o

2f1þ ðE1 þ E2Þð1 � cosoÞ=meg
2

1þ
ððE1 þ E2Þð1 � cosoÞ=meÞ

2

ð1þ cos2oÞf1þ ðE1 þ E2Þð1 � cosoÞ=meg

� �

ð11Þ

where Pn is the Legendre polynomial of order n. In this study, ω1 and ω2 were set to 5˚ and

90˚, respectively.

2.3 Evaluation of the reconstruction quality

To validate the spatial resolution, two 511 keV gamma-ray point sources were measured. They

were located in a plane 100 mm from the first layer of the Si detector. The two point sources

were placed in line at y = 0, with a distances of 5–15 mm apart. Using a line profile through the

two point source positions in the reconstructed image for each method, the spatial resolution

was defined as the minimum distance at which two peaks were visible. The two point sources

are said to be distinct, when the maximum values in both x<0 and x>0 are larger than the

value of x = 0 in the profile of y = 0 (the origin was defined as the centre of the images) (Fig 2).

For the imaging of the ellipsoidal phantom, the degree of coincidence with the original

source distribution was evaluated using the following three indices: residual sum of squares
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(RSS), zero-mean normalized cross-correlation (ZNCC), and mutual information (MI). These

indices were calculated as follows:

RSS ¼
P
ðVT � VRÞ

2
ð12Þ

ZNCC ¼
P
ðVT � VT ÞðVR � VRÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P
ðVT � VT Þ

2P
ðVR � VRÞ

2

q ð13Þ

MI ¼
P
pTRðt; rÞ � log

pTRðt; rÞ
pTðtÞ � pRðrÞ

ð14Þ

where VT and VR are the pixel values of the true source distribution and the reconstructed

image, respectively, VT and VR are the average pixel values, pT and pR are the marginal proba-

bility distributions of the pixel values, and pTR(t,r) is the joint probability distribution. In this

study, MI was calculated for 256 gradation levels of the images. Good performance by an algo-

rithm would result in a small RSS, ZNCC close to one, and high MI.

In addition, we evaluated the semi-quantity and uniformity performance. The averages and

coefficient of variation (CV = Standard Deviation / Average) in the region of interest (ROI)

(blue broken line in Fig 1(B)) were calculated.

3. Results

3.1 Point source

In the Monte Carlo simulation, about 16000 Compton events were considered. The spatial res-

olutions determined from the two point sources are shown in Fig 3. Among OS-EM,

MRP-EM, SOE, and Analytic and BP algorithms, OS-EM and SOE algorithms were found to

have the best spatial resolutions.

Fig 2. Examples of the line profile for spatial resolution analysis. The two point sources are said to be distinct when the maximum values in both x<0 and x>0

are larger than the value of x = 0 in the profile of y = 0 (the origin was defined as the centre of the images). (A): distinguishable, (B): indistinguishable.

https://doi.org/10.1371/journal.pone.0229366.g002
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3.2 Ellipsoidal phantom study

The Monte Carlo simulation performed on the ellipsoidal phantom (Fig 1(B)) measured 23648

Compton events. Fig 4 shows the reconstructed images of the phantom using 3, 10, 20, and 50

iterations of the OS-EM and MRP-EM algorithms and 30, 100, 200, and 500 iterations (10

times more than OS-EM and MRP-EM) of the SOE algorithm, along with the images recon-

structed by the BP and Analytic algorithms.

The change in RSS, ZNCC, and MI with respect to the number of iterations is shown for

each iterative algorithm (OS-EM, MRP-EM, and SOE) in Fig 5. In the case of OS-EM, the

image quality initially increases, but decreases as the number of iterations becomes excessive.

The optimal number of iterations is different for each index (RSS, ZNCC, and MI). The image

quality of MRP-EM increases monotonically for RSS and ZNCC, but, after an initial increase,

decreases to a constant value in the case of MI. The image quality of SOE remains almost con-

stant in each case. The RSS, ZNCC, and MI values of BP were 2.8×10−5, 0.35, and 0.43, respec-

tively, and those of the analytical method were 2.0×10−5, 0.88, and 0.76, respectively.

The change in the average and CV of the reconstructed image for each iterative algorithm is

shown in Fig 6. The true values in HS and LE were 1.4×10−4 and 4.8×10−5, respectively. The

average values (CV) of HS, LE, CS1, CS2, and BG for the analytical method were 1.0×10−4

(6.8%), 4.1×10−5 (10%), 1.6×10−5 (36%), 1.0×10−5 (73%), and 9.3×10−6 (65%), respectively, and

those for BP were 6.8×10−5 (3.6%), 3.0×10−5 (12%), 4.1×10−5 (3.0%), 3.7×10−5 (4.8%), and

1.3×10−5 (23%), respectively.

Using MRP-EM, the average values of all regions asymptotically approached a stable value,

and the CV also became stable; this is in contrast to OS-EM, where the average and CV contin-

ued to change on each iteration. Both the average and CV values remained almost unchanged

in the case of SOE.

Finally, the image quality after a reasonable number of iterations is compared considering

RSS, ZNCC, and MI values, in Fig 7. From Fig 5, the optimal numbers of iterations for

OS-EM, MRP-EM, and SOE were set to 10, 20, and 200, respectively.

Fig 3. Images of two point sources with 8 mm distance (A)—(E) and spatial resolutions of the images reconstructed by the various algorithms (F).

https://doi.org/10.1371/journal.pone.0229366.g003
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4. Discussion

We evaluated the imaging properties of the MRP-EM algorithm against previous methods. We

adopted SOE as an iterative algorithm without ML-EM (and advanced method of ML-EM), as

well as the analytical method developed by Tomitani and Hirasawa. These methods have been

used in previous comparison studies [28–31]. Nuclear medical images require the ability to

Fig 4. Images reconstructed using the various algorithms. Numbers in brackets denote the number of iterations for

SOE (10 times more than for OS-EM and MRP-EM).

https://doi.org/10.1371/journal.pone.0229366.g004
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identify disease. Unfortunately, there is no versatile index that can measure the degree of

“identifiability” in nuclear medicine diagnosis. In this study, to evaluate the difference in the

reconstructed images with respect to the original source distribution, we used the RSS, ZNCC,

and MI metrics. There is a possibility that images with similar index values may exhibit quite

different qualities [32]. RSS evaluates the difference directly, ZNCC estimates the difference by

reducing the effect of the background, and MI is insensitive to impulsive noise [33]. In addi-

tion, the images reconstructed with a reasonable number of iterations were compared to evalu-

ate the reconstruction ability on a fair basis (Fig 7).

When OS-EM was used to reconstruct images of the point sources, the pixel values were

excessively concentrated in one spot. Thus, the spatial resolution could not be evaluated using

a point spread function. Therefore, two point sources placed at various distances apart (5–15

mm) were imaged to evaluate the smallest distance between two distinguishable points,

defined as the spatial resolution. It was found that OS-EM and SOE possesses the best spatial

resolution, although that of the proposed MRP-EM was only slightly worse. It is not surprising

that a smoothing filter degrades the spatial resolution of images.

Fig 4 shows the reconstructed images of the ellipsoidal phantom. As shown in Fig 7,

OS-EM can reconstruct an image with good spatial resolution in a short time, if the number of

iterations is appropriate. However, the image quality drastically changes with the number of

iterations (Fig 5). With ML-EM, the image is updated iteratively, and OS-EM accelerated the

process. Thus, it can be concluded that the image reconstructed by OS-EM is very sensitive to

the iteration number. The optimal number of iterations depends on the data size and the com-

plexity of the source distribution. Hence, it is difficult to optimize the number of iterations in a

general way. The use of a median filter can reduce noise and facilitate the adoption of the best

iteration number. In our preliminary experiment, the median filter was found to prevent the

excess accumulation more efficiently than a mean filter and Gaussian filter (data not shown).

The convergence time for MRP-EM is longer than that of OS-EM. This is mainly due to the

number of required iterations for convergence instead of the increase in calculation time for

an iteration. We believe the computation time is acceptable. In addition, MRP-EM produced

better values of RSS, ZNCC, and MI than the other reconstruction methods (including

OS-EM). This means that MRP-EM provides better images than OS-EM, if the unacceptable

noise could be avoided by an appropriate early termination method. OS-EM statistically esti-

mates the source distribution, resulting in statistical noises in the image being emphasized

Fig 5. Changes in RSS, ZNCC, and MI of the reconstructed image for each iterative algorithm (OS-EM: blue, MRP-EM: red and SOE: green). Lower values are

preferable for RSS, and higher values are better for ZNCC and MI. The x-axis value (iteration number) of SOE is 10 times greater than that of OS-EM and MRP-EM.

The RSS, ZNCC, and MI values of BP were 2.8×10−5, 0.35, and 0.43, respectively, and those of the analytical method were 2.0×10−5, 0.88, and 0.76, respectively.

https://doi.org/10.1371/journal.pone.0229366.g005
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easily. In general, medical images are locally monotonic. Thus, the median filter smoothens

images, and MRP-EM can achieve feasible images by avoiding impulse noises.

The stability of MRP-EM against the number of iterations was also confirmed through

semi-quantitative and uniformity analysis (Fig 6). In the case of OS-EM, the CV value

increased monotonically and exhibited the tendency of OS-EM to over-concentrate the image

Fig 6. Changes in average and CV of HS, LE, CS1, CS2, and BG of the reconstructed images for each iterative algorithm (OS-EM:

blue, MRP-EM: red and SOE: green). The x-axis value (iteration number) of SOE is 10 times greater than that of OS-EM and

MRP-EM. The average values (CV) of HS, LE, CS1, CS2, and BG for the analytical method were 1.0×10−4 (6.8%), 4.1×10−5 (10%),

1.6×10−5 (36%), 1.0×10−5 (73%), and 9.3×10−6 (65%), and those for BP were 6.8×10−5 (3.6%), 3.0×10−5 (12%), 4.1×10−5 (3.0%),

3.7×10−5 (4.8%), and 1.3×10−5 (23%).

https://doi.org/10.1371/journal.pone.0229366.g006
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in one spot. The average value of HS with OS-EM displayed a peak and departed from the true

value as the iterations continued, resulting in the curve shown in Fig 4. The average values in

CS1 and CS2 under the OS-EM approach tend asymptotically to zero, but the CV values

increased rapidly and the cold spots were unclear in the reconstructed images. Conversely, the

RSS and ZNCC values with MRP-EM improved with the number of iterations. Though the MI

value with MRP-EM decreased after a peak value, the curve became stable near the peak. The

average values in CS1 and CS2 with MRP-EM remained constant. However, the cold spots can

be identified in the reconstructed image. The average values of CS1 and CS2 depend on the

size of the cold spot.

In this study, SOE was found to reconstruct the image very quickly, even though we used

more iterations in accordance with previous reports [15, 34]. However, the image quality was

not good with respect to the measured values of RSS, ZNCC, and MI. Many pixel values

remained in the cold spots or BG region. This was because the number of Compton events

used for the reconstruction was too small compared to the number of pixels (90000), and

Fig 7. Comparison of image quality of BP, Analytic algorithm, OS-EM with 10 iterations, MRP-EM with 20 iterations, and SOE with 200

iterations. (a) Reconstruction time (shorter is better), (b) spatial resolution (shorter is better), (c) RSS (smaller is better), (d) ZNCC (higher is

better), (e) MI (higher is better), (f) average values in each position, and (g) CV in each position.

https://doi.org/10.1371/journal.pone.0229366.g007
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sufficient possible origin-points could not be accumulated in the hot spot. It is obvious that

image reconstruction with a small number of pixels produces a better image (data not shown).

The advantage of SOE is its speedy reconstruction, even with a large number of Compton

events. Unfortunately, this merit was not examined with a relatively small number of Compton

events in this study.

The analytical method developed by Tomitani and Hirasawa can reconstruct good images

while maintaining the spatial resolution and has low computer memory requirements. Com-

paring MRP-EM and the analytical method, the computation time, ZNCC, and MI results

were comparable, but MRP-EM achieved a better RSS.

The proposed MRP-EM requires considerable computational resources. In particular, the

calculation time and memory requirements become significant as the number of Compton

events increases. In a human experiment [35], it was found that Compton images could be

reconstructed using fewer Compton events. Thus, the conditions of this study were not unreal-

istic. With improvements in Compton cameras, the number of Compton events available

could be increased. On the other hand, the pixel size could be larger considering the spatial res-

olution of Compton camera. This aspect requires further investigation. At least, the parameter

β of MRP-EM and the number of subsets have to be optimized in tune with the imaging condi-

tions. A larger number of subsets accelerates the convergence rate, but the data size of each

subset contains less statistical information. This would result in enhanced noise structures in

the final image [36]. β is an intensity factor of the filter of MRP-EM. Small numerical values of

β cannot reduce the noise, and the image would be similar to the image obtained with OS-EM.

In contrast, some reduction in the spatial resolution was observed in this study with β = 1,

which is a drawback of MRP-EM. A right combination of β and filter size could improve

image quality without a considerable resolution reduction. Further research is required to

investigate appropriate values.

MRP-EM can be easily extended to three dimensions. Additionally, the use of GPUs would

speed up the reconstruction time, because MRP-EM is parallelizable. Thus, we believe that

MRP-EM is a promising algorithm for nuclear medical applications.

5. Conclusions

The main goal of this study was to evaluate the ability of MRP-EM, which is a modified version

of OS-EM, with a median filter. MRP-EM can produce high-quality reconstructed images

without over-concentration in a reasonable computation time. Though the spatial resolution is

slightly worse than that of OS-EM, the image quality indices evaluated in this study suggest

that MRP-EM provides better reconstructions than other analytical or iterative methods. We

will extend the MRP-EM algorithm to three dimensions as the next step.

Supporting information

S1 Fig. Compton images of simulation study reconstructed by ML-EM algorithm with

respect to iteration number (3, 10, 20, and 50) and the size of the median mask (3×3, 5×5,

7×7, and 11×11).

(PDF)

S2 Fig. RSS and ZNCC evaluation for different sizes of median mask (3×3, 5×5, 7×7, and

11×11) of the simulated Compton images reconstructed by ML-EM algorithm. Lower val-

ues are preferable for RSS, and higher values are better for ZNCC and MI.

(PDF)
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