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INTRODUCTION 
 

Bladder cancer is a prevalent malignant disease with 

429,000 new cases and nearly 165,000 deaths worldwide 

annually [1, 2]. Bladder cancer develops along two 

different pathways: low phase non-muscle invasive 

bladder cancer (NMIBC) and high phase muscle-

invasive bladder cancer (MIBC) [3]. Radiotherapy, 

combined with cisplatin-based chemotherapy, is the 

current standard method for high phase MIBC treatment. 
However, the recurrence rate of almost 70% leads  

MIBC patients to undergo long-term surveillance. 

Consequently, MIBC becomes more costly than other 

cancers from diagnosis to the end of life [3, 4]. Recent 
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ABSTRACT 
 

Background: Muscle-invasive bladder cancer (MIBC) patients are subject to unfavorable treatment options and 
a high recurrence rate. The status of TP53 mutations played an essential role in the progression and the 
prognosis of MIBC. The present study proposed to investigate the association between TP53 mutations and 
immunophenotype in MIBC.  
Results: We established an immune prognostic model (IPM) ground on the immune-associated genes derived 
from variation analysis between wild-type TP53 and mutated TP53 TCGA-MIBC patients, and validated in 
another cohort from GEO database. Based on IPM, we divided MIBC patients into low and high risk subgroups. 
The high risk MIBC patients had higher proportions of macrophages M1, and lower proportions of T cells 
regulatory (Tregs) and activated dendritic cells than the low risk MIBC patients. Moreover, the expression of 
immune checkpoints genes (PD1, CTLA4, LAG3, HAVCR2 and TIGIT) was higher in the high risk patients than the 
low risk patients. In clinical application, IPM exhibited better survival prediction than conventional clinical 
characteristics.  
Conclusions: Our investigation presented practical prognostic significance for MIBC patients and displayed the 
overarching landscape of the immune response in the MIBC microenvironment. 
Methods: Data were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). 
Differentially expressed genes (DEGs) analysis between the TP53 mutated and wild-type MIBC patients was 
conducted. The CIBERSORT algorithm was performed to evaluate the proportion of immune cell types. Gene 
expression profiles from the TCGA and GEO were used as training and testing cohorts to build and validate an 
immune-related prognostic model (IPM). Genes in the IPM model were first screened by univariate Cox 
analysis, then filtered by the least absolute shrinkage and selection operator (LASSO) Cox regression. A 
nomogram was finally established and evaluated by combining both the IPM and other clinical factors. 
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studies have shown that different types of tumor-

infiltrating immune cells are involved in the development 

and prognosis of MIBC [5]. Immunotherapy has been 

studied as a new alternative for treating various types of 

cancer, especially those with an unfavorable prognosis by 

standard treatments [6]. Several immune-associated 

studies have been conducted to predict the prognosis of 

MIBC patients [5, 7, 8]. However, few studies have 

explored in detail the immune phenotype within the 

MIBC microenvironment and its relation with MIBC 

prognosis. 

 

It has been said that no matter which orientation cancer 

investigation turns, TP53 gets into view. This is not 

only due to the essential significance in the inhibition of 

many human cancers but also for its leading role in 

various cancer-associated pathways, such as DNA 

repair, metabolism and antioxidant function [9]. In 

MIBC, patients with mutated TP53 get shorter overall 

survival than wild-type TP53 [10, 11]. Therefore, 

exploring the exact pathogenic mechanism of TP53 

mutation status in MIBC and other cancers is crucial to 

obtain new therapeutic strategies and improve the 

prognosis. Remarkably, several recent studies have 

indicated that different immune responses are involved 

in the status of TP53 mutations [12, 13]. Although 

previous studies have found that TP53 mutations were 

associated with bladder cancer's clinical features, such 

as grade classification, cancer invasion, recurrence and 

poor prognosis [14]. However, their specific functions 

in the immune profiles of MIBC have not yet been fully 

elucidated. We performed a comprehensive analysis to 

explore the correlation between the TP53 mutation and 

the overall survival in the Cancer Genome Atlas 

(TCGA) MIBC cohort. Our results indicated that 15 

immune-associated biological processes were inhibited 

in mutated TP53 MIBC patients. Furthermore, we 

identified four essential differentially expressed 

immune-associated genes that were posteriorly used to 

develop an immune prognostic model (IPM). We have 

shown that the proposed IPM can be employed as a 

useful prognostic strategy in patient management. The 

four identified genes can be used as potential 

therapeutic biomarkers for MIBC. 

 

RESULTS 
 

Relationship between immunotype and TP53 

somatic mutations in MIBC 

 

As shown in Figure 1A, TP53 mutation is the universal 

genetic mutation in MIBC. Although many studies have 

explored the function of TP53 mutations and found that 

TP53 was associate with some of the clinical features of 

bladder cancer, such as grade classification, cancer 

invasion, recurrence and poor prognosis [14], however, 

the particular function on immune profiles in MIBC has 

not been fully elucidated. In this study, we first 

explored the immune-associated biological processes in 

MIBC regarding TP53 status using gene expression 

matrix, somatic mutation data of 407 MIBC samples 

from the TCGA cohort, and matching clinical data. The 

patients with (n=194) and without (n=216) TP53 

mutations were used to perform gene set enrichment 

analysis (GSEA). These results indicated that patients 

from the mutated TP53 group were remarkably enriched 

in 506 biological processes (BH-adjusted p < 0.05) 

(Supplementary Table 1). In addition, 15 immune-

associated biological processes were fully inhibited in 

this group (Figure 1B). We also explored the  

somatic interactions of TP53 (Figure 1C) due to cancers 

being caused by simultaneous mutations of multiple 

genes. TP53 co-occurred with FAT4, FLG, and RB1 

and were mutually exclusive with FGFR3 in the TCGA 

MIBC cohort. 

 

Identification of differentially expressed immune-

associated genes in mutated and wild-type TP53 

MIBC samples 

 

To figure out the connections in TP53 mutation status 

with immune processes, we performed a differential 

expression gene analysis between wild-type and 

mutated TP53 groups of 1441 immune-associated genes 

acquired from the 15 immune-associated biological 

processes inhibited in the mutated TP53 group. 44 out 

of 1441 immune-associated genes were differentially 

expressed between wild-type and mutated TP53 MIBC 

samples (BH-adjusted p < 0.05 and absolute logFC > 1) 

(Supplementary Table 2).  

 

Development of an immune prognostic model (IPM) 

and assessment of its predictive ability in the TCGA 

MIBC cohort 

 

To assess differentially expressed immune- 

associated genes’ predictive ability, we performed 

univariate cox regression of the expression matrix of 

these genes. We found 9 out of 44 immune-associated 

genes that were notably associated with overall survival 

(OS) (Supplementary Table 3). To get the most 

significant genes associated with prognostic worth, we 

used cox-proportional hazards analysis based on the L1-

penalized LASSO estimation. We discovered four key 

genes (CTSG, TREML4, KRT1 and PPBP) that 

occurred more than 900 times in 1000 recurrences [15, 

16]. The IPM score was established according to the 

four key genes expression weighted by the Cox 

regression coefficients: IPM risk score = (0.162 × 
CTSG expression) + (1.167 × TREML4 expression) + 

(0.164 × KRT1 expression) – (0.326 × PPBP 

expression). 
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To obtain a rigid cutoff value to categorize the MIBC 

patients into high or low risk classes, we standardized 

four critical genes’ expression value with mean value = 

0 and standard deviation = 1 [17]. We then used X-tile 

software to calculate the optimal cutoff point value (1.6) 

to classify patients into these two groups. In the TCGA 

cohort, the OS of patients in the high risk class was 

shorter than that of the low risk group (Figure 2A). 

Moreover, the high risk subgroup patients displayed a 

2.30-fold higher risk (95% confidence interval (CI): 

1.98–2.31, BH-adjusted p < 10-3) than the low risk 

subgroup patients. The risk score and expression 

distribution of the four essential genes are displayed in 

Figure 2B. The area under the ROC curve (AUC) was 

used to show the predictive ability of IPM (Figure 2C). 

 

Validation of the predictive ability of IPM in meta-

GEO MIBC cohort 

 

To verify the robustness of IPM constructed from the 

TCGA cohort, we assessed the metagene expression 

omnibus (meta-GEO) MIBC cohort, composed of 440 

MIBC samples, with the same formula and cut off value 

used in the TCGA MIBC cohort. In the meta-GEO 

MIBC cohort, the OS of high risk group patients was 

lower than the low risk class (Figure 2D), as previously 

found in the TCGA MIBC cohort. The high risk patients 

displayed worse OS (HR: 2.61, 95% confidence interval 

(CI): 1.76–2.23, BH-adjusted p < 10-3) than the low risk 

patients, indicating the applicability of the developed 

IPM in different populations. The risk score and 

expression distribution of the four essential genes are 

displayed in Figure 2E. The IPM obtained from AUC of 

the meta-GEO MIBC cohort is shown in Figure 2F. 

Taken together, our analysis has shown that the 

developed IPM has proven to be robust when faced with 

different datasets and, therefore, can be used for further 

studies. 

 

Classification analysis of OS for IPM based on TP53 

status in the TCGA MIBC cohort 

 

As shown in Figure 3A, the phenotype of TP53 was 

meaningfully connected with the prognosis of patients 

 

 
 

Figure 1. Gene set enrichment analysis between the wild-type TP53 and mutated TP53 subgroup in TCGA MIBC dataset.  
(A) The landscape of somatic mutations in TCGA MIBC dataset. (B) 13 inhibited immune-associated biological processes in mutated TP53 
MIBC patients. (C) The landscape of somatic interactions of TP53 in TCGA MIBC dataset. 
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with MIBC. To prove the relevance between the 

prognostic significance of IPM and TP53 status, we 

performed a classification analysis, separating the 

TCGA MIBC cohort into two groups based on TP53 

status. Classification analysis demonstrated that IPM 

was significantly associated with OS in wild-type and 

mutated TP53 groups (Figures 3B, 3C). Moreover, 

correlation analyses showed that the risk score was 

significantly positively connected with OS in the 

wild-type TP53 group and negatively in the mutated 

TP53 group (Figure 3D). We performed classification 

analyses of several types of TP53 mutations, and we 

found that different TP53 mutations affect the 

prognosis of patients with MIBC (Figure 3E) [10, 18]. 

To prove the relevance between the prognostic 

significance of the IPM and TP53 mutations, we 

performed a predictive analysis of the TP53 missense 

mutation subgroup, which is the most common type of 

TP53 mutation. As expected, the TP53 missense 

mutation was divided into high and low risk groups by 

IPM (Figure 3F). 

 

Immune landscape comparison between the low and 

high risk MIBC patients 

 

To assess the variation of 22 immune infiltrated cell 

types between low and high risk MIBC patients, we 

performed an immune infiltration analysis using 

CIBERSORT analytical tool with the LM22 signature 

matrix [19]. The immune landscape of the 407 TCGA 

MIBC cohort was summarized by representing the 

proportions of the 22 immune cell types within and 

between low and high risk groups (Figure 4A). The 

proportions of diverse subtypes of tumor-infiltrating 

immune cells were slightly moderately correlated 

(Figure 4B). The high risk MIBC patients had 

significantly higher proportions of macrophages M1, 

while expressively lower proportions of T cells 

regulatory (Tregs) and activated dendritic cells than the 

low risk MIBC patients (BH-adjusted p < 0.05) (Figure 

4C). Hence, our results indicated that aberrant immune 

cell infiltration and the heterogeneity of tumor 

infiltration in MIBC might serve as prognostic 

indicators and targets for immunotherapy and have 

significant clinical implications. 

 

Immune checkpoint inhibition has been a way explored 

by many novel anti-tumor agents, which have been used 

successfully in different types of cancer [20]. In bladder 

cancer, drugs targeting immune checkpoints genes have 

also been indicated to play anti-cancer function by 

reversing tumor immunosuppressive effects [21]. 

Therefore, we estimated the correlation between the risk 
score of MIBC patients and expression level of vital 

immune checkpoints genes (PD1, CTLA4, LAG3, 

HAVCR2 and TIGIT) (Supplementary Table 4). We 

demonstrated that the risk score of MIBC patients was 

significantly associated with the expression of PD1, 

CTLA4, LAG3, HAVCR2 and TIGIT (BH-adjusted p < 

0.05) (Figure 5A). Furthermore, we showed that the 

expression level of PD1, CTLA4, LAG3, HAVCR2 and 

TIGIT genes in the high risk MIBC subgroup was 

significantly higher than in the low risk subgroup (BH-

adjusted p < 0.01) (Figure 5B–5F). These data suggest 

that the bleak prognosis of high risk MIBC patients may 

be partially due to the immunosuppressive 

microenvironment. 

 

Variation of biological processes and pathways in 

low and high risk MIBC subgroup patients 

 

We filtered the 44 immune-associated genes 

differentially expressed between low and high risk 

subgroups of MIBC patients by risk score association 

using the correlation analysis method. This analysis 

identified 25 immune-associated genes as risk score 

associated (Pearson correlation coefficient >0.2 and 

BH-adjusted p < 0.05; Figure 5G). GO and KEGG 

analyses were used to establish the inherent biological 

functions and pathways involved in these genes (FDR < 

0.0001 and FDR < 0.001, respectively; Figures 5H, 5I) 

(Supplementary Tables 5 and 6). The 25 immune-

associated genes related to the risk score in the TCGA 

MIBC cohort were principally enriched in the humoral 

and innate immune responses and T cell receptor 

signaling pathway (Figures 5H, 5I). 

 

IPM exhibits a better survival prediction than 

conventional clinical characteristics 

 

To compare the prognostic value of IPM with 

conventional clinical characteristics in the TCGA 

MIBC cohort, we performed univariate and 

multivariate Cox regression analyses involving five 

conventional clinical characteristics (age, gender, 

weight, subtype, and pathological stage). The 

univariate Cox regression analysis showed that IPM 

was independent of the prognostic aspect, accordingly 

proving its robustness to predict MIBC prognosis 

independently (Figure 6A). Furthermore, the 

multivariate Cox regression analysis demonstrated 

that IPM was meaningly associated with the survival 

time (BH-adjusted p < 0.01) and the highest median 

risk score (HR = 2.22, 95% CI = 1.38 – 3.56). In 

addition to the Cox regression analysis, we also 

estimated the c-index between IPM and conventional 

clinical characteristics. The c-index value of IPM 

(0.7181) was higher than other conventional clinical 

characteristics (0.1821 – 0.6438) (Figure 6B). Taken 
together, these results demonstrated that IPM has a 

better survival prediction than conventional clinical 

characteristics. 
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Figure 2. Prognosis of IPM in TCGA MIBC cohort and meta-GEO MIBC cohort. (A, D) Kaplan-Meier survival analysis in TCGA cohort 

and meta-GEO cohort, OS in low risk subgroup was higher than those in the high risk subgroup. (B, E) Risk assessment in TCGA cohort and 
meta-GEO cohort, the correlation between the risk score (upper) and the expression of four immune-associated genes (bottom). (C, F) Time-
dependent ROC curves of IPM. 

 

 
 

Figure 3. Prognosis of different TP53 mutations in TCGA MIBC cohort. (A) Kaplan-Meier survival analysis between the wild-type TP53 

patients and mutated TP53 patients. (B) Kaplan-Meier survival analysis between the high and low risk subgroup in mutated TP53 MIBC 
patients. (C) Kaplan-Meier survival analysis between the high and low risk subgroup in wild-type TP53 MIBC patients. (D) Correlation analysis 
between risk score and survival time according to TP53 status. (E) Kaplan-Meier survival analysis among the different types of 
TP53mutations. (F) Kaplan-Meier survival analysis between the high and low risk subgroup in TP53 MIBC missense mutation patients. 
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Construction and validation of the individualized 

nomogram on IPM 

 

To predict the prognosis of MIBC patients for 

clinicians, we used independently predictors (age, 

subtype, pathologic stage and IPM) that were identified 

in the multivariate Cox regression analysis (BH-

adjusted p < 0.05) to construct the nomogram. As 

shown in Figure 6C, the IPM presented more risk points 

than other predictors. The c-index of the nomogram was 

0.72 (95%CI, 0.61 to 0.86) using 1000 bootstrap 

replicates. The calibration curve displayed good 

agreement between the prediction and the investigation 

(Figure 6D). Except for the probability of 1-year 

survival, others were significantly lower than that of the 

nomogram (BH-adjusted p <BH-adjusted p < 0.01). 

 

DISCUSSION 
 

TP53 mutations are related to high grade, invasive 

tumor, low recurrence and adverse clinical outcomes in 

bladder cancer [14]. Recent studies have found that 

TP53 mutation can increase the gene expression 

involved in immune checkpoints, activate T-effector 

cells, and elevate interferon-γ in lung adenocarcinoma 

[12]. Moreover, co-occurring TP53/KRAS mutation 

displayed more benefit from PD-1 inhibitors [12]. TP53 

also was reported to be a predictor in immunotherapy of 

PD-1 in lung carcinomatosis [22]. Regarding bladder 

cancer, it has been demonstrated that anti-PD-1 

antibodies enhance radiotherapy-induced anti-tumor 

immunity. However, the molecular mechanism of TP53 

mutations in MIBC immunophenotype regulation and 

MIBC's prognosis is unknown. Therefore, the immune-

associated effects of TP53 mutations in bladder cancer 

must be studied.  

 

Furthermore, the development of advanced immune-

associated prognostic models would be useful to 

identify biomarkers, evaluate the immune state of 

MIBC patients, and classify them to enhance the 

effectiveness of immunotherapy. In recent years, tumor 

 

 
 

Figure 4. Comparison of immune infiltration landscape between the high and low risk MIBC patients. (A) Immune cell 

proportions between the high and low risk MIBC patients. (B) Correlation matrix of 22 types of immune cell proportions. (C) Significantly 
difference of immune cells between the high and low risk MIBC patients. 
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immune signatures have been established and identified 

in various cancers [23–25]. Even though some studies 

have attempted to illustrate immune signatures in 

bladder cancer [26, 27], the essence of the local immune 

landscape in MIBC prognosis and prediction has not 

been fully elucidated. In the present study, we explored 

the character of TP53 mutations in the modulation of 

immune signature in MIBC. The GSEA analysis 

 

 
 

Figure 5. Enrichment analysis of IPM. (A) Correlation between the risk score and the expression level of immune checkpoints genes.  
(B–F) The expression level of immune checkpoints genes in the high and low risk MIBC patients. (G) Heatmap plot of immune-associated 
genes that were differentially expressed between the high and low risk MIBC patients. (H) Enrichment of biological processes for immune-
associated genes that are shown in the circular plot. (I) Enrichment of KEGG pathways for immune-associated genes that are shown in the 
sankey plot. 
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showed that the mutated TP53 group had a significantly 

lower immune phenotype than wild-type TP53. 

Moreover, differential expression analysis of these 

immune-associated genes showed that 15 immune-

associated biological processes were all inhibited in the 

mutated TP53 group. Subsequently, a cox-proportional 

hazards analysis based on the L1-penalized LASSO 

estimation pointed four key genes (CTSG, TREML4, 

KRT1 and PPBP) used to construct a novel immune 

prognostic model (IPM) to predict the prognosis of 

MIBC patients. 

 

These four key genes are involved in various cancer-

related immune processes. Cathepsin G (CTSG), an 

azurophil granule protease, can lead to breast cancer 

cell migration [28, 29] and can enter tumor 

endosomes by binding to a cell surface receptor [30]. 

Previous studies have shown that CTSG degraded 

MHC I on the human glioblastoma cell surface of 

primary immune cells. CTSG activity has been 

presented as a new way to glioblastoma treatment 

[31]. Besides, high CTSG expression was correlated 

with poor outcomes in treating acute myeloid 

leukemia (AML) [32]. The triggering receptor 

expressed on myeloid cells 4 (TREML4) is a Ig 

superfamily member and rarely reported in cancer 

[33]. However, we believe that TREML4 could be a 

new immunotherapeutic target because a TREML4 

deficiency causes a fail in INF-I production by 

macrophages due to a decrease of phosphorylation 

level in the signal transducer and activator of 

transcription 1 (STAT1). Moreover, previous studies 

have found that TREM1 dramatically promotes 

proliferation and invasion in Hepatocellular 

Carcinoma (HCC) and TREM1 expression has been 

associated with poor survival in HCC patients [34]. In 

addition, high TREM2 expression was inversely 

associated with unfavorable prognosis in gastric 

cancer and, therefore, could be a useful prognostic 

biomarker [35]. Keratin 1 (KRT1) is a member of the 

keratin family, which is involved in protein binding 

[36], carbohydrate-binding [37] and structural 

constituent of the epidermis [38]. Recently, it was 

found that KRT1 was highly expressed in breast 

cancer cells, and, thus, pointed as a new marker for 

breast cancer targeting [39]. In addition, KRT1 was 

significantly overexpressed in colon cancer, especially 

in its later phase [39]. Finally, pro-platelet basic 

protein (PPBP), also known as CXCL7, is a biomarker 

of several cancer types, such as renal cell cancer [40], 

lung cancer [41] and colorectal cancer [42]. PPBP has 

been reported to be up-regulated in the peripheral 

blood of early-stage renal cell carcinoma patients 

[40]. PPBP accelerated the development of renal cell 

 

 
 

Figure 6. The connection between IPM and conventional clinical characteristics. (A) Univariate and multivariate regression analysis 
of IPM and clinical characteristics in prognostic value. Blue displays no statistical significance, and red displays statistical significance. (B) 
Comparison of c-index among different clinical characteristics. (C) Nomogram for predicting the probability of 1, 3, and 5 years OS for MIBC 
patients. (D) Calibration plot of the nomogram for predicting the probability of OS at 1, 3, and 5 years (red lines); dash lines indicate the 
actual probability. The vertical mark lines in the top x-axis (marginal rugs) stand for the distribution of samples in each fitting curve. 
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carcinoma by promoting cell proliferation [43]. In 

colorectal cancer, the expression of PPBP was 

significantly correlated with sex, TNM and T stages 

[42].  

 

We demonstrated by different approaches that  

our IPM exhibited better survival prediction than 

traditional clinical features. Subsequently, we 

performed a comprehensive evaluation that integrated 

the IPM with conventional clinical characteristics  

(age, gender, weight, subtype, and pathological stage). 

The calibration curve displayed good agreement 

between the prediction and the clinical characteristics 

evaluated for 1, 3 and 5 years OS. Our main superiority 

is that it presents a complementary perspective on 

individual tumors and establishes a unique scoring 

method for MIBC patients. Therefore, our  

nomogram could be used as a promising tool for 

clinicians in the future. 

 

The stage of elimination is an upgraded model of cancer 

immunosurveillance. The innate and adaptive immune 

systems co-operate to find the existence of the 

progression of tumors and devastate it before it becomes 

worse [44]. Like Type I IFNs, some danger signals  

can induce the growth of tumors, motivate dendritic 

cells and promote the adaptive immune responses [45]. 

In the equilibrium stage, the adaptive immune  

system restrains tumor cell outgrowth and forms the 

tumor cells’ immunogenicity. IL-12, IFN-γ, CD4+ and 

CD8+ T cells are responsible for retaining the occult 

tumor cells [44, 46].  

 

The cancer immunoediting process involves three 

stages: elimination, equilibrium and escape [44]. In 

the escape stage, tumor cells that have passed through 

the former two steps and have obtained the ability to 

escape from immune recognition become visible and 

progressively growing tumors. Therefore, the 

occurrence of tumor escape is based on the 

establishment of an immunosuppressive status within 

the tumor microenvironment [44, 47]. Regulatory T 

cells (Tregs) are one of the main types of 

immunosuppressive cells responsible for restraining 

host-protective anti-tumor responses. Activated Tregs 

can express PD1, PDL1 and CTLA4 to inhibit tumor-

specific T lymphocytes functions [44, 48]. We 

compared the immune infiltration of 22 immune cell 

types between low and high risk MIBC patients to 

explore the immune mechanisms and evaluate the 

reach of the proposed IPM as cancer  

immunotherapy. The results showed that the high risk 

MIBC patients had more macrophages. The patients 

with (n=194) and without (n=216) TP53 mutations, 

and fewer Tregs and activated dendritic cells than the 

low risk MIBC patients. Furthermore, the gene 

expression levels of PD1, CTLA4, LAG3, HAVCR2 

and TIGIT in the high risk MIBC subgroup were 

significantly higher than those in the low risk 

subgroup. Therefore, the risk score obtained from 

IPM was consistent with the ability of immune 

infiltration to decide the expressed value of immune 

checkpoint genes. This suggests that the inferior 

prognosis of the high risk patients may have resulted 

from a more excellent immunosuppressive 

environment and an increased expression level of 

immune checkpoint genes. Consequently, our results 

also suggest that immune checkpoint gene inhibitors 

should be potentially more effective in high risk 

MIBC patients, which would result in a considerable 

improvement in prognosis. 

 

CONCLUSION 
 

The appointments presented here can present some 

limitations due to being based on retrospective data 

and, therefore, they should be further validated by 

prospective studies. Furthermore, the four key 

immune-associated genes used to construct the IPM 

should also be detected in experimental studies to 

ensure their clinical application. On the other hand, 

the present work provides new insights into the MIBC 

immune microenvironment and immune-associated 

therapies. For the first time, it was proposed an IPM 

based on TP53 mutations and four immune-associated 

genes. The proposed IPM presented a significantly 

effective prognostic for MIBC patients and illustrated 

an overarching landscape of immune response in the 

MIBC microenvironment. Remarkably, the develop-

ment and validation of the IPM presented an 

immunological perspective to elucidate the mecha-

nisms in the clinical outcomes of MIBC and 

potentially could be used as a reference for the study 

of other types of cancer. 

 

MATERIALS AND METHODS 
 

Cancer Genome Atlas (TCGA) data acquisition and 

processing 

 

The gene expression matrix, somatic mutation data of 

407 MIBC samples and their matching clinical features 

were acquired from the Cancer Genome Atlas (TCGA) 

website (https://portal.gdc.cancer.gov/repository). 

RNA-seq count data were downloaded using Illumina 

HiSeq platforms and annotated as Homo_sapiens. 

GRCh38.91.chr.gtf file (http://asia.ensembl.org/ 

index.html). The function of variances stabilizing 

transformation (VST) normalization method of the 
DESeq2 package in R software was used to normalize 

the expression data [49]. The mean gene expression 

level was employed when multiple gene symbols were 

https://portal.gdc.cancer.gov/repository
http://asia.ensembl.org/index.html
http://asia.ensembl.org/index.html


 

www.aging-us.com 1938 AGING 

located. Moreover, we removed the genes that sum gene 

expression value to be less than 100 to filter out the low 

abundance data. 

 

Gene Expression Omnibus (GEO) data acquisition 

and processing 

 

The four gene expression matrix of microarray data 

from GSE13507 based on platform GPL6102 (257 

samples used in this study), GSE32549 based on 

platform GPL6947 (132 samples used in this study), 

GSE48075 based on platform GPL6947 (143 samples 

used in this study), and GSE48276 based on platform 

GPL14951 (117 samples used in this study) were 

obtained from the Gene Expression Omnibus (GEO) 

database (https://www.ncbi.nlm.nih.gov/geo/). The 

mean gene expression level was employed when 

multiple gene symbols were located. Genes were 

removed when its sum gene expression value was less 

than 100 to filter out the low abundance data. 

Moreover, the clinical data of four datasets with 

survival details were combined into the meta-GEO 

MIBC cohort (n=440) from 649 GEO patients to 

confirm the immune prognostic model. Combat 

method in sva R package was applied to remove the 

batch effects [50, 51]. 

 

Gene Set Enrichment Analysis (GSEA) 

 

We divided the TCGA cohort into two groups, wild-

type TP53 (n = 216) and mutated TP53 (n = 194), to 

show the variations in immunological pathways and 

related genes using GSEA methods [52]. The MSigDB 

gene sets file (c5.bp.v7.0.symbols.gmt) was chosen as 

the reference gene set with permutations of 104. FDR < 

0.05 was appointed as the threshold. 

 

Differentially expressed genes (DEGs) and 

functional analysis 

 

The R package DESeq2 was used to filter out the 

differentially expressed genes (DEGs) between the 

wild-type and mutated TP53 groups. Absolute log2  

(fold change) > 2 and adjusted p values < 0.01 were  

set as the cut-off criteria to indicate significant 

statistically difference [49]. Gene Ontology (GO) 

annotation and Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathways analyses were performed 

using the clusterProfiler R package to explore the 

significant biological processes, highlight the pathways 

associated with DEGs, and assess the biological 

implications of the prognostic model [53]. The notable 

biological processes and pathways were presented  
using GOplot [54] and ggalluvial (version 0.10.0. 

https://CRAN.R-project.org/package=ggalluvial) R 

packages, respectively. 

Immune prognostic model (IPM) development and 

validation 

 

To predict the prognosis of patients with MIBC, we 

constructed an immune prognostic model (IPM) as 

previously described [55]. We integrated 407 MIBC 

samples expression profiles, mutation data and survival 

information from TCGA MIBC samples to subsequent 

analyses. The expression matrix of the DEGs in 

immune-associated genes sets of GSEA from 407 

MIBC was analyzed using univariate cox regression 

analysis. The significant genes with BH-adjusted p 

value < 0.01 were subject to the least absolute shrinkage 

and selection operator (LASSO) analysis with L1-

penalty. LASSO is a widely used method for dealing 

with the very high dimensional space of predictors such 

as gene expression profiles [56]. Thus, the critical 

immune-associated genes, significant in univariate cox 

regression analysis, were screened out by the LASSO 

method. Finally, a comparatively small portion of non-

zero weight genes remained. Most of the potential 

indicators were reduced to zero. Hence, we decreased 

the number of immune genes using LASSO-penalized 

cox regression. In this study, we performed LASSO-cox 

analysis using glmnet R package, and picked up 

immune-associated genes that appeared more than 900 

times in 1000 repetitions [15, 57]. X-tile 3.6.1 software 

(Yale University, New Haven, CT, USA) was employed 

to define the best cutoff for categorizing low or high 

risk MIBC patients. The predictive ability of the IPM 

was assessed by the log-rank test and Kaplan-Meier 

survival analysis. 

 

Estimation of immune cell type fractions 

 

CIBERSORT analytical tool [19] was employed to 

quantify the immune cell distributions in wild-type 

TP53 and mutated TP53 MIBC. The LM22 gene 

signature was designed to evaluate the possibility of 

leukocyte deconvolution from bulk tumors. LM22 

signature matrix file contains 547 genes and enables 

highly sensitive and particular distinction of 22 human 

hematopoietic cell phenotypes, including T cell 

subtypes, B cell subtypes, NK cell subtypes, plasma 

cells subtypes and myeloid subtypes. For every sample, 

the sum of all estimates of 22 immune cell subtype 

fractions was equivalent to 1. 

 

Comparison between IPM and traditional clinical 

characteristics 

 

We performed univariate and multivariate cox 

regression analyses for MIBC patients to compare the 
predictive ability of IPM and traditional clinical 

characteristics. The traditional clinical characteristics 

used here were obtained from survival information of 

https://www.ncbi.nlm.nih.gov/geo/
https://cran.r-project.org/package=ggalluvial
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407 MIBC patients, including age, gender, weight, 

pathological stage and diagnosis type. 

 

Assessment of nomogram performance 

 

The nomogram was used to show the predicted 

probability of survival for 1 year, 3 and 5 years, based 

on the outcome of multivariate analysis. The calibration 

curve and concordance index (c-index), which were 

generated by the rms (Version: 5.1–3.1; 

https://CRAN.R-project.org/package=rms) R package 

[58], decided the predictive exactness and 

discriminative capacity of a nomogram. The calibration 

curve indicated the distinction between the actual 

overall survival rate and the nomogram's predicted 

probability. A calibration curve closer to the diagonal 

dotted line suggests a better predictive effect. The c-

index is mainly used to assess the predictive power of 

the model. The model impact can be equivalent to the 

area under the ROC curve (AUC). We calculated c-

index by a bootstrap approach with resampling 1000 

times [59]. For the statistical tests analyzed in this 

study, BH-adjusted p < 0.05 was used as a threshold to 

indicate statistically significant differences. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1, 5, 6. 

 

Supplementary Table 1. Gene enrichment in TP53 MUT MIBCs. 

 

Supplementary Table 2. Differentially expressed immune-related genes between TP53 WT and TP53 MUT MIBCs. 

Gene BaseMean Log2FoldChange lfcSE Stat P value Padj 

INPP5D 1854.711104 -1.331192711 0.109912 -12.1115 9.19E-34 5.73E-30 

MUC17 6.785766424 3.423430873 0.403068 8.493431 2.01E-17 1.39E-14 

COLEC10 16.41223701 -1.518229034 0.19155 -7.92602 2.26E-15 1.09E-12 

MUC3A 386.6954841 -1.666152055 0.222744 -7.48011 7.43E-14 2.32E-11 

KRT1 666.6288899 2.256194309 0.315835 7.143583 9.09E-13 1.87E-10 

IL13RA2 114.8086152 1.381038267 0.199597 6.919142 4.54E-12 6.69E-10 

KLK5 639.2089362 3.012235524 0.447785 6.726965 1.73E-11 2.00E-09 

ITLN1 314.1628376 2.063811109 0.322884 6.391796 1.64E-10 1.30E-08 

MUC13 39.3318094 1.689564373 0.26715 6.3244 2.54E-10 1.88E-08 

TNF 74.05026623 1.076075988 0.173247 6.21122 5.26E-10 3.37E-08 

TRIM15 14.85020364 1.796347117 0.291317 6.1663 6.99E-10 4.25E-08 

MUC2 1073.476454 -1.872285676 0.308671 -6.06564 1.31E-09 6.97E-08 

FCER2 41.01428292 -1.629011171 0.270628 -6.01938 1.75E-09 8.67E-08 

F2 18.10754493 -1.539812425 0.264972 -5.81122 6.20E-09 2.50E-07 

TMEM178A 127.5392241 -1.005751905 0.173451 -5.79849 6.69E-09 2.68E-07 

PRSS2 294.2979381 -1.951340192 0.33999 -5.73941 9.50E-09 3.60E-07 

MUCL1 47.38242697 -1.433814436 0.254758 -5.62814 1.82E-08 6.15E-07 

MUC6 27.50267307 1.281605722 0.232651 5.508708 3.61E-08 1.11E-06 

BMP5 146.0012169 -1.313917978 0.251061 -5.23347 1.66E-07 3.96E-06 

CXCL5 492.5128235 1.447470474 0.277447 5.217111 1.82E-07 4.28E-06 

MUC21 48.10028086 1.57242524 0.304889 5.157366 2.50E-07 5.67E-06 

CRP 7.047758192 1.768788946 0.350343 5.048736 4.45E-07 9.10E-06 

ELANE 5.561058025 -1.156174197 0.234959 -4.92074 8.62E-07 1.56E-05 

CTSG 116.8657596 -1.173494097 0.240986 -4.86956 1.12E-06 1.95E-05 

RAET1L 65.33216009 1.125183807 0.236677 4.754085 1.99E-06 3.10E-05 

PI3 6530.207297 1.496468891 0.314881 4.752485 2.01E-06 3.11E-05 

PAK3 51.24237471 1.028488952 0.22018 4.67113 3.00E-06 4.27E-05 

BPIFA2 9.044188556 -1.552672656 0.341593 -4.54539 5.48E-06 7.01E-05 

IL36RN 208.5455292 1.195186363 0.265789 4.496741 6.90E-06 8.43E-05 

TREML4 3.035898091 1.196997555 0.266379 4.493596 7.00E-06 8.55E-05 

LBP 56.44304651 -1.060024831 0.238228 -4.44962 8.60E-06 0.0001015 

PGLYRP4 158.3369183 1.131984695 0.255716 4.42672 9.57E-06 0.0001109 



 

www.aging-us.com 1944 AGING 

ZP4 1.384827197 2.740193555 0.675698 4.055351 5.01E-05 0.000433 

C4BPA 11.83703756 1.11824931 0.281722 3.96933 7.21E-05 0.0005837 

ADIPOQ 41.22982002 -1.880092603 0.482849 -3.89375 9.87E-05 0.0007568 

MS4A1 199.7270789 -1.058261639 0.272528 -3.88314 0.00010312 0.0007833 

IFNK 4.438731702 1.844122551 0.475738 3.876338 0.00010604 0.0008006 

PPBP 16.3034348 1.010430324 0.262607 3.847685 0.00011924 0.0008795 

CR2 180.5723803 -1.145738436 0.298234 -3.84174 0.00012216 0.0008956 

ACOD1 3.209527907 1.098973015 0.293156 3.748769 0.00017771 0.0012264 

IL2 1.674166645 -1.037857916 0.302595 -3.42986 0.00060389 0.0033249 

KLK3 31.97130664 -1.573014493 0.480084 -3.27654 0.00105086 0.0052178 

KLRF2 2.275614677 -1.023321575 0.317905 -3.21895 0.00128661 0.0061484 

SEMG2 5.609722123 -1.119485718 0.359992 -3.10975 0.00187245 0.0083153 

 

Supplementary Table 3. Univariate Cox regression analysis of differentially expressed immune-related genes. 

Gene HR Z Pvalue Lower Upper 

BPIFA2 0.4793007 -3.19996146 0.00137446 0.30547927 0.75202865 

KRT1 1.0945601 3.04094672 0.002358356 1.03263949 1.16019369 

CTSG 1.1596203 2.56126922 0.01042905 1.03537893 1.29877008 

TREML4 2.0823697 2.51592625 0.011872002 1.17596396 3.68741213 

ELANE 1.7211129 2.51353421 0.011952818 1.12702529 2.6283612 

MUC2 0.9028762 -2.36875478 0.017848083 0.82968624 0.98252244 

TMEM178A 0.8130005 -2.15627734 0.031062015 0.67354587 0.98132852 

PPBP 1.2036616 2.0668929 0.038744246 1.009636 1.43497394 

RAET1L 1.157798 2.04852701 0.040508388 1.00635453 1.33203172 

F2 0.7377252 -1.95931492 0.050075918 0.54418364 1.00010077 

ADIPOQ 1.1276578 1.94118714 0.052235583 0.99883855 1.27309078 

ITLN1 0.9045497 -1.90481201 0.056804512 0.81583703 1.00290883 

PI3 1.0391878 1.67985532 0.092985468 0.99361088 1.08685542 

C4BPA 0.791979 -1.64174983 0.10064186 0.59950851 1.04624152 

INPP5D 0.9110958 -1.53367692 0.125109154 0.80888886 1.02621703 

IFNK 0.7252585 -1.51608925 0.129496787 0.47878587 1.09861207 

SEMG2 0.7812814 -1.49614551 0.134615741 0.56543718 1.07951985 

IL36RN 1.077922 1.49606391 0.134637001 0.97700168 1.1892669 

KLK5 1.0503211 1.4414847 0.149447798 0.98249599 1.12282836 

TNF 0.8800157 -1.36851191 0.171151896 0.73280819 1.05679436 

PGLYRP4 1.0777881 1.29292472 0.196037095 0.96208966 1.20740004 

ACOD1 0.6651285 -1.26478914 0.205946925 0.35356848 1.25123139 

CRP 0.8223409 -1.24966551 0.211421761 0.60509001 1.11759319 

MUC21 1.0778289 1.20902356 0.226653794 0.95451528 1.21707329 

ZP4 1.2053951 1.03709029 0.29969378 0.84684805 1.71574751 

CR2 1.0445565 1.00597241 0.314428844 0.95950299 1.13714938 
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KLRF2 0.7381797 -0.86563715 0.386689174 0.37124151 1.46780272 

TRIM15 0.8997109 -0.80566634 0.42043526 0.69574183 1.16347699 

CXCL5 1.0324815 0.69564429 0.486651619 0.94355936 1.12978379 

LBP 0.9502898 -0.67822945 0.49762622 0.82009479 1.10115414 

MUC17 0.9070841 -0.6713751 0.501981605 0.68234945 1.205836 

MUC3A 0.9750718 -0.50184944 0.615773435 0.88352562 1.07610343 

PRSS2 0.9800865 -0.5000856 0.617014804 0.90578991 1.0604773 

BMP5 0.9686302 -0.4442206 0.656883099 0.84156037 1.1148868 

COLEC10 0.9146062 -0.441049 0.659177525 0.61512553 1.35989237 

MUC6 1.0271493 0.31456764 0.753089952 0.86925826 1.21371937 

PAK3 1.0261812 0.28366326 0.776668449 0.85836436 1.22680759 

MUCL1 1.0185821 0.26652602 0.789834121 0.88960086 1.16626406 

FCER2 1.0147179 0.20229408 0.839686831 0.88078 1.16902341 

MUC13 0.9879315 -0.17040276 0.864693405 0.85916229 1.13600037 

IL2 1.0557711 0.13710304 0.890949347 0.48598951 2.29357335 

MS4A1 0.9936317 -0.13361744 0.893705091 0.90474645 1.09124934 

IL13RA2 1.0082233 0.13085062 0.895893478 0.89182927 1.13980812 

KLK3 1.0003818 0.00411676 0.996715308 0.83412129 1.19978215 

 

Supplementary Table 4. Analysis of correlations between risk score and immune checkpoints. 

Variable 1 Variable 2 Pearson correlation coefficient P value 

CTLA4 PD1 0.888288098 6.21E-139 

CTLA4 TIGIT 0.886304303 1.78E-137 

CTLA4 HAVCR2 0.831323626 2.32E-105 

CTLA4 LAG3 0.844513955 6.75E-112 

CTLA4 riskscore 0.186199337 0.000158114 

HAVCR2 PD1 0.834320086 8.55E-107 

HAVCR2 TIGIT 0.811648076 1.35E-96 

HAVCR2 LAG3 0.839543509 2.30E-109 

HAVCR2 riskscore 0.179520696 0.000272458 

LAG3 PD1 0.87450565 2.44E-129 

LAG3 TIGIT 0.804948762 7.60E-94 

LAG3 riskscore 0.172904677 0.000458466 

PD1 TIGIT 0.887113217 4.56E-138 

PD1 riskscore 0.142612516 0.003939071 

riskscore TIGIT 0.201245306 4.32E-05 
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Supplementary Table 5. Functional enrichment analysis of the twenty-five immune genes identified. 

 

Supplementary Table 6. Pathway enrichment analysis of the twenty-five immune genes identified. 

 

 


