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ABSTRACT: The calculation of electron correlation is vital for
the description of atomistic phenomena in physics, chemistry, and
biology. However, accurate wavefunction-based methods exhibit
steep scaling and often sluggish convergence with respect to the
basis set at hand. Because of their delocalization and ease of
extrapolation to the basis-set limit, plane waves would be ideally
suited for the calculation of basis-set limit correlation energies.
However, the routine use of correlated wavefunction approaches in
a plane-wave basis set is hampered by prohibitive scaling due to a
large number of virtual continuum states and has not been feasible
for all but the smallest systems, even if substantial computational
resources are available and methods with comparably beneficial
scaling, such as the Møller−Plesset perturbation theory to second
order (MP2), are used. Here, we introduce a stochastic sampling of the MP2 integrand based on Monte Carlo summation over
continuum orbitals, which allows for speedups of up to a factor of 1000. Given a fixed number of sampling points, the resulting
algorithm is dominated by a flat scaling of ∼ N( )2 . Absolute correlation energies are accurate to <0.1 kcal/mol with respect to
conventional calculations for several hundreds of electrons. This allows for the calculation of unbiased basis-set limit correlation
energies for systems containing hundreds of electrons with unprecedented efficiency gains based on a straightforward treatment of
continuum contributions.

1. INTRODUCTION

Electron correlation lies at the heart of a wide range of
fundamental physical and chemical phenomena, which range
from the structural diversity and dynamics of water1 over the
dissociation of liquid hydrogen at high pressure2 and the
stability and mobility of point defects in semiconductors3 to
the barrier height of chemical reactions. Wavefunction-based
methods allow for a conceptually simple and convenient
treatment of electron correlation4−6 and have found wide-
spread and long-lasting use in theoretical chemistry. Correlated
wavefunction methods have been widely applied as a
benchmarking tool7,8 in the development of computationally
more expedient methods such as the Kohn−Sham density
functional theory (KS-DFT).9,10 More recently, their scope has
been enlarged by rigorous hybridization schemes that combine
KS-DFT with correlated wavefunction approaches,11−15 giving
rise to some of the most accurate density functional
approximations available to date.12,13,16−19 In particular,
while it has been pointed out that many recently developed
density functional approximations fail to yield correct densities
and energies at the same time,20 double hybrid (DH)
functionals have been shown to be able to overcome this
fundamental problem.21 Recently, modern machine learning
techniques have considerably increased timescales and system

sizes that can be sampled on conventional infrastructure, but
the generation of reliable input data for the training of such
methods still relies on the computational feasibility of
reference calculations of sufficient accuracy. In this perspective,
the importance and scope of wavefunction-based first-
principles techniques applied to condensed matter systems
can therefore only be expected to grow further, both as a
standalone method and in combination with DFT.
To this day, wavefunction-based correlation methods are

hampered by a scaling that is polynomial at best and that is
associated with a considerable prefactor. This implies that for
larger systems, trade-offs have to be made between the
accuracy of the basis set employed and the number of electrons
that can be treated with reasonable computational resources.
Moreover, correlated wavefunction approaches have only
scarcely been applied in the condensed phase, which is due
to additional difficulties encountered in periodic systems.22−40
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These difficulties can be further exacerbated by the large basis
sets needed to obtain basis-set limit reference energies.41 This
precludes the routine use of wavefunction-based methods for
large condensed phase systems; at the same time, benchmark-
ing possibilities, for example, against newly developed density
functionals, remain restricted to comparably few atoms and
small supercells27,31,34,35,38 or have to be based on basis sets
which are far from completeness. In benchmarking, this can be
particularly problematic in combination with the erroneous
convergence behavior of certain density functionals, which
obfuscates any comparison that is not explicitly made at the
complete basis-set limit.42,43 The availability of basis-set limit
results is therefore necessary not only for formal reasons, but is
also of great importance for the assessment of the physical
accuracy of existing models and approximations, representing
an important guideline in the development of new techniques
and approximations that are able to reach far beyond current
system sizes and limitations.
In principle, plane wave (PW) basis sets would constitute an

ideal choice for the calculation of basis-set limit correlation
energies since they do not introduce any localization bias and
allow for a controlled, simple, and well-defined extrapolation to
the complete basis-set limit44 without the linear dependency
issues commonly encountered in large atom-centered
bases.28,35,45,46 In particular, since a single PW is the solution
of the Schrödinger equation of a free electron, its use enables
the description of continuum states, which have been shown to
play a crucial role in the complete description of electron
correlation.47 In the following, we will refer to continuum
states in finite systems as those virtual states that resemble a
free electron; it is also this resemblance that lies at the heart of
simple extrapolation to basis-set limit values.44 By virtue of
their very nature, conventional atom-centered bases such as
Gaussian functions or combined Gaussian/PW (GPW)48 bases
are unable to describe such continuum states, which also
account for the absence of physical models that would allow
for a simple extrapolation to the basis-set limit. Instead, they
usually rely on specifically constructed basis sets that allow for
certain extrapolation models to be applied; this, however, does
not commonly hold for density functionals.42,49 PWs have not
been reported to suffer from this drawback.43 In addition, PWs
are equally suitable for the treatment of both periodic and
nonperiodic systems with either wavefunction-based methods,
density functional techniques, or hybridizations thereof. These
advantages, however, come at a price: The presence of a large
number of continuum states in PW setups exacerbates the
steep scaling of correlated wavefunction methods, making
them computationally intractable for all but the smallest
systems, which on their own will already require substantial
resources on conventional high-performance compute clusters.
In the following, we will show that PW-based correlated
wavefunction calculations can be sped up by a factor of up to
1000 by stochastically sampling continuum state contributions
via Monte Carlo summation. The error introduced by this
stochastic approach remains below 0.01 kcal/mol per electron.
This enables correlated wavefunction calculations in PWs for
unprecedented system sizes on conventional computational
infrastructure, making unbiased basis-set limit values routinely
accessible for systems with up to hundreds of electrons. The
same reflections hold for hybrid wavefunction/DFT methods,
such as DH11 density functionals.
1.1. Møller−Plesset Perturbation Theory. Among the

correlated wavefunction methods, second-order Møller−

Plesset perturbation theory (MP2)50 exhibits a comparably
flat scaling of N( )5 with the number of electrons or basis
functions N, making it one of the flattest scaling correlated,
wavefunction-based approaches available, second only to the
random phase approximation (RPA) and the direct RPA
(dRPA), respectively.51,52 In general, MP2 has been found to
provide a good first estimate of the dynamic correlation
energy.6,53 Conceptually simple, the MP2 correlation energy
Ec
MP2 is obtained by a perturbative treatment that includes up

to doubly excited determinants and summation over pairs of all
Nocc occupied and Nvir virtual orbitals. For the spin-restricted
case,4

∑ ∑ ∑ ∑
ε ε ε ε

=
+ − −

E
i j a b( , , , )E

i

N

j

N

a

N

b

N

i j a b
c
MP2

occ occ vir vir

(1)

where i, j and a, b denote spatial occupied and virtual orbitals
ψ, respectively, that are eigenstates of the Hartree−Fock
operator with eigenvalues ε. The MP2 matrix element E̅(i,j,a,b)
is expressed in terms of four-electron Coulomb energies, which
can be cast into a positive-definite form

= |⟨ | ⟩| − ⟨ | ⟩⟨ | ⟩ + |⟨ | ⟩|i j a b ij ab ij ab ba ij ij ba( , , , )E 2 2
(2)

where ⟨ij|ab⟩ are two-electron matrix elements. In DH density
functionals, the second-order integrals in eq 1 are evaluated
using a ground-state KS determinant, rather than the Hartree−
Fock solution,11 and will only contribute to a fraction of the
total correlation energy, the remainder being treated by pure
density functional methods. If the advantages of DHs are to be
made routinely available in condensed matter applications,
they too require an efficient treatment of the terms in eq 1, and
any improvements in the calculation of the MP2 term will
directly benefit DH calculations.
Historically, Ec

MP2 has been evaluated using atom-centered
basis sets or mixed GPW54 implementations. In particular, in
periodic setups, use of localized basis functions has been
reported to be susceptible to basis-set convergence
issues,28,35,45,46 whereas problematic basis-set superposition
effects and possible linear dependencies are absent in a PW
representation. Applications in solid-state physics have also
been scarce, which is in part due to the divergence of the MP2
integrand in zero-band gap systems, but a Thomas−Fermi
screening of the MP2 amplitudes can resolve this issue.55

The presence of continuum (or continuum-like) states
allows for simple extrapolation to the complete basis-set limit:
Alavi and co-workers have demonstrated that in a PW basis at
large Nvir, Ec

MP2 decays as ∝εa−3/2.44 PW-based methods
therefore offer the unique advantage of a simple evaluation of
basis-set limit values in both periodic and isolated systems,
making them a potentially invaluable tool for basis-set bias-free
calculations. PW MP2 calculations are few and have only
recently been reported.34,35,56,57 This is in part due to their
extensive memory requirements. The presence of a number of
virtual states close to the number of PWs themselves (up to
109) can further complicate the calculations. However, given
sufficient memory, the integrals of eq 2 are easily evaluated in
the reciprocal space: Exchange-like matrix elements are easily
obtained by solving the Poisson equation for a set of pair
densities ρia(r) = ψi*(r)ψa(r) in reciprocal space, where the
Coulomb operator is diagonal. The real-space pair densities
can simply be subjected to a fast Fourier transform (FFT),
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ρia(G) = FFT[ρia(r)]. Then, at the Γ-point, the reciprocal-
space equivalent of a matrix element reads58

∑ ρ ρ⟨ | ⟩ =
Ω

Φ †ij ab G G G
1

( ) ( ) ( )
G

ia jb
G

max

(3)

where † stands for the complex conjugate and index
permutation. Ω is the volume of the system, G are
reciprocal-space vectors, and Φ(G) is a suitably generalized
form of the reciprocal-space Coulomb potential.59,60 Attempts
to reduce the overall cost of the method have included
mapping the virtual states onto a localized subspace,37,61−65 the
use of stochastic orbitals66−69 and (real-space70,71 or graph-
based57,72) sampling approaches, respectively, as well as
exploiting Laplace transforms53,56,73−76 to enhance parallel
efficiency. In an alternative strategy, one seeks to accelerate
convergence of the correlation energy by improving the
description of the electron−electron cusp. To this end,
explicitly correlated basis sets can be used. In an ansatz
commonly referred to as the F12 theory,77,78 the description of
the electron−electron cusp is improved by combining a
conventional, atom-centered Gaussian basis with a set of
strongly orthogonal geminals. This approach has recently been
extended to PWs.36

However, localization procedures fail for continuum states;
previously reported stochastic techniques either introduce
system-dependent errors of up to 2 kcal/mol per occupied
orbital69 or carry a prefactor too large for practical
applications,70 and approaches based on the Laplace trans-
form56 require repeated calculations at different quadrature
points, increasing the overall operation count for the sake of
parallel efficiency, with modest reported speedups of around 4
to 5. A combined stochastic/Laplace-transform approach that
results in appreciable computational speedups leads to errors
of at least 20%.57 Similarly, due to the presence of
nonfactorizable many-electron integrals, the cost of evaluating
the MP2 integrand in PW-F12 is higher than for a pure PW
basis set,36 and the efficiency of a graph-based approach72 was
hindered by the absence of an optimized weighting scheme for
graph generation. In a more general scope, a recent
diagrammatic decomposition of the coupled cluster pair
correlation function has allowed for the introduction of a
basis-set correction in PWs that results in speedups of 2 orders
of magnitude.79 Alternatively, in the context of Full
Configuration Interaction Quantum Monte Carlo calcula-
tions,80 use of an effective, transcorrelated Hamiltonian81 has
been shown to substantially improve convergence of the
correlation energy of the uniform electron gas. In the GW
theory,82 stochastic sampling schemes have successfully been
applied with competitive accuracy and favorable timings with
respect to deterministic calculations.83

In the following, we shall demonstrate how the presence of
continuum states can be exploited to drastically reduce the
computational cost of MP2 calculations without impacting
their accuracy. The approach is based on a simple stochastic
sampling of the integrands of eq 1 and can be implemented
with little effort, representing a sleek and clean approach to
tackle the issues arising in the continuum. This opens the path
to routine applications of PW MP2-based approaches in both
isolated and periodic systems with up to hundreds of occupied
orbitals, making it possible to obtain basis-set limit DH or MP2
correlation energies on conventional computational infra-
structure within a reasonable time.

2. DISTRIBUTION OF CONTINUUM STATES AND
STOCHASTIC SAMPLING

The possibility of introducing stochastic sampling is rooted in
the behavior of the integrand at large εa, where continuum
states arise. In this regime, Ec

MP2 grows as εa
−3/2,44 and the

overlap elements ⟨ij|ab⟩ must therefore be of low magnitude. It
is obvious from eq 3 that overlaps will only be non-negligible
whenever the symmetries of the continuum states match, but
explicit symmetry determination for all states would be
prohibitively expensive. Instead, given two high-lying virtual
states, the statistical distribution of non-negligible overlaps is
expected to be similar between truncations of eq 1 at a and
some subsequent a + δ with arbitrary δ. For a spatially infinite
supercell at infinite PW cutoff, one can define a cutoff energy εc
with orbital index c, from where on all orbitals a ≥ c are part of
the continuum. Then, the correlation energy can be separated
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with the continuum contribution ηc(a) accounting for the
incremental change in correlation energy when adding an
additional continuum orbital to the system:
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where ∑b′ is due to pairs of continuum (a) and noncontinuum
(b′) virtual orbitals and we have used that, at the Γ-point, ψa =
ψa*. Note that the last term in eq 4 contains only one explicit
sum over virtual orbitals Nvir, with the orbital pairs themselves
being formed by the triple sum in eq 5.
The simplest possible stochastic treatment of eq 5 is given

by a uniform sampling of the summand, but this calls for a
regular distribution of the overlap values obtained over all
tuples ijab, which are the arguments of ηc(a); that is, the high-
lying virtual orbitals of a finite system at finite PW cutoff need
to reasonably approximate free, continuum electrons. Figure 1
shows the distribution of these arguments for a finite periodic
box with εc − εHOMO = 50 eV and a total of Nvir = 3000 virtual
orbitals. With the positive-definite definition of E̅ adopted in eq
2, the resulting distribution is indeed regular and smooth,
indicating that ηc(a) could be predestinated to be treated by
uniform Monte Carlo sampling. This is the approach we will
privilege in the following. Note that in the limit of an infinite
system, this is equal to Monte Carlo integration over the
continuum; such integration techniques have been used as

Figure 1. Figure showing the absolute occurrence P of orders of
magnitude of the summand E̅(i,j,a,b) of ηc(a) of eq 5 from a = c to a =
3000 for εc − εHOMO = 50 eV. The order of magnitude of the matrix
elements is small, and its distribution is smooth.
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early as 1957 to calculate the high-density correlation energy of
the uniform electron gas.84

Let ps ∈ [0, 1) be a predefined sampling probability (i.e., ps
is larger than or equal to zero but always smaller than 1). We
define the function p as

=
≤

>
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Symmetry at the Γ-point, which gives rise to a factor of 2 in
continuum/continuum and mixed continuum/noncontinuum
terms of eq 5, can be accounted for by introducing a Kronecker
delta. Then, the sums in ηc(a) can be simplified, and the
stochastic expression for ηc(a) is
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where xijab ∼ U([0, 1)) is a sequence of random numbers
drawn from a uniform distribution U and b covers both b and
b′ of eq 5. In the limit of a continuum, the error of the
sampling is expected to decrease as N1/ MC , with NMC being
the number of tuples ijab that are explicitly sampled. The
combination of eqs 4 and 7 amounts to a stochastic summation
over all orbital pairs that contribute to an increase in Ec

MP2,
once a continuum orbital a is added to a system already
containing a − 1 virtual orbitals.
For any sampling probability ps < 1, only elements of ηc(a)

with p(xijab, ps) = 1 have to be evaluated. In a finite cell with a
finite PW cutoff and a sufficiently large number of virtual
orbitals Nvir, estimates for ηc(a) are then obtained for every
given continuum orbital a ∈ [c, Nvir] as follows: rather than
randomly generating a tuple of indices for a predetermined
number of Monte Carlo moves, a random number p(xijab, ps) is
drawn for every element of the summand in eq 7, determining
whether a particular tuple ijab will enter into the estimator of
ηc(a). ps therefore defines a target value NMC ∝ ps of tuples that
are expected to be sampled for every continuum orbital a. The
advantages of such an algorithm are twofold: On the one hand,
it avoids under- or oversampling of the subspace associated
with orbital a; on the other hand, it enables efficient
extrapolation to the basis-set limit in one single calculation,
directly providing Ec

MP2 as a function of the highest virtual
orbital included in eq 4.
In the following, we will adopt an orbital-dependent

sampling probability ps(a) = NMC/Ncard(a), where Ncard(a) =
(2a − 1)Nocc(Nocc + 1)/2 is the product of the cardinalities of
the sums in eq 7. Ncard(a) therefore explicitly depends on the
virtual orbital a that is added to eq 4. With this choice of a
continuum-orbital-dependent ps(a), the density of the
sampling decreases as a increases. This allows for NMC to
remain a fixed, system-independent input quantity. We shall
later show that conservative estimates for NMC and εc can be
regarded as system-independent.
For orbitals that are part of the continuum, the resulting

algorithm scales formally as N N N( )PW vir MC , where NPW is the
number of PWs in the basis set. This follows from eqs 4 and 7
since the cost of evaluation of the triple sum over Nocc

2Nvir in
eq 7 is reduced to elements with p(xijab, ps(a)) = 1, which in
turn is proportionate to NMC. For virtual orbitals with εa < εc,

the conventional N N N( )PW occ
2

vir
2 scaling applies (cf. eqs 1

and 3). Further on in the text, we will show that in practice, the
number of terms due to eigenvalues εa < εc does not dominate
scaling. Once NMC can be made both independent of the
orbital index a and the system at hand, the scaling of the
resulting method reduces to N N( )PW vir integral evaluations
for all orbitals with eigenvalue ε > εc.

3. COMPUTATIONAL METHODS
3.1. General Setup. Hard pseudopotentials of the

Goedecker−Teter−Hutter (GTH) form85 parametrized for
Hartree−Fock calculations31 have been used for all calcu-
lations. PW MP2 and stochastic MPs2 energies were calculated
using a modified version of the CPMD code.86 The
convergence threshold on the residual gradient on occupied
orbitals was set to 10−7 a.u., whereas a threshold of 10−5 a.u.
was used for the virtual space. For isolated systems, periodic
images were decoupled using the Poisson solver by Martyna
and Tuckerman.87 The wavefunction cutoff energies Ecut

ψ were
set to 150 Ry for all systems but for the ethylene crystal, where
a value of 140 Ry was used. A density cutoff Ecut

ρ = 4Ecut
ψ was

adopted for all systems, while cutoff energies for MP2 pair
densities were set to Ecut

ψ without impacting accuracy. The
calculation of the MP2 term is based on straightforward
evaluation of eq 3 as in ref 58. Since no derivatives with respect
to Ec

MP2 have to be evaluated, reciprocal-space orbital pairs
ρia(G) are stored in memory, allowing for substantial speedups
with respect to an on-the-fly evaluation of every pair density.
The size of the periodic super- or unit-cells, the number of
electronic states as well as molecular geometries, and PW
energy cutoffs are given in the Supporting Information.

3.2. Extrapolation of Correlation Energies. Correlation
energies are obtained from single-point extrapolation using the
εNvir

−3/2 dependency (equivalent to 1/Nvir) as described in ref
44. Such a leading-order approximation requires a sufficient
number of high-energy orbitals in order to gather sufficient
statistics and reliable extrapolated values. In this work, we
adopt a fitting scheme with various windows (ranges of points
to fit) moving along the curve. Those vary in size with respect
to the number of orbitals included, with a shift of ∼200 orbitals
between them. The maximum window size is taken as the one
that retains a fitting error comparable to smaller windows when
finishing fitted ranges at Nvir

max, the highest orbital available from
a Davidson diagonalization. The smallest window is given by
the smallest possible window size that provides a stable fit.
MP(s)2 curves are fitted according to

ε α ε β· = · +E N( ) N Nc
MP(s)2

vir
3/2 3/2

vir vir (8)

The series of α(Nvir), obtained from all windows along the
curves that terminate at Nvir up to Nvir

max, converge to an
estimate of the MP(s)2 energies at the basis-set limit,
Ec
MP(s)2(εNvir

→ ∞) Averaging over different windows allows
to account for sensitivity and variance of extrapolated values,
which are given in the Supporting Information along with
figures that illustrate the extrapolation procedure and error
determination.

4. RESULTS AND DISCUSSION
4.1. Accuracy of Stochastic Summation. Our stochastic

sampling scheme was tested both on isolated systems as well as
in periodic, condensed-phase setups. Test systems in the
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condensed phase include solid-state ethylene and benzene
molecular crystals as well as a liquid consisting of a hydronium
ion solvated in 32 water molecules. Isolated (gas-phase)
systems are represented by a benzene monomer and a dimer in
sandwich configuration. All calculations were carried out with a
modified version of the CPMD code86 using GTH
pseudopotentials generated for Hartree−Fock calculations.31,85
We first investigate the dependency of the accuracy of our

stochastic sampling of eqs 4 and 7, called MPs2, on the
number of orbitals in the occupied subspace and the choice of
the continuum cutoff value εc

gap. This quantity is given with
respect to the highest occupied molecular orbital (HOMO) in
order to be independent of the system setup or reference
frame: εc

gap = εc − εHOMO. Figure 2 shows the absolute
difference between MP2 and MPs2 calculations for a benzene
crystal and a benzene monomer for εc

gap ranging from 20 to 180
eV. Differences rapidly decrease by increasing εc

gap. Errors
averaged over independent stochastic runs remain <0.01% for
continuum cutoffs ≥120 eV. Reducing this value by half to 60
eV results in doubling of the relative error, which can still be
acceptable. Further lowering of εc

gap, however, leads to rapidly
increasing errors. The standard deviation of the sampling error
depends much more strongly on εc

gap than on Nocc. From εc
gap =

120 eV on, standard deviations become negligible and virtually
identical for both systems. Notably, relative sampling errors are
lower for the crystal at Nocc = 60 than for the monomer
(graphs are provided in the Supporting Information). This
strongly supports that accuracy is mainly influenced by εc

gap,
whereas at constant NMC, the error is independent of the
partitioning of occupied and virtual states in eq 7.
In the following and in line with the values of Figure 2, we

will adopt NMC = 12,000 and εc
gap = 120 eV to investigate the

accuracy of stochastic sampling for different systems. Figure 3
shows the correlation energy as a function of the eigenvalue of
the highest virtual orbital included (εNvir

) for two exemplary
systems: one periodic (ethylene crystal) and one isolated
(benzene monomer) setup, calculated both with a full
summation according to eq 1 as well as with our stochastic
sampling. The corresponding extrapolated basis-set limit values
are shown in Table 1. The largest errors of the extrapolated,
absolute MP2 correlation energies lie between 0.02 and 0.1
kcal/mol. Errors in the binding energy of the benzene
sandwich are of comparable magnitude, which is far below
chemical accuracy. Differences per electron, ΔE/e−, do not
exceed 0.1 meV. These values compare well to an expected
stochastic error of ≤0.01%. Table 1 also shows the number of
matrix element evaluations for all setups. With our system-
independent choice of NMC, stochastic sampling reduces this

number by 1−2 orders of magnitude compared to conven-
tional calculations.
For both absolute energies and energy differences, the

observed deviations are several orders of magnitude lower than
the reported error of other stochastic or Laplace transform-
based schemes.57,66−72 For comparison, values of correlation
energies obtained with atom-centered all-electron88 and GPW
codes89 are listed in the Supporting Information; all values are
consistently higher than those reported for our PW
calculations. In particular, we note that differences between
different basis sets tend to be substantially larger than the
stochastic sampling error, further confirming the viability of
uniform, stochastic sampling of the continuum space.

4.2. Performance and Speedups. With the error of the
stochastic sampling scheme being considerably lower than the
errors documented for other PW implementations, effective
speedups remain to be determined. Figure 4 shows the
resulting cumulative execution times and speedups of the
stochastic sampling compared to the direct implementation of
eqs 1 and 3 for the ethylene crystal. Timings are reported as a
function of the highest orbital index included in the expansion,
Nvir. For the ethylene crystal, at Nvir = 10,000, speedups of up
to 957 can be reached with stochastic summation, making the
calculation about 3 orders of magnitude faster compared to a
conventional implementation. All the while, the error
introduced by uniform stochastic summation with respect to
a full calculation is only about 10−2 kcal/mol for this system
(cf. Table 1). This has to be compared to maximum speedups
of about 5 documented for Laplace transform-based schemes
that allow for similar accuracy to be retained56 and 20% errors
in correlation energies for algorithms that allow for larger
speedups57 versus errors around 0.01% reported here. Figure 4
also includes a fit of the CPU time of our stochastic scheme to
a function O(Nvir) = a0 + a1Nvir, demonstrating that the scaling
is described well by N N( )PW vir , assuming that NMC = cnst.

N( )2 constitutes a formal improvement over the scaling
achieved with a stochastic graph-based approach in atom-
centered basis sets,72 which was reported to be of N( )2.6 .
Together with the high accuracy of the method, this

considerable gain in efficiency allows for the treatment of
systems that would be intractable when treated with conven-
tional algorithms. One typical usage example of accurate
wavefunction-based theories or computationally demanding

Figure 2. Absolute differences between stochastic and nonstochastic
MP2 correlation energies, ΔEMPs2

MP2 , as a function of the continuum
cutoff energy εc

gap for a benzene crystal (Nocc = 60, four molecules per
unit cell) and a benzene monomer (Nocc = 15) at NMC = 12,000. Error
bars were obtained by averaging over six independent runs.

Figure 3. Ec
MP2 as a function of the highest eigenvalue εNvir

in the sum
of eq 1 for both conventional and stochastic MP2 (MPs2) for an
ethylene crystal (Nvir

max = 11,158) and an isolated benzene monomer
(Nvir

max = 14,985). Domains without stochastic sampling are colored in
gray. Differences between the curves, ΔEMPs2

MP2 , are plotted on a
secondary y-axis. Extrapolated basis-set limit values for all systems
described here are found in Table 1.
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high-quality DFT methods such as DH functionals lies in
postprocessing of simulation data, for example, in a posteriori
calculations of potential energy surfaces or reaction paths
generated using lower-level methods in the context of
molecular dynamics or Monte Carlo simulations. Recent
developments have even made it possible to directly sample90

high-quality potential energy surfaces by virtue of multiple time
step (MTS) propagators,91 which allow for an important
decrease in computational cost and substantial improvements
in tractability by permitting less-frequent evaluation of the full,
high-quality Hamiltonian during a first-principles molecular
dynamics run.
A liquid constituted of 1 hydronium ion solvated in 32 water

molecules (264 electrons) will serve as an example of the
performance of stochastic sampling in a typical setup
encountered in first-principles (MTS-)molecular dynamics.
Using the stochastic summation scheme reported here,
calculating the basis-set limit correlation energy of this system,
shown in Figure 5, is feasible in about 15 h on 25 16-core
compute nodes with 128 GB of RAM, using the same,
conservative estimates for εc

gap reported in Table 1, which
yielded accurate results for all test systems considered so far.
Additionally, calculations using εc

gap = 60 eV and εc
gap = 90 eV

have been carried out for the sake of comparison. Already at
εc
gap = 90 eV, the execution time is almost halved to about 8 h
and can be further reduced by using εc

gap = 60 eV, at which the
basis-set limit correlation energy can be calculated in a mere 5
h. In particular, this drastic reduction in execution time is not

accompanied by a considerable loss of accuracy. Extrapolated
correlation energies are given in Table 2. It should be noted
that postprocessing protocols can be applied when training
machine learning algorithms with high-quality data, based on a
coarse sampling of configuration space with a lower-level
method (cf., e.g. ref 1). Speedups in the calculation of
correlation energies with MP2 or DH functionals will therefore
be directly reflected in less time-consuming training
procedures, thus considerably increasing throughput.

4.3. Generalization to RPA. The promising performance
of the stochastic summation scheme described here also opens
the possibility of its application to similar approaches in which
continuum states can play a role. In DFT, the exact-exchange
plus RPA approach has emerged as a promising method
capable of more accurately predicting van der Waals binding
energies, adsorption energies on surfaces, or lattice constants in
molecular solids.44,54,92−94 Based on the similarity of the MP2
energy expression and the RPA, one can expect transferability
of the stochastic sampling approach to the evaluation of the

Table 1. MP2 Correlation Energies Ec
MP2 Obtained from a Conventional MP2 Calculation and the Stochastic Approach, MPs2a

system Ec
MP2 [a.u.] Ec

MPs2 [a.u.] ΔEMPs2
MP2 [a.u.] ΔE/e− [a.u.] Nijab psNijab

ethylene crystal −0.78054 −0.78056 2 × 10−5 8 × 10−7 5.06 × 109 3.26 × 108

benzene crystal −4.69164 −4.69149 −1.5 × 10−4 −1 × 10−6 1.30 × 1011 3.50 × 109

monomer −1.05681 −1.05695 1.4 × 10−4 5 × 10−6 8.62 × 109 6.26 × 108

dimer −2.12780 −2.12777 −3 × 10−5 −5 × 10−7 3.33 × 1010 8.78 × 109

binding −0.01417 −0.01387 −3 × 10−4 −5 × 10−6

aΔEMPs2
MP2 and ΔE/e− denote absolute and per-electron energy differences between stochastic sampling and conventional calculations, respectively.

Nijab denotes the number of matrix elements (ijab-tuples) sampled in a conventional calculation, and psNijab is the number of effectively sampled
matrix elements in a stochastic MPs2 calculation, with both numbers rounded to three digits. The threshold for stochastic sampling expressed with
respect to the HOMO was identical for all systems, εc

gap = εc − εHOMO = 120 eV. The same holds for NMC = 12,000, the number of terms sampled
per virtual contribution ηc(a), as described in eq 7. For details on the systems used, cf. the Supporting Information.

Figure 4. Cumulative execution times (left) and speedups (right)
compared between conventional algorithm and stochastic sampling
for an ethylene crystal as a function of the highest virtual orbital index,
Nvir, included in eq 4. O(Nvir) = a0 + a1Nvir denotes a least-squares fit
on Nvir ∈ [5000, 10,000] with a0 = −4.76586 s, a1 = 0.010515 s. For
sufficiently large Nvir > 2000, formal and practical scaling show
excellent agreement. At Nvir = 10,000, the stochastic approach with
NMC = 12,000 is 3 orders of magnitude faster. Timings were obtained
by dividing the computational load over 5 OMP (Open Multi-
Processing) threads and 24 MPI (Message Passing Interface) tasks.

Figure 5. Hydronium ion solvated in 32 water molecules (264
electrons explicitly accounted for). Calculation of Ec

MPs2 takes between
5 and 15 h on 25 16-core compute nodes. Molecules within the
periodically repeated supercell are highlighted. Using εc

gap = 120 eV
and NMC = 12,000 yields an extrapolated Ec

MPs2 = −10.22952 a.u.

Table 2. Stochastic MP2 Correlation Energies Ec
MPs2 for a

Hydronium Ion Solvated in 32 Water Molecules Using
Different Thresholds for Continuum Energies εc

gapa

Ec
MPs2 [a.u.] NMC εc

gap [eV] t

−10.22771 12,000 60 4 h 55
−10.23190 12,000 90 8 h 10
−10.22952 12,000 120 15 h 25

aTimings t, rounded to 5 min, are given for the execution time of the
MP2 routine on 25 16-core nodes in a hybrid setup (50 MPI tasks, 8
OMP threads).
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RPA. The reciprocal-space form of the RPA correlation energy
Ec
RPA is51,52

∫ ∑ω
π

χ ω χ ω= { [ − ∼ ] + ∼ }
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∈
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N
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where χ̃G,G′(q,iω) are elements of the full density response
function, including the Coulomb interaction. At the Γ-point
with q = 0, the diagonal elements in a stochastically sampled
RPA scheme become
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where the variables c, xjb, and ps are used analogously to eq 7.
In this limit, we investigate the RPA integrand of eq 9 for an
ethylene crystal at different values of ω. Figure 6 shows the
values of Ec

RPA at varying iω for Nvir = 11,040 as well as an
estimate of the overall RPA correlation energy based on
trapezoidal integration. Stochastic sampling with ps = 1/3
introduces a maximum error of about 1% in the integrand.
Overall, the stochastic sampling introduces a final error of less
than 0.03 kcal/mol, which is comparable to the error obtained
in MP2 calculations for the same system. These results
demonstrate that the stochastic sampling of continuum states
can also be applied for methods other than MP2 that include a
substantial continuum-state contribution.

5. CONCLUSIONS AND OUTLOOK
Continuum states have been shown to be an important
contributor to the overall electron correlation energy.47 Among
the basis sets commonly used in solid-state physics, quantum
chemical calculations, and first-principles molecular dynamics,
PWs stand out as the only choice that can effectively account
for continuum contributions, which are also the base of a
simple basis-set limit extrapolation technique.44 Here, we have

introduced a uniform stochastic sampling approach to treat
continuum states arising in correlation energy calculations,
where contributions due to states with orbital eigenvalues
beyond some threshold εc are added by stochastic summation.
This algorithm has been applied to the calculation of second-
order perturbation energies which occur in both MP2 and DH
density functionals. We have shown that stochastic summation
over the continuum orbitals allows for the calculation of MP2
correlation energies with speedups of up to 3 orders of
magnitude at remarkably low errors. This significant increase in
efficiency enables calculations with several hundreds of
electrons at a relatively low computational cost, making it
possible to standardly apply MP2 and DH methods in a PW
basis, which has so far been intractably expensive even on high-
performance compute clusters. Importantly, the results
presented here also enable straightforward DH calculations
in the condensed phase, thus extending the availability of one
of the most accurate density functional methods available to
date for condensed matter systems. We have also shown that
stochastic sampling of the continuum orbitals can easily be
extended to other approaches, demonstrating the generality of
the ansatz employed here. Calculations carried out within a
stochastic RPA suggest errors comparable to the stochastic
MP2 scheme. The stochastic sampling scheme itself is
straightforward, easy to implement, and based on simple
physical concepts.
Stochastic sampling of continuum states permits to easily

obtain basis-set limit values, be it for periodic or isolated
systems, with maximum errors of only 0.1 meV per electron.
This accuracy makes basis-set limit values for correlation
energies available using reasonable computational resources
and execution times. This will allow for thorough benchmark-
ing of new computational methods without basis-set bias, for
routine postprocessing of potential energy landscapes
generated using lower-level methods, as well as on-the-fly
generation of high-accuracy first-principles molecular dynamics
trajectories using multiple time stepping schemes. This data, in
turn, can be used to feed high-throughput methods based on
artificial intelligence. Overall, the techniques presented in this
text pave the road to routinely apply accurate MP2 and DH
calculations at the basis-set limit in condensed matter systems,
ultimately extending the use of a method well-established for
isolated systems to the condensed phase.

■ ASSOCIATED CONTENT

*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00724.

System setups, fitting errors for all basis-set limit values
reported in this manuscript, graphs of Ec

MP(s)2(Nvir) for
all systems, Ec

MP2 obtained in Gaussian and Gaussian/
PW basis sets for comparison, and relative sampling
errors and their standard deviation as a function of εc

gap

for the benzene monomer and crystal (PDF)

■ AUTHOR INFORMATION

Corresponding Author
Martin P. Bircher − Computational and Soft Matter Physics,
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Usvyat, D. Periodic local MP2 method for the study of electronic
correlation in crystals: Theory and preliminary applications. J.
Comput. Chem. 2008, 29, 2113−2124.
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