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Transient receptor potential (TRP) superfamily consists of a diverse group of non-
selective cation channels that has a wide tissue distribution and is involved in
many physiological processes including sensory perception, secretion of hormones,
vasoconstriction/vasorelaxation, and cell cycle modulation. In the blood vessels, TRP
channels are present in endothelial cells, vascular smooth muscle cells, perivascular
adipose tissue (PVAT) and perivascular sensory nerves, and these channels have been
implicated in the regulation of vascular tone, vascular cell proliferation, vascular wall
permeability and angiogenesis. Additionally, dysfunction of TRP channels is associated
with cardiometabolic diseases, such as diabetes and obesity. Unfortunately, the
prevalence of diabetes and obesity is rising worldwide, becoming an important public
health problems. These conditions have been associated, highlighting that obesity is a
risk factor for type 2 diabetes. As well, both cardiometabolic diseases have been linked
to a common disorder, vascular dysfunction. In this review, we briefly consider general
aspects of TRP channels, and we focus the attention on TRPC (canonical or classical),
TRPV (vanilloid), TRPM (melastatin), and TRPML (mucolipin), which were shown to
be involved in vascular alterations of diabetes and obesity or are potentially linked to
vascular dysfunction. Therefore, elucidation of the functional and molecular mechanisms
underlying the role of TRP channels in vascular dysfunction in diabetes and obesity
is important for the prevention of vascular complications and end-organ damage,
providing a further therapeutic target in the treatment of these metabolic diseases.

Keywords: TRP channels, vascular dysfunction, diabetes, obesity, TRPC, TRPM, TRPML, TRPV

INTRODUCTION

Diabetes mellitus and obesity are characterized by systemic biochemical and biological
abnormalities, including metabolic disturbances, increased oxidative stress (Pandey et al., 2010;
Fülöp et al., 2014; D’souza et al., 2016), and elevated circulating levels of inflammatory markers
(Panagiotakos et al., 2005; Taha et al., 2019). Obesity is a condition related to disproportionate body
weight for height with an excessive accumulation of adipose tissue (González-Muniesa et al., 2017).
Moreover, obesity represents the strongest risk factor for type 2 diabetes (Censin et al., 2019), and it
is a common comorbidity among type 2 diabetics (Fajarini and Sartika, 2019). On the other hand,
diabetes mellitus can be classified into many subtypes, which can be characterized and identified by
the presence of hyperglycemia (World Health Organization, 2019).
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Unfortunately, the prevalence of these cardiometabolic
disorders has been increasing worldwide (Abarca-Gómez et al.,
2017; International Diabetes Federation, 2019). Additionally, it
is evident that diabetes and obesity are related with enhanced
cardiovascular risk (Ärnlöv et al., 2010; Einarson et al., 2018).
Moreover, these cardiometabolic disorders have been linked to a
common condition: vascular dysfunction (Schofield et al., 2002;
Oltman et al., 2006; Sivitz et al., 2007; Farb et al., 2014). For
instance, diabetic and obese individuals can both be affected by an
impaired functional endothelium (Steinberg et al., 1996; Doupis
et al., 2011) and/or increased vasoconstriction (Hogikyan et al.,
1999; Cardillo et al., 2002; Weil et al., 2011; Schinzari et al.,
2015), thus leading to vascular complications. Currently, there
are a large number of studies that have described the mechanisms
of vascular dysfunction, which involve altered transient receptor
potential (TRP) channels expression and/or activity, a common
event observed in hypertension (Mathar et al., 2010; Alves-Lopes
et al., 2020), atherosclerosis (Wei et al., 2013; Zhao et al., 2016),
pulmonary hypertension (Yu et al., 2004; Yang et al., 2012) and
pulmonary edema (Jian et al., 2008; Thorneloe et al., 2012).
Therefore, these channels could provide additional targets for
treatment of these vascular diseases. Furthermore, TRP channels
are involved in diabetic (Evans et al., 2009; Lu et al., 2014;
Monaghan et al., 2015; Zhang et al., 2015) and obesity-related
(Zhang et al., 2007; Lee et al., 2015; Sun et al., 2019; Ottolini et al.,
2020) diseases. TRP superfamily consists of a diverse group of
non-selective cation channels that is divided into six subfamilies
in mammals, which are classified as: canonical or classical
(TRPC), vanilloid (TRPV), melastatin (TRPM), ankyrin (TRPA),
mucolipin (TRPML), and polycystin (TRPP) (Montell, 2005;
Ramsey et al., 2006). Additionally, this superfamily is distributed
throughout a variety of body tissues, such as blood vessels (Mita
et al., 2010; Gao et al., 2020), heart (Andrei et al., 2016), brain
(Tóth et al., 2005) and bladder (Yu et al., 2011), among others.

In this context, the correlation between TRP channels,
diabetes and obesity have continued to attract growing attention.
In this review, we briefly consider general features of TRP
channels and focus on TRPC, TRPV, TRPM, and TRPML,
which have been shown to be potential involved in the vascular
dysfunction of diabetes and obesity.

OVERVIEW ON DIABETES AND OBESITY

Globally, an estimated 463 million individuals were affected by
diabetes in 2019. The International Diabetes Federation estimates
that there will be 578 million adults with diabetes by 2030, and
700 million by 2045. Unfortunately, the global high prevalence of
diabetes continues to increase, with no indications of stabilizing
(International Diabetes Federation, 2019).

Similarly, the prevalence of obesity is rising in the world. The
global number of girls with obesity rose from 5 million in 1975 to
50 million, and the number of boys increased from 6 million in
1975 to 74 million in 2016. As well, the number of adult women
with obesity rose from 69 million in 1975 to 390 million, and the
number of men grew from 31 million in 1975 to 281 million in
2016 (Abarca-Gómez et al., 2017). In addition, from 2017 to 2018,

the prevalence of obesity in the United States was 42.4%, and
the prevalence of severe obesity was 9.2% among adults (Hales
et al., 2020). The study by Sonmez et al. (2019) demonstrated
a high prevalence of obesity in patients with type 2 diabetes,
where only 10% of patients with type 2 diabetes had normal body
mass indexes (BMI), while the remaining patients were either
overweight (31%) or obese (59%).

Worldwide, an estimated 41 million people died of non-
communicable diseases (NCDs) in 2016, corresponding to 71% of
all deaths. Cardiovascular diseases (17.9 million deaths), cancer
(9.0 million deaths), chronic respiratory diseases (3.8 million
deaths), and diabetes (1.6 million deaths) were the four greatest
contributors of NCDs related deaths. The increasing mortality
rates in diabetic cases are related with the rising prevalence of
obesity and other factors (World Health Organization, 2020).

Obesity has been linked to increased risk of various chronic
diseases, including type 2 diabetes, coronary artery disease,
stroke, and fatty liver (Censin et al., 2019). Moreover, diabetes
is strongly related with nephropathy, retinopathy, neuropathy
(Nathan et al., 2015; Garofolo et al., 2019), and erectile
dysfunction (Kouidrat et al., 2017; Carrillo-Larco et al., 2018).
These diseases are associated with increased risk of cardiovascular
disease, elevated mortality, low quality of life (Silveira et al.,
2020), and increased financial burden to health care systems.
Therefore, diabetes and obesity are considered important global
public health concerns (Hex et al., 2012).

VASCULAR COMPLICATIONS OF
DIABETES AND OBESITY

Type 2 diabetes is associated with the onset of microvascular
complications, such as nephropathy, retinopathy and
neuropathy, as well as macrovascular complications, including
coronary artery disease and cerebrovascular disease (Litwak et al.,
2013; Kosiborod et al., 2018). A study by van Wijngaarden et al.
(2017) demonstrated that the greater and more prolonged
exposure to hyperglycemia, enhances the risk of both
microvascular and macrovascular complications in patients
with type 2 diabetes (van Wijngaarden et al., 2017). Comparably,
intensive glucose control significantly reduced adverse outcomes
due to major macrovascular or microvascular events (Patel
et al., 2008). Moreover, obesity and type 2 diabetes mellitus
in adolescents, predispose this group to higher vascular
disease risk (Ryder et al., 2020). As well, overweight and obese
individuals had an increased risk for major cardiovascular
events, such as: myocardial infarction, stroke, and heart failure
(Ärnlöv et al., 2010). Additionally, there are several factors that
contribute to the vascular dysfunction associated with diabetes.
Chronic hyperglycemia has been shown to impair endothelium-
dependent vasodilatation in diabetes (Mäkimattila et al., 1996).
Elevated advanced glycation end products (AGEs) has been
shown to cause endothelial dysfunction (Xu B. et al., 2003; Ren
et al., 2017). Similarly, increased oxidative stress can reduce nitric
oxide (NO) bioavailability (Nassar et al., 2002; Cho et al., 2013),
while augmented peroxynitrite may inactivate endothelial nitric
oxide synthase (eNOS) (Chen et al., 2010; Cassuto et al., 2014).
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As well, augmented vascular contractility (Xie et al., 2006;
Matsumoto et al., 2014; Lubomirov et al., 2019), increased
vascular inflammation (Zhang et al., 2008; Ku and Bae, 2016),
and stimulated endothelial cells apoptosis (Sheu et al., 2005,
Sheu et al., 2008) can cooperate to cause vascular dysfunction
(Figure 1A). There are key processes in obesity which collaborate
and lead to impairment of vascular function. These processes
include enhanced vascular contractility (Boustany-Kari et al.,
2007; Weil et al., 2011), augmented sympathetic control of
vasoconstriction (Haddock and Hill, 2011), elevated oxidative
stress (La Favor et al., 2016), increased peroxynitrite (Mason
et al., 2011; Gamez-Mendez et al., 2015), perivascular adipose
tissue (PVAT) dysfunction (Ma et al., 2010; Bussey et al., 2016),
increased arginase activity (which can reduce L-arginine and NO
bioavailability) (Johnson et al., 2015; Bhatta et al., 2017), and
increased vascular inflammation (Yao et al., 2017; Figure 1B).
Both diabetes and obesity share common mechanisms that
result in vascular injury. Thus, elucidation of the mechanisms
underlying vascular dysfunction in these cardiometabolic
diseases is essential to provide additional therapeutic targets in
the prevention and treatment of these cardiometabolic diseases.
Interestingly, alterations in TRPs channel expression or/and
function may contribute to these pathological conditions,
making these channels promising therapeutic targets.

TRP CHANNELS

The TRP superfamily was originally discovered in the study
on Drosophila melanogaster, where in response to bright light,
Drosophila mutants behaved as if they were blind, while wild-
type flies maintained oriented toward visual cues. Thus, in the
mutated eye, the light-response was transient during sustained
light (Cosens and Manning, 1969). This mutant was known
as TRP due to the transient response to prolonged intense
lights, performed by Minke and colleagues (Minke et al., 1975).
Following these reports, the molecular characterization of the
Drosophila TRP gene was described (Montell and Rubin, 1989).

In addition, a common feature in the TRP superfamily is its
tetrameric structure, where each subunit is constituted by six
transmembrane segments, a pore-forming region between the
segments S5–S6 and cytoplasmic amino and carboxyl termini
(For general explanation, see reviews by: Earley and Brayden,
2015; Hof et al., 2019). Mammalian genomes encode 28 distinct
TRP protein subunits, and this superfamily is divided into
six subfamilies, based on amino acid sequence homology and
include: TRPC (Wes et al., 1995; Liu et al., 2008), TRPV (Caterina
et al., 1997; Smith et al., 2002), TRPM (Tsavaler et al., 2001;
Fujiwara and Minor, 2008), TRPA (Story et al., 2003; Cvetkov
et al., 2011), TRPP (Mochizuki et al., 1996; Giamarchi et al.,
2010), and TRPML (Sun et al., 2000; Zeevi et al., 2010).

The TRP superfamily consists of a diverse group of cation
channels, where most of the channels are non-selective and
permeable to Ca2+ (Gonzalez-Perrett et al., 2001; Feng et al.,
2014; Sierra-Valdez et al., 2018). These channels have been shown
to be involved in many physiological processes, such as responses
to painful stimuli (Caterina et al., 2000; Davis et al., 2000),

repletion of intracellular calcium stores (Rosado et al., 2002),
vasoconstriction/vasorelaxation (Freichel et al., 2001; Dietrich
et al., 2005), secretion of hormones (Togashi et al., 2006; Cheng
et al., 2007), cell cycle modulation (Lee et al., 2011; Tajeddine and
Gailly, 2012), sensory perception (Kichko et al., 2018) and others.
This superfamily displays a variety of activation mechanisms,
such as ligand binding (Janssens et al., 2016), temperature
(McKemy et al., 2002), endogenous chemical mediators (Beck
et al., 2006), voltage (Matta and Ahern, 2007), G protein-coupled
receptors (Boulay et al., 1997), and tyrosine kinase receptors (Xu
H. et al., 2003; Vazquez et al., 2004), among other stimuli.

In blood vessels, TRP channels are present in endothelial
cells (Ching et al., 2011), vascular smooth muscle cell (VSMC)
(Johnson et al., 2009), PVAT (Sukumar et al., 2012), perivascular
sensory nerves (Zygmunt et al., 1999), and pericytes (Tóth
et al., 2005), and these channels have been implicated in
the regulation of vascular tone (Pórszász et al., 2002; Qian
et al., 2007; Earley et al., 2009), vascular cell proliferation
(Zhang et al., 2018), vascular wall permeability (Tiruppathi
et al., 2002; Paria et al., 2004), and angiogenesis (Hamdollah
Zadeh et al., 2008; Ge et al., 2009). Additionally, there are a
large number of studies describing the involvement of TRP
proteins in various pathophysiological conditions. We focus on
altered expression and/or activity of the TRPC, TRPV, TRPM,
and TRPML channels, contributing to vascular dysfunction in
obese and diabetic conditions or are potentially associated to
vascular alterations.

TRP CHANNELS INVOLVED IN
VASCULAR COMPLICATIONS OF
DIABETES AND OBESITY

The Role of TRPC in the Vasculature
Under Diabetic and Obese Conditions
The TRPC subfamily consists of seven proteins, known as
TRPC1 to TRPC7 (see review of Clapham et al., 2001; Putney,
2005; Dietrich et al., 2010; Mederos y Schnitzler et al., 2018).
TRPC channels can form homo- and heterotetramers (Hofmann
et al., 2002; Strübing et al., 2003). Moreover, there is increasing
evidence that TRPC channel members can form receptor-
operated channels (ROC) (Soboloff et al., 2005; Peppiatt-
Wildman et al., 2007; Tai et al., 2008; Inoue et al., 2009; Itsuki
et al., 2014) and store-operated channels (SOC) (Groschner et al.,
1998; Freichel et al., 2001; Xu and Beech, 2001; Xu et al., 2006; Shi
et al., 2016).

TRPC1, TRPC3, TRPC4, TRPC5, and TRPC6 are expressed
in VSMC (Wang et al., 2004; Evans et al., 2009; Inoue et al.,
2009; Mita et al., 2010) and endothelial cells (Yip et al., 2004;
Gao et al., 2012; Sundivakkam et al., 2012). TRPC channels are
involved in the regulation of vascular tone through different
signaling pathways. For example, activation of TRPC1 and
TRPC3 channels in the VSMC can cause depolarization and
vasoconstriction (Reading et al., 2005; Wölfle et al., 2010).
Alternatively, TRPC1 channels can be associated with large-
conductance Ca2+-activated K+ (BKCa) channels in VSMC,
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FIGURE 1 | Vascular dysfunction in diabetes and obesity. Pathophysiological factors leading to vascular dysfunction in (A) diabetic and (B) obese patients. AGEs,
advanced glycation end products; eNOS, endothelial nitric oxide synthase; NO, nitric oxide; PVAT, perivascular adipose tissue.

indirectly activating cell hyperpolarization (Kwan et al., 2009).
As well, TRPC1, TRPC3, and TRPC4 stimulation in endothelial
cells can induce vasodilation through increases in endothelial
Ca2+, with subsequent generation of NO (Freichel et al.,
2001; Huang et al., 2011; Qu et al., 2017) and/or TRPC3
activation can induce endothelium-dependent hyperpolarization
factor (EDHF)-mediated vasodilation (Kochukov et al., 2014).
However, only a few studies have demonstrated the involvement
of TRPC channels in the vasculature of diabetic animals
and humans and no studies have investigated a role for
TRPC in obesity.

Evans et al. (2009) showed that angiotensin-II (Ang-II)-
induced Ca2+ influx was significantly enhanced in cultured
aortic VSMC from Goto-Kakizaki (GK) rats, a model of type 2
diabetes, when compared with cells from Wistar-Kyoto (WKY)
control rats. TRPC1 and TRPC5 protein expression were similar,
while TRPC4 protein expression was significantly increased, and
TRPC6 protein expression was significantly decreased in GK,
compared with WKY values. In GK-VSMC, Ang-II-induced
Ca2+ influx was more sensitive to the calcium influx inhibitors
2-aminoethoxydiphenyl borate (2-APB) and caffeine, which act
through the inhibition of the inositol 1,4,5-trisphosphate receptor
(IP3R). Since TRPC1 can be activated by an IP3R coupling
mechanism, this result suggests a possible increased activation
of mechanisms contributing to TRPC1 activity. The authors of
this study proposed that the elevated calcium influx induced by

Ang-II was due to the alteration of TRPC1/4/5 activity in diabetic
rats (Evans et al., 2009). However, 2-APB and caffeine are non-
selective inhibitors and therefore, the general absence of selective
pharmacological tools for TRPC channels is a study limitation.
Additionally, 2-APB and caffeine cannot be considered as specific
reagents to evaluate TRPC1 activity. Therefore, the use of
gene knockout or knockdown animals could offer a valuable
alternative for studying specific functions of TRPC channels in
the regulation of vascular tone in diabetic conditions. However,
a limitation of this approach is that when one TRPC channel is
downregulated or knocked out it may be compensated by other
TRPCs, as evidenced by Dietrich et al. (2005). Therefore, these
obstacles make difficult to draw correct conclusions about the role
of TRPC channels on the obesity and diabetes.

A study by Chung and colleagues provided the first evidence
that TRPC1, TRPC4 and TRPC6 messenger RNA (mRNA)
and proteins are present in human saphenous vein, and their
expression levels are modulated by type II diabetes. The authors
demonstrated that cyclopiazonic acid (CPA)-induced contraction
of the saphenous vein was greater in diabetic vessels than
the non-diabetic, suggesting that the increased contractility in
human diabetes could be partially due to the participation of
Ca2+ entry through SOC. Additionally, TRPC channels may
be involved in SOC. Although TRPC4 mRNA expression was
elevated, protein levels were not significantly different when
compared to non-diabetic vessels. TRPC1 and TRPC6 mRNA
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levels in diabetic conditions were similar to the control, however,
protein expression was decreased in diabetic veins. Even though
TPRC protein expression was diminished in the diabetic samples,
the enhanced CPA-induced contraction in diabetic veins might
be associated with increased TRPC activity, leading to higher
capacitative Ca2+ entry (Chung et al., 2009).

Mita and colleagues demonstrated that TRPC1, TRPC3, and
TRPC6 mRNAs and proteins were expressed in caudal arteries
from Wistar rats. However, in addition to the expression of these
TRPC channels, TRPC4 also was expressed at extremely low
levels in GK rats. In addition, GK rats had a significant increase in
protein expression of TRPC1 and TRPC6 channels or appearance
of TRPC4 channel expression, but not TRPC3, compared with
Wistar rats, which is associated with the reduction in cirazoline-
or CPA-induced contractions in GK (Mita et al., 2010).

These authors demonstrated that TRPC channel expression
levels and function are altered in diabetes (Table 1). However,
there was a heterogeneity of findings among these studies,
therefore these discrepancies may be explained by a number
of factors, including: variations in the metabolic profile of
the diabetic animals, distinct stages of diabetes, and the type
of arteries and veins investigated. Nevertheless, the in vivo
significance of these findings has not been shown. Additionally,
the role of TRPCs in obesity should also be more completely
explored in future studies.

The Role of TRPM2 in the Vasculature
Under Diabetic and Obese Conditions
TRPM2 is activated by H2O2 (Hara et al., 2002), adenosine 5′-
diphosphoribose (ADP-ribose) (Heiner et al., 2003; Yu et al.,
2017), nicotinic acid-adenine dinucleotide phosphate (NAADP)
(Beck et al., 2006), Ca2+ (McHugh et al., 2003), and temperature
(35–47◦C) (Togashi et al., 2006; Kashio et al., 2012; Kashio
and Tominaga, 2017), while adenosine monophosphate (AMP)
(Beck et al., 2006; Lange et al., 2008) and acidic pH are negative
regulators (Du et al., 2009; Starkus et al., 2010). This channel is
expressed in VSMC (Yang et al., 2006) and vascular endothelial
cells (Hecquet et al., 2008), and it is permeable to Ca2+, Na+
(Perraud et al., 2001; Sano et al., 2001; Kraft et al., 2004), and
K+ (Sano et al., 2001). Moreover, physiological splice variants of
TRPM2, including full-length TRPM2 (TRPM2-L) and a short
splice variant (TRPM2-S), have been identified in endothelial
cells (Hecquet and Malik, 2009; Hecquet et al., 2014) and VSMC
(Yang et al., 2006).

TRPM2 is involved in endothelial permeability, as
demonstrated by H2O2-induced Ca2+ influx via TRPM2
channels that results in endothelial hyperpermeability (Hecquet
et al., 2008). Moreover, H2O2 activates TRPM2 to induce
excessive Ca2+ influx, resulting in Ca2+ overload and
consequently, cell death in vascular endothelial cells (Sun
et al., 2012). Furthermore, ROS overproduction activates TRPM2
channels, leading to Ca2+ influx through TRPM2, which induces
VSMC migration and proliferation that contributes to neointimal
hyperplasia (Ru et al., 2015).

There are only a few studies that demonstrate changes in
TRPM2 channel expression and/or function associated with

diabetes and obesity. In pulmonary arteries from streptozotocin
(STZ)-treated hyperglycemic lean Zucker (LZ) rats (type I
diabetic), the TRPM2-L channel isoform was decreased when
compared to controls. Contrarily, vascular superoxide levels,
NADPH oxidase (NOX) activity and lung capillary filtration
coefficient (Kf) are higher in STZ-treated LZ rats. Interestingly,
inhibition of TRPM2 channel diminished lung Kf in diabetic
rats but did not affect the Kf in control animals. The
authors of this study proposed that in hyperglycemic rats,
increased oxidative stress activates the TRPM2 channel and
elevates pulmonary endothelial Kf. The decreased TRPM2-
L expression through chronic hyperglycemia may be due
to overexposure of superoxide and a subsequent negative
feedback-mediated downregulation. This enhanced the TRPM2
activation-mediated increase in Kf that can contribute to
the elevated susceptibility to lung complications observed in
individuals with type I diabetes. Taken together, additional
studies are needed to determine the pulmonary TRPM2 channel
sensitivity in control and diabetic animal models by using
electrophysiological and pharmacological tools (Lu et al., 2014;
Figures 2A,B).

A study developed by Sun et al. (2019) demonstrated that
TRPM2 expression significantly increased in both primary
mouse aortic endothelial cells and aortic endothelium from
high-fat diet (HFD, 60 kcal% fat)-fed mice. In addition,
preincubation of the TRPM2 inhibitor N-(p-amylcinnamoyl)
anthranilic acid (20 µM), reduced the impaired insulin-induced
relaxation in aortas from HFD-fed mice. Similarly, knockdown
of TRPM2 alleviated endothelial insulin resistance and improved
endothelium-dependent vasodilatation in obese mice. The
authors proposed that free fatty acid-induced H2O2 activation
of TRPM2, thereby aggravating endothelial insulin resistance.
Therefore, downregulation or pharmacological inhibition of
TRPM2 channels may contribute to treatment of endothelial
dysfunction associated with the oxidative stress state (Sun
et al., 2019; Figures 2A,C). Both of these studies indicated that
increased oxidative stress, present in diabetes and obesity, are
modulating the TRPM2 channel (Table 1), leading to elevated
channel activity. In this context, the decreased vascular TRPM2-
L expression in the lung from diabetic animals, as shown by Lu
et al., is due to negative feedback.

The Role of TRPV1 in the Vasculature
Under Diabetic and Obese Conditions
TRPV1 channels are expressed in endothelial cells (Yang et al.,
2010), VSMC (Kark et al., 2008), perivascular sensory nerves
(Zygmunt et al., 1999; Breyne and Vanheel, 2006), and pericytes
(Tóth et al., 2005). TRPV1 channels are present in blood
vessels, such as epineural arterioles (Davidson et al., 2006),
aorta (Ohanyan et al., 2011; Sun et al., 2013), mesenteric (Sun
et al., 2013; Zhang et al., 2015), and coronary arteries (Bratz
et al., 2008). These channels are activated by multiple stimuli,
including heat (∼42–51◦C) (Tominaga et al., 1998; Cesare
et al., 1999), anandamide (Zygmunt et al., 1999), and exogenous
agonists, such as capsaicin and resiniferatoxin (Caterina et al.,
1997), as well as low pH that acts as a sensitizing agent
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TABLE 1 | TRP channels involved in vascular complications of diabetes and obesity.

TRP channels involved in vascular complications of diabetes and obesity

Channel Diabetic
and/or
obesity model

Normal
control

Tissue Drug-induced vascular
effect or other vascular
investigations

mRNA in diabetic
and/or obesity
model

Protein in
diabetic and/or
obesity model

References

TRPC1 Goto-Kakizaki
(GK) (Type 2
diabetes)

Wistar-
Kyoto
(WKY) rat

Cultured aortic
vascular smooth
muscle cell

Angiotensin-II-induced Ca2+

influx was enhanced in
diabetic rat

Decrease No change Evans et al.
(2009)

TRPC1 Human Type II
diabetic

Human
non-
diabetic

Saphenous vein Cyclopiazonic acid-induced
Ca2+ influx was enhanced in
diabetic patient

No change Decrease Chung et al.
(2009)

TRPC1 GK rat Wistar rats Endothelium-
denuded
caudal artery
smooth muscle
strips

Cirazoline- or cyclopiazonic
acid-induced Ca2+ influx was
decreased in diabetic rat

– Increase Mita et al.
(2010)

TRPC3 GK rat WKY rat Cultured aortic
vascular smooth
muscle cell

Angiotensin-II-induced Ca2+

influx was enhanced in
diabetic rat

Undetectable – Evans et al.
(2009)

TRPC3 GK rat Wistar rat Endothelium-
denuded
caudal artery
smooth muscle
strips

Cirazoline- or cyclopiazonic
acid-induced Ca2+ influx was
decreased in diabetic rat

– No change Mita et al.
(2010)

TRPC4 GK rat WKY rat Cultured aortic
vascular smooth
muscle cell

Angiotensin-II-induced Ca2+

influx was enhanced in
diabetic rat

No change Increase Evans et al.
(2009)

TRPC4 Human diabetic Human
non-
diabetic

Saphenous vein Cyclopiazonic acid-induced
Ca2+ influx was enhanced in
diabetic patient

Increase No change Chung et al.
(2009)

TRPC4 GK rat Wistar rat Endothelium-
denuded
caudal artery
smooth muscle
strips

Cirazoline- or cyclopiazonic
acid-induced Ca2+ influx was
decreased in diabetic rat

TRPC4 mRNA was
not detected in
Wistar rats, but it
was detectable in
GK rats

TRPC4 protein was
not detected in
Wistar rats, but it
was barely
detectable in GK
rats

Mita et al.
(2010)

TRPC5 GK rat WKY rat Cultured aortic
vascular smooth
muscle cell

Angiotensin-II-induced Ca2+

influx was enhanced in
diabetic rat

No change No change Evans et al.
(2009)

TRPC6 GK rat WKY rat Cultured aortic
vascular smooth
muscle cell

Angiotensin-II-induced Ca2+

influx was enhanced in
diabetic rat

Decrease Decrease Evans et al.
(2009)

TRPC6 Human diabetic Human
non-
diabetic

Saphenous vein Cyclopiazonic acid-induced
Ca2+ influx was enhanced in
diabetic patient

No change Decrease Chung et al.
(2009)

TRPC6 GK rat Wistar rat Endothelium-
denuded
caudal artery
smooth muscle
strips

Cirazoline- or cyclopiazonic
acid-induced Ca2+ influx was
decreased in diabetic rat

– Increase Mita et al.
(2010)

TRPM2 Streptozotocin
(STZ)-treated
lean Zucker
(LZ) rats (Type I
diabetes)

Lean
Zucker rats

Pulmonary artery Lung capillary filtration
coefficient (Kf) was enhanced
in diabetic rat. TRPM2 channel
mediated increase in Kf.

– Decrease Lu et al.
(2014)

TRPM2 High-fat diet
(HFD)-fed mice
C57BL/6J for
16 weeks.

Low-fat diet
(LFD)-fed
mice
C57BL/6J
for
16 weeks.

Mouse aortic
endothelial cells
and aortas

Preincubation of TRPM2
inhibitor N-(p-amylcinnamoyl)
anthranilic acid (20 µM) or
knockdown of TRPM2
alleviates obesity-associated
impairment in insulin-evoked
endothelium-dependent
relaxations in obese mice

– Increase Sun et al.
(2019)

(Continued)
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TABLE 1 | Continued

TRP channels involved in vascular complications of diabetes and obesity

Channel Diabetic
and/or
obesity model

Normal
control

Tissue Drug-induced vascular
effect or other vascular
investigations

mRNA in diabetic
and/or obesity
model

Protein in
diabetic and/or
obesity model

References

TRPV1 Zucker
diabetic fatty
(ZDF) rat (Type
II diabetes)

Genetic
controls

Branch II and III
mesenteric
arteries.
(A portion of
the omental
membrane,
which frequently
contains nerve
trunks, was
maintained)

Capsaicin-induced relaxation
was similar in diabetic rat.

– – Pamarthi
et al. (2002)

TRPV1 STZ -induced
diabetic
Sprague-
Dawley
rats

Sprague-
Dawley
rats

Epineurial
arterioles of the
sciatic nerve

Capsaicin-induced constriction
(10−6 M) was decreased in
diabetic rat (10–12-week
duration).

– Decrease Davidson
et al. (2006)

TRPV1 STZ -induced
diabetic Wistar
rats

Wistar rats
treated with
the solvent
for STZ

Medial meningeal
artery
(Meningeal blood
flow)

Capsaicin-induced relaxation
(10−7 M) was abolished in
diabetic rat.
Capsaicin-induced constriction
(10−5 M) was similar in
diabetic rat.

– – Dux et al.
(2007)

TRPV1 db/db mice
(Type 2
diabetes and
obesity)

C57BLKS/J
mice

Mean arterial
blood pressure
(MAP)
Aortic tissue

Capsaicin-induced increases
in MAP was attenuated in
diabetic mouse.

– Decrease Ohanyan
et al. (2011)

TRPV1 db/db mice C57BLKS/J
mice

Coronary
microvessel
Myocardial blood
flow (MBF)

Capsaicin-induced increases
in MBF and
capsaicin-mediated relaxation
in coronary microvessels were
attenuated in diabetic mouse.

– – Guarini et al.
(2012)

TRPV1 db/db mice C57BLKS/J
mice

Thoracic aortas
and
mesenteric
arteries

Dietary capsaicin improves the
endothelium-dependent
relaxation in diabetic mouse
compared to db/db mice given
a normal diet.

– Decrease Sun et al.
(2013)

TRPV1 STZ -induced
diabetic
Sprague-
Dawley
rats

Sprague-
Dawley
rats

Third branch of
the superior
mesenteric artery

Capsaicin-induced relaxation
was decreased in diabetic rat.

– Decrease Zhang et al.
(2015)

TRPV1 db/db mice C57BLKS/J
mice

Coronary
arterioles
Coronary blood
flow (CBF)

H2O2 had little potentiating
effect on capsaicin-induced
CBF responses or
capsaicin-mediated coronary
vasodilation in db/db and
TRPV1 knockout mice.

– – DelloStritto
et al. (2016)

TRPV1 Human diabetic
(Type 1
diabetes)

Human
non-
diabetic

Cutaneous
vascular
conductance
(CVC) in the
forearm

CVC was decreased in
diabetic patients in
response to local heating early
peak.

– – Marche et al.
(2017)

TRPV1 High-fat/high-
cholesterol
diet- induced
obese male
Ossabaw
miniature swine
for 24 weeks.

Lean male
Ossabaw
miniature
swine for
24 weeks.

Coronary arteries Capsaicin-induced relaxation
was impaired in obese pigs.

Increase Decrease Bratz et al.
(2008)

(Continued)
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TABLE 1 | Continued

TRP channels involved in vascular complications of diabetes and obesity

Channel Diabetic
and/or obesity
model

Normal
control

Tissue Drug-induced vascular
effect or other vascular
investigations

mRNA in diabetic
and/or obesity
model

Protein in
diabetic and/or
obesity model

References

TRPV1 HFD-fed
Sprague-Dawley
rats
for
20–24 weeks.

Normal
diet-fed
Sprague-
Dawley rats
for
20–24 weeks.

Small mesenteric
arteries
(third-order)

Capsaicin (10 µM)
significantly increased the
amplitude of nerve-mediated
contraction induced by
10 Hz stimulation, with a
greater effect in control than
obese animals.

– – Haddock and
Hill (2011)

TRPV1 HFD-fed mice
C57BL6/
129SVJ for
12 weeks.

Normal
diet-fed mice
C57BL6/
129SVJ for
12 weeks.

Aorta Vascular hypertrophy was
observed in HFD-fed
wild-type but not HFD-fed
TRPV1 knockout mice.

– – Marshall et al.
(2013)

TRPV1 Obese Zucker
(OZ) rats

LZ rats Resistance
mesenteric
arteries

Capsaicin-induced
relaxation
was decreased in OZ rats

– No change Lobato et al.
(2013)

TRPV1 High-fat,
high-sucrose
(HFHS)
diet-induced
obese
Sprague-Dawley
rats
for 20 weeks.

Regular
diet-fed
Sprague-
Dawley rats
for 20 weeks.

Meningeal blood
flow

Capsaicin-induced
increased meningeal blood
flow (100 nM) was greater in
obese rat.
Capsaicin-induced
decreased meningeal blood
flow (10 µM) was greater in
obese rat.

– – Marics et al.
(2017)

TRPV4 STZ -induced
diabetic
Sprague-Dawley
rats

Sprague-
Dawley
rats

Third or fourth
branches of rat
mesenteric artery

TRPV4-KCa2.3-mediated
relaxation were impaired in
diabetic rats

– Decrease Ma et al.
(2013)

TRPV4 STZ -induced
diabetic
Sprague-Dawley
rats

Sprague-
Dawley
rats

Retinal arteriole – Decrease Decrease Monaghan
et al. (2015)

TRPV4 db/db mice
and STZ
-induced
diabetic
C57BLKS/J
mice

C57BLKS/J
mice

Aortas – Decrease Decrease Gao et al.
(2020)

TRPV4 HFD-fed mice
C57BL/6J.
The diets
initiated at age
5 weeks and
continued at
age 6 months.

LFD-fed mice
C57BL/6J.
The diets
initiated at
age 5 weeks
and
continued at
age
6 months.

Third-order
mesenteric
arteries

Vasodilatory responses to
GSK1016970A (TRPV4
agonist) in resistance
mesenteric arteries were
similar between the LFD-
and HFD-fed mice.

– – Greenstein
et al. (2020)

TRPV4 HFD-fed mice
C57BL/6J
for 14 weeks.
Obese
individuals.

LFD-fed mice
C57BL/6J
for 14 weeks.
Non-obese
individuals.

Resistance
mesenteric
arteries from
mice.
Splenius/
temporalis
muscle arteries
from human.

Vasodilatory response to
GSK1016970A was
impaired in HFD mice.
Vasodilatory response to
GSK1016970A was
markedly reduced in the
arteries from obese
individuals.

– – Ottolini et al.
(2020)

(Tominaga et al., 1998; Cesare et al., 1999). TRPV1 is a non-
selective cation channel, which is permeable to K+, Na+, Ca2+,
and Mg2+ (Caterina et al., 1997).

Activation of TRPV1 by capsaicin promotes the release
of neurotransmitters, such as calcitonin gene-related peptide
(CGRP) (Zygmunt et al., 1999; Wang et al., 2006) from
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capsaicin-sensitive nerves, in addition to NO from endothelial
cells (Yang et al., 2010; Ching et al., 2011), which can diffuse
to adjacent VSMC and cause relaxation. In smooth muscle
cells from skeletal muscle arterioles obtained from the rat and
mice, TRPV1 stimulation causes an increase in intracellular
Ca2+ concentration, resulting in vasoconstriction (Czikora et al.,
2012). Therefore, the activation of TRPV1 may induce different
effects on the vasculature (vasoconstriction, vasodilation, or no
effect), which can be unique to each vascular bed. For example,
arteries with sensory neuron innervation and without vascular
TRPV1 expression are expected to dilate in response to TRPV1
activation. However, arteries with elevated smooth muscle
TRPV1 expression and without apparent sensory neuronal
innervation constrict in response to the same TRPV1 stimulation
(Kark et al., 2008; Tóth et al., 2014). Moreover, TRPV1 activation
by capsaicin induced concentration-dependent biphasic effects,
where a low concentration capsaicin evoked dilation, while a
higher concentration resulted in vasoconstriction of the dural
vessels (Dux et al., 2003) and skeletal (musculus gracilis) muscle
arterioles (Kark et al., 2008).

Abundant evidence supports the hypothesis that altered
TRPV1 expression and/or function is associated with vascular
dysfunction in diabetes and obesity. The TRPV1 is the most
studied TRP channel in the vasculature, under these metabolic
conditions. In humans, a study by Marche et al. (2017) evaluated
cutaneous vascular conductance (CVC) in response to heat by
using a skin-heating probe, heated to 44 ◦C to assess heat-induced
vasodilation. The local heat-induced early peak is mediated
through TRPV1 channels, located on sensory nerves. Therefore,
the significantly diminished peak response to local thermal
hyperemia could suggest reduced activity of the TRPV1 channels
at the skin level in type 1 diabetic patients compared to control
subjects. This study indicated that the microvascular response
triggered by TRPV1 channels is reduced in type 1 diabetic
patients (Marche et al., 2017).

Zhang et al. (2015) investigated the pharmacological effects
of capsaicin on mesenteric arteries of STZ-induced diabetic
Sprague-Dawley rats. Capsaicin-induced vasodilation was
impaired in the mesenteric arteries of diabetic rats. As well,
TRPV1 expression was reduced in the diabetic preparation when
compared to the control group. The authors indicated that the
attenuated expression of CGRP and TRPV1 contribute to the
weakened capsaicin-mediated dilation in diabetic mesenteric
arteries (Zhang et al., 2015). In line with previous studies,
capsaicin-induced relaxation in resistance mesenteric arteries
was markedly decreased in obese Zucker (OZ; genetic model
of obesity) rats compared with LZ rats. However, TRPV1
receptor protein expression was similar between LZ and OZ
rats. The authors suggest that the weakened vascular effect
to anandamide in arteries from this obese model can involve
reduced activation of C-fiber nerve endings, and this may
collaborate to the vascular dysfunction observed in OZ rats
(Lobato et al., 2013). However, one concern about this model is
due the mutation of the fa gene (cause of obesity in OZ rats) is
not common among humans.

In addition, the study by Dux et al. (2007) evaluated the
TRPV1 receptor-mediated neurogenic sensory vasodilation in

diabetic rats. In control and insulin-treated diabetic animals,
capsaicin (10−7 M) induced increases in meningeal blood flow,
but in 6-week STZ-induced diabetic rats, capsaicin promoted
decreases in the blood flow. In contrast, capsaicin at a higher
concentration (10−5 M) caused vasoconstriction, which is
a non-neurogenic response and was similar in control and
diabetic animals. The authors demonstrated a reduction in
the capsaicin-evoked release of CGRP and decrease in the
density of perivascular and stromal TRPV1-immunoreactive
nerve fibers of the dura mater from diabetic rats, suggesting that
insufficient vasodilator function of meningeal sensory nerves may
contribute to the higher incidence of headaches in diabetics due
to perturbation of tissue homeostasis that could induce additional
activation and/or sensitization of meningeal nociceptors (Dux
et al., 2007). Further studies are needed to determine if this
hypothesis can be supported. It is pertinent to highlight the fact
that diabetic rats treated with insulin restored the vasodilatory
response and the capsaicin-evoked release of CGRP, indicating
that impairments observed in diabetic animals can be attributed
to the diabetic condition induced by STZ and not to a toxic
action of this drug. Moreover, it is important to note, that the
current evidences demonstrate that TRPV1 channels expression
and/or activity in perivascular sensory nerves are reduced under
these conditions.

In an opposite way, in model of obesity, topical administration
of capsaicin (100 nM) to the dura mater promoted enhanced
meningeal blood flow in high-fat high-sucrose (HFHS) diet-
fed Sprague–Dawley rats (diets started at 6 weeks of age and
continued for 20 weeks; 45% of total calories as fat) compared
to regular diet-fed rats. However, administration of capsaicin
at 10 µM induced a greater reduction in meningeal blood
flow in obese animals compared to controls. In this way,
dural application of capsaicin resulted in significantly higher
vasodilator and vasoconstrictor responses in obese animals
compared to controls. Moreover, this obesity animal model
was characterized by an increase in CGRP release in response
to both concentrations of capsaicin administered, suggesting a
greater TRPV1-mediated CGRP release from meningeal afferent
nerves likely due to a sensitization of the TRPV1 receptor.
This sensitization may be a consequence of the increase
in proinflammatory cytokines and levels of oxidative stress.
Changes in TRPV1-mediated vascular reactions and CGRP
release, may be related to the enhanced headache susceptibility
of obese individuals (Marics et al., 2017). Moreover, Dux et al.
(2007) and Marics et al. (2017) demonstrated divergent results
on TRPV1 receptor-mediated neurogenic sensory vasodilation
between diabetic and obese conditions, indicating that different
mechanisms can contribute to modulation of the TRPV1
channels in each disease.

Guarini et al. (2012) showed that capsaicin-mediated increases
in myocardial blood flow (MBF), using myocardial contrast
echocardiography, were reduced in db/db mice, a model of type II
diabetes, and obesity. Similarly, relaxation promoted by capsaicin
was attenuated in coronary microvessels from diabetic mice.
Interestingly, myocardial pH was more acidic in diabetic mice
than control mice and pH-mediated relaxation was attenuated in
coronary microvessels from TRPV1(−/−) and db/db mice. The
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FIGURE 2 | Involvement of TRPs in vascular responses in normal, diabetic and obese conditions. (A) The figure shows the possible mechanisms that can explain
vasodilator influences of TRPV1, TRPV4, TRPM2, and TRPML1 channel present in the vasculature. TRPV1 channel activation causes release of the CGRP from
sensory nerves. CGRP binds to CGRP receptor, inducing augmented levels of cAMP that activates PKA and promotes relaxation of VSMC. TRPV1 activation in
endothelial cells promotes Ca2+ influx and phosphorylation of eNOS and induces NO production. NO active the soluble guanylyl cyclase, that catalyzes the
conversion of GTP to cGMP and active the PKG. The NO/cGMP/PKG activates BKCa that leads to smooth muscle relaxation. Additionally, specific interaction of

(Continued)
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FIGURE 2 | Continued
TRPV4 with KCa2.3 in endothelial cells promote vasodilation, likely via an EDHF pathway. Moreover, H2O2-induced Ca2+ influx via TRPM2 channels in endothelial
cells results in endothelial permeability. TRPML1 is closely associated with RyR2. TRPML1 activation provokes Ca2+ signals from a LELs, which can subsequently
be augmented by CICR from the SR via RyR2 to induce Ca2+ sparks, leading to BKCa channel activity that result in membrane hyperpolarization, VSMC relaxation.
(B) The figure shows the possible alterations in TRPV1, TRPV4, and TRPM2 channel under diabetic conditions. Diabetic conditions promote reduction in the
capsaicin-evoked release of CGRP and decrease in the density of perivascular TRPV1. Moreover, a high level of glucose reduces TRPV1 expression and PKA
phosphorylation in endothelial cells. Additionality, hyperglycemia is a crucial factor for the diminished TRPV4 expression and impairs the endothelium-dependent
vasodilatation. Also, increased oxidative stress activates the TRPM2 channel and results in endothelial hyperpermeability. Besides that, overexposure of superoxide
promoted a TRPM2 channel negative feedback-mediated downregulation. Further studies are needed to clarify whether TRPML1 activity and/or expression are
altered in the vasculature during diabetes. (C) The figure shows the possible alterations in TRPV1 and TRPM2 channel under obese conditions. Impaired
capsaicin-induced vasodilation in arteries is associated with reduced expression of TRPV1 protein and cation influx into endothelial cells under obese conditions.
Increased oxidative stress present in obesity are modulating the TRPM2 channel, leading elevated activity of this channel. Further studies are needed to elucidate
whether TRPV4 and TRPML1 activity and/or expression are altered in the vasculature during obesity. TRPV1, Transient receptor potential of vanilloid type 1; TRPV4,
Transient receptor potential of vanilloid type 4; TRPM2, Transient receptor potential of melastatin type 2; TRPML1, Transient receptor potential of mucolipin type 1;
VSMC, vascular smooth muscle cells; NO, nitric oxide; EDHF, endothelium-derived hyperpolarizing factor; eNOS, endothelial nitric oxide synthase; BKCa,
large-conductance Ca2+-activated K+ channel; KCa2.3, small-conductance Ca2+-sensitive K+ channels (SKCa) isoform. PKG, Protein Kinase G; cGMP, cyclic
guanosine 3′,5′-monophosphate; GTP, guanosine 5′-triphosphate; SR, sarcoplasmic reticulum; IP3R, Inositol 1,4,5-trisphosphate receptor; RyR2, type 2 ryanodine
receptors; cAMP, Cyclic adenosine monophosphate; PKA, protein kinase A; CGRP, Calcitonin gene-related peptide; CGRP receptor, Calcitonin gene-related peptide
receptor; CICR, calcium-induced calcium release; LELs, late endosomes and lysosomes; H2O2, Hydrogen peroxide.

authors speculated that TRPV1 channels directly regulate MBF
and impairment of TRPV1 channels could contribute to vascular
dysfunction that is typically observed in diabetes. As previously
described, lowering pH is a stimulus for TRPV1 activation.
The study by Guarini et al. (2012) demonstrates a possible
desensitization of TRPV1 in situations of prolonged acidic
environment exposure. Further investigation into prolonged
acidic environment on TRPV1 desensitization is necessary.

A follow-up study by this group reported that acute H2O2
exposure potentiated capsaicin-mediated coronary blood flow
(CBF), using the same methodology that was described by
Guarini et al. (2012), responses and capsaicin-induced dilation
of coronary microvessels in control mice, but H2O2 had little
potentiating effect on capsaicin-mediated responses in db/db and
TRPV1 knockout mice. However, after excessive H2O2 exposure,
CBF and microvessel responses in the control mice resembled
those of the attenuated responses seen in TRPV1 knockout
and db/db mice. The author indicated that H2O2-induced
increases in CBF are promoted, in part, by TRPV1 channels.
Moreover, prolonged H2O2 exposure disrupts TRPV1-dependent
coronary vascular signaling, which can cause in-tissue perfusion
impairments observed in diabetes (DelloStritto et al., 2016).

Sun et al. (2013) demonstrated that cultured endothelial cells
that are exposed to a high level of glucose (30 mmol/L), reduced
TRPV1 expression and protein kinase A (PKA) phosphorylation
compared with control cells and that these effects were reversed
by the administration of capsaicin (1 µmol/L). Similarly, in
the aorta and mesenteric arteries from db/db mice, TRPV1
expression and PKA phosphorylation were decreased, but
uncoupling protein 2 (UCP2) level was significantly higher
when compared to wild type mice. After dietary administration
of 0.01% capsaicin for 14 weeks, TRPV1 activation induced
PKA phosphorylation and elevated the expression level of
UCP2 in diabetic mice. Moreover, capsaicin ameliorated vascular
oxidative stress and increased NO levels in db/db mice.
The authors concluded that TRPV1 activation by capsaicin
might attenuate hyperglycemia-induced endothelial dysfunction
through a mechanism involving the PKA and UCP2-mediated

antioxidant effect (Sun et al., 2013). If this conclusion is accurate,
then it would indicate a possible target for future research
on chronic treatment with TRPV1 agonists in the diabetic
and obesity conditions, evaluating whether these agonists could
attenuate or prevent vascular dysfunction. In addition, these
studies demonstrate new possibilities of capsaicin-rich dietary
recommendations for complementary assistance in the treatment
of diabetic patients.

Similarly, Bratz et al. (2008) demonstrated impaired capsaicin-
induced vasodilation in coronary arteries from obese Ossabaw
swine (diets were provided for 24 weeks; 46% of total kcal
from fat) associated with reduced expression of TRPV1 protein
and cation influx into endothelial cells. On the other hand,
TRPV1 channel mRNA expression was increased in obese
swine compared with lean controls. The authors concluded
that TRPV1 channel signaling is diminished in metabolic
syndrome and this disrupted pathway can contribute to the
endothelial dysfunction and the development of coronary artery
disease (Bratz et al., 2008). These findings support the notion
that decreased expression of TRPV1 channel and Ca2+ influx
into endothelial cells promote insufficient vasodilator response,
collaborating to the endothelial dysfunction related to diabetic
and obesity conditions.

Together, these studies support a model in which activation of
TRPV1 channels from endothelial cells and perivascular sensory
nerves cause vasodilation. This mechanism may be disrupted
during diabetes and obesity, contributing to vascular dysfunction
associated with these conditions, resulting in higher incidence of
headaches, coronary disease, and tissue perfusion impairment.

However, Pamarthi et al. (2002) demonstrated that capsaicin-
induced concentration-dependent relaxation of branch II and III
mesenteric arteries and CGRP nerve density was similar in the
Zucker diabetic fatty (ZDF) rat, a model of type II diabetes, and
genetic controls. ZDF rats exhibit obesity, severe hyperglycemia,
an early hyperinsulinemia and dyslipidemia. Moreover, the
obesity is promoted by the fa leptin receptor mutation (Pamarthi
et al., 2002), but, as described before, this is not common cause of
obesity among humans.
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In contrast, Davidson et al. (2006) reported that capsaicin
induced a concentration-dependent vasoconstriction of
epineural arterioles of the sciatic nerve from Sprague-Dawley
rats, concluding that vasoconstriction was likely due to the release
of neuropeptide Y (NPY) contained in nerves that innervate
these arterioles. However, vasoconstriction to capsaicin was
significantly decreased in long-term diabetic rats. This altered
response was correlated with the reduced expression of TRPV1
in epineural arterioles in diabetic rats (Davidson et al., 2006).
Moreover, the present evidence shows that TRPV1 channels
expression and/or activity in sensory nerves that innervate these
arterioles are decreased under diabetic condition. Overall, these
findings are in accordance with findings reported by Haddock
and Hill (2011). In an animal model of obesity, capsaicin
(10 µM) promoted a significant increase in nerve-mediated
vasoconstriction induced by a 10 Hz stimulation in small
mesenteric arteries from groups fed a high-fat (diets started at
6 weeks of age and were provided for 20–24 weeks; containing
43% of total calories as fat) and normal diet, although the effect
was greater in control rats (Haddock and Hill, 2011). From
the results, it is clear that common factors between obesity and
diabetes can modulate TRPV1 channel, leading to the reduced
vasoconstriction. Additional studies to investigate which specific
mechanisms collaborate to TRP channels modulation in each
disease are necessary.

A study by Ohanyan et al. (2011) showed that capsaicin
caused an increase in mean arterial blood pressure (MAP)
in mice, but the increase MAP was attenuated in the db/db
mice. In addition, mice were given the ganglion blocker,
hexamethonium, to evaluate the primary actions of capsaicin and
to eliminate reflex adjustments. Furthermore, this diminished
capsaicin-induced pressor response was correlated with reduced
aortic TRPV1 protein expression in db/db mice. Moreover,
cultured bovine aortic endothelial cells exposed to capsaicin
augmented endothelin production and endothelin A (ETA)
receptor inhibition reduced the capsaicin-mediated rises in MAP.
Based on these findings, the authors indicated that TRPV1
channels are involved in the regulation of vascular reactivity and
systemic pressure through production of endothelin, resulting
in activation of vascular ETA receptors. Therefore, a decrease in
vascular TRPV1 channel expression may contribute to vascular
dysfunction in diabetes. The authors suggest that this reduced
TRPV1 channels could promote sensitization of vasoconstrictor
pathways and reduced functional hyperemia present in diabetic
patients (Ohanyan et al., 2011). A limitation of this study was the
use of conductance vessels instead of resistance vessels in order
to evaluate TRPV1 protein expression. Moreover, further studies
should evaluate if substance P and NPY can participate in the
capsaicin-mediated pressor response.

Marshall and colleagues revealed that hypertension and
vascular hypertrophy were observed in HFD-fed wild-type
(diets for 12 weeks from 3 weeks of age; 35% fat from
lard) but not HFD-fed TRPV1 knockout mice, indicating that
the onset of vascular remodeling may have an association
between TRPV1 and obesity-induced high blood pressure.
Moreover, constrictor and dilator responses to phenylephrine,
CGRP, and the endothelium-dependent carbachol remained

intact, suggesting little vascular dysfunction in the mesenteric
resistance artery in this obese model. Interestingly, the authors
provided evidence that TRPV1 knockout mice were protected
from obesity-induced hypertension and vascular hypertrophy
(Marshall et al., 2013; Table 1). However, it is important to note
that these results differ from studies that have linked decreased
TRPV1 expression or/and function with a worsened phenotype.
Moreover, there is no significant alteration on the mean arterial
pressure in TRPV1 knockout mice related to wild-type mice
under normal diet. This implies that altered TRPV1 activity can
be associated with a compensatory response that counteracts the
hypertension in this model of obesity. The HFD-wild-type mice
show low-grade inflammation, reducing glucose tolerance and
raised levels of adipokine that could be involved with modulation
of this channel. Furthermore, it cannot be ruled out that the
different influences of TRPV1 channels on the vasculature
depend on the tested diabetic or obese animal model. Thus,
additional research is needed to confirm these observations.

Collectively, these findings reveal the downregulated
TRPV1 channel expression is related to the diabetic condition
(Figures 2A,B). In obese animal models, these studies
demonstrated alterations in TRPV1 channel expression
and/or function, suggesting a role of TRPV1 in obese conditions
(Figures 2A,C). Nevertheless, the data obtained from these
studies are divergent, which can be justified by the use of
different obesity animal models, observed by distinct diet
compositions, durations and age of onset of diet intervention,
which can result in different metabolic profiles and severity of
obesity. In addition to the different models, different vascular
beds were utilized which confound the conclusion’s coalescence.
Overall, these findings demonstrate that mainly TRPV1 channels
in endothelial cells and perivascular sensory nerves are altered
under diabetic and obese conditions.

The Role of TRPV4 in the Vasculature
Under Diabetic and Obese Conditions
TRPV4 is expressed in the aorta (Gao et al., 2020), mesenteric
(Ma et al., 2013), carotid (Hartmannsgruber et al., 2007),
pulmonary (Martin et al., 2012), cerebral basilar (Han et al.,
2018), and renal (Soni et al., 2017) arteries, among others, and
it can be present in both VSMC (Martin et al., 2012; Soni et al.,
2017) and the endothelium (Marrelli et al., 2007; Ma et al.,
2013; Han et al., 2018). A broad range of stimuli can lead to
TRPV4 activation, including heat (>27◦C) (Güler et al., 2002;
Watanabe et al., 2002b), hypoosmotic conditions (Liedtke et al.,
2000; Strotmann et al., 2000; Alessandri-Haber et al., 2003), low
pH and citrate (Suzuki et al., 2003), 5,6- epoxyeicosatrienoic acid
(Watanabe et al., 2003), and 4-α-phorbol esters (Watanabe et al.,
2002a,b). TRPV4 is a nonselective cation channel, permeable to
Ca2+, Mg2+ and K+ (Voets et al., 2002), and it exhibits moderate
permeability to Ca2+ (PCa/PNa∼6) (Strotmann et al., 2000; Voets
et al., 2002; Watanabe et al., 2002a).

Moreover, there is evidence that TRPV4-mediated stimulation
of intermediate-conductance Ca2+-sensitive K+ channels (IKCa)
and/or small-conductance Ca2+-sensitive K+ channels (SKCa)
channels can promote vasodilation, likely via an EDHF pathway
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(Zhang et al., 2013; Han et al., 2018). For example, there
is a functional interaction between TRPV4 and the KCa2.3,
SKCa isoform, in endothelial cells (Sonkusare et al., 2012). This
association plays a key role in smooth muscle hyperpolarization
and relaxation (Ma et al., 2013; Lu et al., 2017; Huang et al.,
2019). Additionally, Ca2+ entry through endothelial TRPV4
channels can trigger NO-dependent vasodilation (Köhler et al.,
2006; Marziano et al., 2017).

TRPV4 channel expression appears to be altered in diabetic
conditions and has a significant impact on the regulation of
vascular tone. Ma et al. (2013) were the first to demonstrate
evidence of the physical interaction between TRPV4 and KCa2.3
in endothelial cells from the rat mesenteric artery. The expression
levels of TRPV4 and KCa2.3 were reduced and TRPV4-KCa2.3-
mediated relaxation was impaired in STZ-induced diabetic rats.
The authors proposed that the reduced TRPV4-KCa2.3 signaling
could be an underlying mechanism for EDHF dysfunction in
diabetic rats (Ma et al., 2013).

Similarly, protein expression of endothelial TRPV4 in the
retinal vasculature was reduced in STZ-induced diabetic rats
compared with age-matched controls. The authors speculated
that TRPV4 channel downregulation may contribute to impaired
endothelium-dependent relaxation and retinopathy (Monaghan
et al., 2015). Similarly, in db/db and STZ -induced diabetic
C57BLKS/J mice, mRNA and protein levels of TRPV4 were
significantly decreased in aortas, indicating that hyperglycemia
is a crucial factor for the diminished TRPV4 expression, and
impairs the endothelium-dependent vasodilation observed in
diabetic mice (Gao et al., 2020).

A recent report demonstrated that diet-induced obesity
(diets started at 6 weeks of age and continued until at
20 weeks; 60% of total kcal from fat) is associated with
impaired Ca2+ influx through TRPV4 channels and vasodilation
induced by muscarinic stimulation and GSK1016970A (TRPV4
agonist) in resistance mesenteric arteries from mice. Increased
activities of inducible nitric oxide synthase (iNOS) and
NOX1 enzymes at myoendothelial projections (MEPs) in obese
mice produced higher levels of NO and superoxide radicals,
resulting in augmented local peroxynitrite formation and
subsequent oxidation of the regulatory protein AKAP150, to
impair AKAP150-TRPV4 channel signaling at MEPs. Similarly,
vasodilation was also weakened in the splenius/temporalis
muscle arteries and peroxynitrite causes the impairment of
endothelial TRPV4 channel activity in arteries from obese
patients. Inhibition of iNOS or lowered peroxynitrite levels may
be a strategy to restore TRPV4 channel activity and vasodilation
in the obese condition (Ottolini et al., 2020).

In contrast, a HFD mouse model of obesity (diets initiated
at age 5 weeks and continued until at age 6 months; 60% of
total calories from fat), the vasodilator function induced by
muscarinic stimulation of the endothelium and the underlying
endothelial TRPV4 channel–mediated Ca2+ sparklet entry was
not affected in resistance mesenteric arteries from obese mice.
Vasodilator responses to GSK1016970A were similar between
the mice receiving LFD and HFD. Similarly, there was no
change in diameter of the pressure constricted arteries from
either HFD or LFD mice in response to TRPV4 inhibition

(HC067047). However, these obese animals exhibit Ca2+ spark–
BKCa dysfunction that can be associated to development of
obesity-related hypertension (Greenstein et al., 2020; Table 1).
These studies by Ottolini et al. (2020) and Greenstein et al. (2020)
have performed similar approaches, using third-order mesenteric
arteries pressurized to 80 mmHg, and internal diameter was
recorded in response to numerous treatments. As an alternative
to these contradicting findings, TRPV4 can play a compensatory
role aimed at restoring blood pressure in the study by Greenstein
et al. (2020) or additional variables such as the duration on
diet, genetic drift and discrepancies in the microbiome, can be
associated to the differences found in the TRPV4 channel activity.

Taken together, these reports reveal that the downregulated
TRPV4 channel expression is related to impaired vasorelaxation
in diabetes (Figures 2A,B). In animal models of obesity, studies
demonstrated divergent results (Figures 2A,C), Ottolini et al.
(2020) evidenced that reduced TRPV4 channels function can
contribute to obesity-induced hypertension, while contrarily,
a study by Greenstein et al. (2020) showed no alteration in
TRPV4 expression and/or activity, therefore obesity had no
influence on the endothelial muscarinic/TRPV4 vasodilator
pathway. Moreover, these HFD mouse models of obesity have
slight difference between duration of diets. Further studies are
clearly needed to confirm these findings.

The Potential Role of TRPML1 in the
Vasculature Under Diabetic and Obese
Conditions
TRPML is the most recently identified subfamily of TRP (Bargal
et al., 2000; Bassi et al., 2000; Sun et al., 2000), consisting of three
members, TRPML1, TRPML2, and TRPML3 (Venkatachalam
et al., 2006; see review of Samanta et al., 2018). TRPML1
channels are broadly distributed, located in the lung, heart,
skeletal muscle, placenta (Bassi et al., 2000), and VSMC (Thakore
et al., 2020), among others. TRPML2 is expressed in gliomas
(Morelli et al., 2016), lymphoid and myeloid tissues (Lindvall
et al., 2005; Samie et al., 2009), and TRPML3 is most abundant
in the cochlea, melanocytes in skin hair follicles (Xu et al., 2007),
vomeronasal and olfactory receptor neurons (Castiglioni et al.,
2011). Moreover, TRPML1 is the only TRPML member present
in smooth muscle cells from cerebral and mesenteric arteries
(Thakore et al., 2020).

TRPML1 channels are mainly localized to the membranes
of late endosomes and lysosomes (LELs) (Pryor et al., 2006;
Vergarajauregui and Puertollano, 2006; Dong et al., 2008), and it
is permeable to multiple ions including Ca2+, Na+, K+ (LaPlante
et al., 2002), and Fe2+ (Dong et al., 2008). Moreover, this
channel is transiently modulated by changes in cytosolic Ca2+

(LaPlante et al., 2002) and phosphatidylinositol 3,5-bisphosphate
[PI(3,5)P2] (Dong et al., 2010). TRPML1 channels participate in
some cell functions, including autophagy (Scotto Rosato et al.,
2019), exocytosis (LaPlante et al., 2006; Samie et al., 2013),
membrane trafficking (LaPlante et al., 2004) and H+ homeostasis
(Soyombo et al., 2006).

Zhang et al. (2006) showed that lysosomes act as a
crucial Ca2+ store and play a role in Ca2+ mobilization
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in coronary arterial smooth muscle cells and subsequently,
vasoconstriction of coronary arteries. In this way, the lysosomal
luminal concentration of Ca2+ is ∼0.5 mM, which is higher
than cytosolic Ca2+ at ∼100 nM (Christensen et al., 2002).
Additionally, NAADP can selectively provoke Ca2+ signals from
a lysosome-related Ca2+ store alone, which can subsequently
be augmented by calcium-induced calcium release (CICR)
from the sarcoplasmic reticulum/endoplasmic reticulum via the
ryanodine receptor (Kinnear et al., 2004). Moreover, TRPML1
can act as a NAADP-sensitive Ca2+ release channel and
mediate Ca2+ release in lysosomes from the liver in rats
(Zhang and Li, 2007) and from bovine coronary arterial muscle
(Zhang et al., 2009).

A recent study by Thakore et al. demonstrated that TRPML1
is closely associated with type 2 ryanodine receptors (RyR2),
inducing Ca2+ sparks in native arterial myocytes. Additionally,
TRPML1 channels, acting upstream of RyR2s, were crucial in
the spontaneous generation of Ca2+ sparks, leading to BKCa
channel activity that resulted in membrane hyperpolarization,
arterial myocyte relaxation, and vasodilation. Consequently,
mice deficient in TRPML1 (Mcoln1−/−) resulted in excessive
vasoconstriction and hypertension. The authors concluded
that under physiological conditions, TRPML1 channels initiate
Ca2+ sparks, thus diminishing myocyte contractility to regulate
vascular resistance and blood pressure (Thakore et al., 2020).
This work provides unpredicted results that support an
unconventional role for TRPML1 channels in arterial smooth
muscle cells and hypertension. In this way, we speculated that the
TRPML1 channel could have a potential role in the vasculature
under diabetic and obese conditions. Further studies are needed
to clarify whether TRPML1 activity and/or expression are altered

in the vasculature during cardiometabolic disorders, such as
obesity and diabetes, so far lacking in the scientific literature.

THE ROLE OF PERIVASCULAR ADIPOSE
TISSUE (PVAT) AND REACTIVE OXYGEN
SPECIES (ROS) TO THE VASCULAR
DYSFUNCTION

Perivascular adipose tissue is in close proximity with the
vasculature, and it surrounds most blood vessels, including
aortic (Azul et al., 2020), coronary (Payne et al., 2009), brachial
(Rittig et al., 2008) and mesenteric (Fésüs et al., 2007) arteries.
PVAT is considered an active endocrine organ, producing and
releasing many bioactive signaling molecules, such as: superoxide
(Gao et al., 2006), hydrogen peroxide (Gao et al., 2007), tumor
necrosis factor-α (TNF-α) (Virdis et al., 2015), leptin (Gálvez-
Prieto et al., 2012), adiponectin (Meijer et al., 2013), visfatin
(Wang et al., 2009), angiotensin (1–7) (Lee et al., 2009), and
exosomes (Zhao et al., 2019). Upon secretion into the circulation,
these molecules play an important role on vascular function,
modulating the vasodilation by endothelium-independent and
dependent pathways (Dubrovska et al., 2004; Salcedo et al., 2007;
Yamawaki et al., 2009, 2010). In obesity and diabetes, PVAT
dysfunction can induce vascular injury by mechanisms that
include raised levels of pro-inflammatory cytokines, enhanced
oxidative stress, pro-oxidant/antioxidant imbalance (Greenstein
et al., 2009; Ketonen et al., 2010; Gil-Ortega et al., 2014; Azul
et al., 2020), and a modification in the adipokine secretory profile
(Saxton et al., 2019).

FIGURE 3 | Flowchart showing the TRPs modulation in vascular responses under diabetic and obese conditions. TRPC, Transient receptor potential of canonical or
classical; TRPV1, Transient receptor potential of vanilloid type 1; TRPV4, Transient receptor potential of vanilloid type 4; TRPM2, Transient receptor potential of
melastatin type 2; NO, nitric oxide; EDHF, endothelium-derived hyperpolarizing factor; CGRP, Calcitonin gene-related peptide.
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In addition, ROS are generated as a by-product of the cellular
oxidative metabolism, and they are reactive molecules containing
oxygen such as hydrogen peroxide, superoxide, and hydroxyl
radical (Schieber and Chandel, 2014). In physiological levels,
ROS play an important role in the regulation of numerous
biological events, including proliferation (Arana et al., 2012),
and angiogenesis (Wang et al., 2020) whereas excessive ROS
(oxidative stress) are involved to several pathological conditions
such as obesity (da Costa et al., 2017), and diabetes (Coughlan
et al., 2009). As a result, oxidative stress can induce vascular
dysfunction, leading reduced NO bioavailability (Cho et al.,
2013), elevated peroxynitrite formation, eNOS uncoupling
(Gamez-Mendez et al., 2015), and VSMC proliferation (Zhou
et al., 2016).

Therefore, PVAT dysfunction and enhanced oxidative stress,
present in diabetes and obesity, contribute to vascular damage
(Greenstein et al., 2009; Ketonen et al., 2010; Gil-Ortega et al.,
2014; Azul et al., 2020). Highlighting that PVAT dysfunction can
be source of an abnormal generation of ROS (Ketonen et al., 2010;
Azul et al., 2020). However, the literature is scarce to report the
direct influences of products from PVAT on the TRP channels,
despite oxidative stress modifying the expression and/or activity
of the TRP channels. For example, increased oxidative stress
promotes overactivation of TRPM2 channel in diabetes (Lu et al.,
2014) and obesity (Sun et al., 2019). In contrast, peroxynitrite
causes the impairment of endothelial TRPV4 channel activity by
oxidation of the regulatory protein A-kinase anchoring protein
150 (AKAP150) (Ottolini et al., 2020).

In addition, levels of leptin are higher in obese individuals
than in lean ones, leptin can induce hypertension by enhancing
TRPM7 channel expression in the carotid body glomus cells
and increasing TRPM7 activity (Shin et al., 2019). Moreover,
leptin can stimulate TRPC channel, inducing vasoconstriction
in endothelium-denuded pulmonary artery and thoracic aorta
(Gomart et al., 2017). However, adipose-derived exosomes can
reduce the pulmonary barrier hyperpermeability by inhibiting
the TRPV4/Ca2+ pathway in HFD-induced obesity (Yu et al.,
2020). As well, adiponectin can inhibit the expression of TRPV1
at the central terminals, modulating thermal sensitivity in
physiological and neuropathic pain conditions (Sun et al., 2018).
Consequently, biologically active compounds secreted by PVAT
can modulate TRP channels. Furthermore, the secretory profile
of PVAT is altered by obesity and diabetes, this may contribute to
vascular dysfunction.

CONCLUSION

Robust evidence demonstrated that TRPC, TRPM and TRPV
channels are involved in pathophysiological responses in the
vasculature of animals with metabolic diseases (Figure 3).
These disease mechanisms consist of altered expression or
activation of TRP channels leading to impaired vasorelaxation,
endothelial hyperpermeability, vascular hypertrophy or elevated
contractility. In this context, TRP channels could be potential
targets for the development of novel therapies to treat
vascular dysfunction related to obesity and diabetes. However,
additional investigations are necessary to completely elucidate
the pathophysiological aspects of vascular TRP channels in
obesity and diabetes. Furthermore, clinical researches are
lacking in this area, so further clinical studies in this field
are required.

However, there does exist a heterogeneity among the obese
and diabetic animal models used in these studies. For instance,
the severity of the obesity and the metabolic alterations can vary
greatly between genetic versus diet-induced obesity. Moreover,
there are differences in relation to the duration and the type of
fat-diet consumed. In the same way, these studies demonstrated
animal models of type 1 and 2 diabetes with different stages of
diabetes. Nevertheless, it remains unclear whether the reported
findings, in determined animal models can be attributed to the
obese or diabetes state, regardless of the etiology.
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