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Abstract

This study assessed the interactions among IGF-1, AKT2, FOXO1, and FOXO3 variations

and the interactions of gene and physical activity on handgrip strength, arm muscle mass-

adjusted handgrip (armGrip), gait speed (GS), timed up and go (TUG), and leg press

strength (LPS). Nine single nucleotide polymorphisms (SNPs) containing three IGF-1 SNPs

(rs6214, rs5742692, and rs35767), two AKT2 SNPs (rs892119 and rs35817154), two

FOXO1 SNPs (rs17446593 and rs10507486), and two FOXO3 SNPs (rs9480865 and

rs2153960) were genotyped in 472 unrelated elders with a mean age of 73.8 years. We

observed significant interactions of IGF-1 SNP rs6214 and rs35767 with regular physical

activity on TUG and GS; and AKT2 SNP rs892119 and FOXO3 SNP rs9480865 with regular

physical activity on armGrip. Genotype GG of IGF-1 rs6214 and rs35767 in individuals with-

out regular physical activity had poor performance in TUG and GS, as well as GG of AKT2

rs892119 decreased armGrip in individuals without regular physical activity. After FDR

adjustment, no significant gene–gene interactions were found. A sedentary lifestyle may

increase the risk of impairing physical performance and regular physical activity is a remedy

for sarcopenia, even a little regular physical activity can overcome carrying some risk alleles

in this pathway.

Introduction

The global population rapidly ages, and the life expectancy of older people continuously

increases; the prevention or delay of age-associated mobility disability is an important public

health issue [1]. Aging, even in healthy elderly individuals, is accompanied by a progressive
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decline in muscle mass and physical performance [2, 3]. Sarcopenia is defined as age-related

loss of skeletal muscle mass, muscle strength, and physical performance [4–7] that is associated

with adverse health outcomes and affects quality of life [8]. The European Working Group on

Sarcopenia in Older People (EWGSOP) recommends that ‘physical performance should be

considered a measure of the severity of sarcopenia’ [5]. There are several measurement tools to

assess physical performance, such as handgrip strength, usual gait speed (GS), timed up and go

test (TUG), etc. [5, 8–10]. The diagnosis of sarcopenia in clinical practice starts with the mea-

surement of muscle strength, usually handgrip strength [5, 8]. Handgrip strength is a simple

measurement parameter used to assess the overall muscle strength of elderly people in clinical

settings [11]. It may serve as a predictor of health-related prognosis and is related to physical

function performance, disability, and mortality [3, 12]. Previous studies showed that the

change of muscle quality might be considered to precede the loss of muscle mass [13, 14], and

muscle quality might explain to be a more relevant concept to health than muscle mass [8]. To

assess the arm muscle quality, the arm muscle mass-adjusted handgrip (armGrip) was used in

this study. Furthermore, lower extremity strength is important in providing a stable base for

movement and performing activities of daily living. Lower extremity muscle strength, assessed

by leg press strength (LPS), is utilized to predict function performance in elders with mobility

disability [15]. LPS is a measure of bilateral leg extension exercise. Usual GS is the most fre-

quently used test and is also a useful screening tool to identify older adults at risk of hospitali-

zation, a decrease in functional ability and mortality [2, 3]. TUG is a parameter that can be

used to predict the risk of falling [16] and short-term mortality [17] in community-dwelling

elderly. The EWGSOP suggests using these two tests, GS and TUG, for assessment of physical

performance [5].

The IGF1–AKT–FOXO pathway plays an important role in aging [18–20]. Protein degrada-

tion is identified as a major determinant of muscle atrophy and regulated by a conserved path-

way composed of insulin-like growth factor-1 (IGF-1). Serine/threonine kinase (AKT) has a

major role in this pathway because it controls protein degradation by repressing the activation

of the transcription factor Forkhead box O (FOXO). Single nucleotide polymorphisms (SNPs)

may affect the expression of IGF-1, AKT, and FOXO. One prior study pointed out that SNP

rs35767 affects circulating IGF-1 levels, showing that white European adults without diabetes

who carried GG genotype of the rs35767 polymorphism, which is located in IGF-1 promoter

region, were associated with lower IGF-1 level compared with A allele carriers [21]. Individuals

carrying homozygous genotypes of IGF-1 SNPs (rs6214 and rs5742692) had significant higher

IGF-1 levels comparing to reference genotypes [22]. Low IGF-1 levels in older women are

associated with slow walking speed, poor muscle strength, and difficulty in performing mobil-

ity tasks [23]. The phosphatidylinositol-3-kinases (PI3K)/Akt pathway modulated by IGF-1

and insulin would control the muscle size [24]. AKT2 becomes genetically disrupted and

induces skeletal muscle atrophy in the mouse experiment [25]. Previous studies showed that

insulin sensitivity is linked to skeletal muscle mass and sarcopenia in human research [26–29]

or animal experiments [30]. It has been shown that the AKT2 SNP rs892119 results in the acti-

vation of AKT2 [31]. The variation of rs35817154, missense variant in AKT2 (R208K), has

been observed among individuals with severe insulin resistance [32]. Evidence has shown that

genetic variants (rs17446593 and rs10507486) in FOXO1 gene were associated with β-cell dys-

function [33] or type 2 diabetes [34]. In vivo transgenic and knockout models, the FOXO fam-

ily has emerged as the main regulator of muscle atrophy. FOXO1 and FOXO3 are atrophy-

related genes whose overexpression can reduce muscle mass [35]. Furthermore, SNP

rs2153960 in the FOXO3 gene is correlated with circulating IGF-1 concentration in the geno-

mewide meta-analysis [36]. Based on previous studies, brain activity has a significant role in

human aging and longevity [37]; FOXO3 gene has an association with longevity [38], and its
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SNP rs9480865 was found that this variant was associated with brain parenchymal volume

[39]. However, studies have yet to address how AKT2, FOXO1, and FOXO3 genetic variations

in this pathway affect the physical performance of the elderly.

Sarcopenia is a complex multifactorial condition. The onset and progression of sarcopenia

involves lack of physical activity, loss of neuromuscular function, altered endocrine function,

genetic influence, and poor diet nutritional status [4, 5, 24, 40–42]. Prior heritability-related

studies have shown that skeletal muscle traits have high heritability, such as muscle strength

ranging 30–85% and lean mass ranging 50–80% [43]. Furthermore, the IGF1–AKT–FOXO

signaling pathway plays an important role in sarcopenia [8, 18]. Dent et al. published evi-

dence-based clinical practice guidelines for sarcopenia and they pointed out that physical

activity is strongly recommended for the primary treatment of sarcopenia [44]. However, the

evidence for nutrition interventions is less consistent [44]. Therefore, exploring interactions

among genes within the IGF1–AKT–FOXO signaling pathway, as well as the interactions

between modifiable lifestyle factors, such as physical activity, and genetic factors are essential

for identifying the population at risk. We hypothesized IGF-1, AKT2, FOXO1, and FOXO3 var-

iants influence physical performance measures of handgrip strength, armGrip, TUG, GS, and

LPS in the elderly. Specifically, the present study investigated three IGF-1 SNPs (rs6214,

rs5742692, and rs35767), two AKT2 SNPs (rs892119 and rs35817154), two FOXO1 SNPs

(rs17446593 and rs10507486), and two FOXO3 SNPs (rs9480865 and rs2153960) to test

whether these variants interacted with each and with physical activity for physical performance

measures of handgrip strength, armGrip, TUG, GS, and LPS in a cross-sectional study involv-

ing community-dwelling elders in Taiwan.

Methods

Study subjects

This study consisted of 472 subjects (251 men and 221 women) aged 65 years or older (mean

age 74.7 and 72.8 years for men and women, respectively) and participated in Taichung Com-

munity Health Study for Elders (TCHS-E). The details of our study design and participant

recruitment were the same as those in our previously published paper [45, 46]. In brief, our

participants were recruited in a community-based cross-sectional study named TCHS-E. A

total of 3,997 elders aged� 65 years old were on the list of the sampling frame of eight LIs

(administrative neighborhoods) in the North District of Taichung City in June 2009. Among

them, 2,750 eligible elders were invited to participate in a physical check-up program, and

1,247 ineligible elders were excluded. There were a total of 1,347 elders agreed to participate in

TCHS-E study, but 475 of these elders were excluded because of missing data (n = 11) and

refusing DXA examination (n = 464). Out of 872 participants of TCHS-E, 480 unrelated elders

provided DNA were recruited as subjects. In this study, 472 elders were successfully geno-

typed. Each participant provided his/her written informed consent. This study was conducted

after obtaining approval from the Institutional Review Board of China Medical University

Hospital (DMR97-IRB-055) and all methods were performed in accordance with the relevant

guidelines and regulations.

Measurements

The participants completed a self-administered questionnaire with information on demo-

graphic and lifestyle characteristics, self-reported health status, and overall obesity measured

by body mass index (BMI) calculated as weight divided by height squared (kg/m2). Elders who

reported that they regularly engaged in leisure-time activities for at least 30 min once every

week and lasting at least 6 months were classified as having regular physical activity. Smoking
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status was categorized as non-smokers and smokers. Non-smokers never smoked or had

smoked less than 100 cigarettes during their lifetime; smokers currently or previously smoked

at least 100 cigarettes during their lifetime. Individuals who self-reported the characteristic of

alcohol drinking was classified into the group with this specific characteristic. Blood sample

was collected from each participant in the morning after a 12 h overnight fasting. These sam-

ples were analyzed within 4 h of collection.

Performance measures included handgrip strength, armGrip, TUG, GS, and LPS. Isometric

handgrip strength was assessed for each hand by using a dynamometer (TTM Dynamometer,

Tsutsumi, Tokyo, Japan). For each hand, measurements were repeated three times and their

average handgrip strength (kg) was calculated. The highest average value of the left or right

hand was used as the participant’s handgrip strength. ArmGrip (kg/kg) was determined by

dividing handgrip strength by arm muscle mass measured via dual energy X-ray absorptiome-

try system (GE-LUNAR DPX, Lunar Corporation, Madison, WI) [47, 48]. TUG (s) is a simple

timed measure that quantifies functional mobility. Participants were instructed to stand up

from a chair, walk 3 m, turn around, walk back, and sit down. Each participant performed

three trials, and the shortest time elapsed was used for data analysis. GS was measured over the

5-meter distance at the subjects’ usual pace, and the time spent was recorded. Gait speed (m/s)

was calculated by dividing the distance walked by the time spent in seconds. Each participant’s

submaximal leg press strength was measured by a leg press machine (AURA G3-S70, Matrix

Fitness System, USA). All of the elders were asked to push a weight or resistance away from

them by using their legs to evaluate their overall lower body strength from the knee joint to the

hip. Then, the LPS (%) was calculated by dividing the corresponding results by the weight of

the participant. The performance score was derived from combining armGrip, TUG, GS, and

LPS. For scoring of each performance measure, the gender-specific first, second, and third

quartiles of the 872 TCHS-E participants were used as cut-off points. Each performance indi-

cator was given 0 to 3 points based on these cut points, that is, 0 points indicated the worst per-

formance and 3 points were the best. Then, the four indicators were added up, and the total

performance score was between 0 and 12 points.

SNP selection and genotyping

Nine SNPs containing three IGF-1 SNPs (rs6214, rs5742692, and rs35767), two AKT2 SNPs

(rs892119 and rs35817154), two FOXO1 SNPs (rs17446593 and rs10507486), and two FOXO3
SNPs (rs9480865 and rs2153960) were selected for genotyping based on previous studies and

the HapMap dataset (CHB population). Genomic DNA was isolated from peripheral blood

leukocytes by using a commercially available kit (QIAamp DNA Blood Kit; Qiagen, Chats-

worth, CA, USA). The purified DNA concentration was determined with a ND-2000c spectro-

photometer (NanoDrop Technologies, Wilmington, DE, USA). All SNPs were genotyped with

an Illumina VeraCode GoldenGate genotyping assay (Illumina, San Diego, CA, USA). To

increase the success rate of genotyping, the risk of genotyping failure was evaluated in advance,

such as DNA quality. After genotyping, the overall call rate of these nine SNPs was 99.25%.

Statistical analysis

The demographic characteristics and health status of study subjects were examined. Data were

presented as the mean±standard deviation (SD) for continuous variables, or as a number and

percentage for categorical variables. Bivariate statistical methods (eg, two-sample t-test, Chi-

square test, one-way analysis of variance) were used to explore data features. Furthermore, we

evaluated the Hardy–Weinberg equilibrium (HWE) for each SNP using PLINK software. Pair-

wise Linkage disequilibrium (LD) among SNPs were quantified by correlation coefficient, r2,

PLOS ONE Genes and physical performance

PLOS ONE | https://doi.org/10.1371/journal.pone.0239530 September 28, 2020 4 / 15

https://doi.org/10.1371/journal.pone.0239530


using Haploview software. The linear regression analyses were used to evaluate the associa-

tions between physical performance measures and SNPs, under genetic models, including

genotypic, additive, dominant, and recessive models. The multivariate model was further

adjusted for age, sex, BMI, physical activity, smoking status, and alcohol drinking. Then gene–

gene or gene–physical activity interactions on the physical performance measures were

assessed by the multiple linear regression analyses. Then, stratified analysis and interaction

plots were presented for those analysis with significant interactions. The p-values using false

discovery rate (FDR) approach, a linear step up adjustment, was reported for gene–gene and

gene–physical activity by considering multiple-testing problems. These analyses were carried

out using Statistical Analysis System v9.4 (SAS Institute Inc., Cary, NC, USA), Haploview

(v4.2) [49] and PLINK (v1.07) (http://pngu.mgh.harvard.edu/purcell/plink) [50]. Level of sig-

nificance was set at two-sided p value<0.05.

Results

Basic characteristics of study subjects

The demographic baseline characteristics and health status of study subjects are summarized

in Table 1. The participants had a mean age of 73.8 years, and 46.8% of them were women. In

physical performance, handgrip strength, armGrip, TUG, GS, and LPS were significantly

lower in women than in men (P<0.05).

Genotype and allele frequencies in the four gene polymorphisms and their

association with handgrip strength, armGrip, TUG, GS, and LPS

Table 2 reveals the corresponding descriptive statistics of genotype and allele distributions and

physical performance based on various genotypes. Two SNPs at AKT2 rs35817154 and FOXO1
rs10507486 deviated from the HWE, which were excluded. TUG increased through the geno-

types of FOXO1 rs17446593 polymorphisms, and the number of minor alleles increased. LPS

in individuals carrying AG variant of FOXO3 rs2153960 also decreased compared with that in

individuals carrying the GG and AA genotypes (P<0.05). In this study, the modest or weak

degree of LD between the analyzed polymorphisms was detected (r2 = 0.48 between rs5742692

and rs35767; r2 = 0.41 between rs6214 and rs5742692; r2 = 0.16 between rs6214 and rs35767;

and r2 = 0.12 between rs9480865 and rs2153960).

Effect of variation in IGF-1, AKT2, FOXO1, and FOXO3 on handgrip

strength, armGrip, TUG, GS, and LPS

Genotypic and recessive models of handgrip strength, armGrip, TUG, GS, and LPS adjusted

for age, gender, BMI, physical activity, smoking, and alcohol intake (adjusted model) are

shown in Table 3. The genotype and recessive models showed that risk allele G at FOXO1
rs17446593 was associated with a higher mean value of TUG (β: 4.07 and β: 4.12, respectively).

In the additive and dominant model, differences in the physical performance in four gene

polymorphisms were not significant.

Gene–gene and gene–physical activity interactions on armGrip, TUG, LPS,

and GS

Before performing FDR adjusted, we found the following significant gene–gene interactions

on physical performances: the interactions between IGF-1 SNP rs6214, FOXO1 SNP

rs17446593, and FOXO3 SNP rs2153960 for TUG (P = 0.005 and 0.032, respectively); the inter-

actions of IGF-1 SNP rs5742692 with FOXO3 SNP rs9480865 on LPS (P = 0.018) and with
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rs2153960 on armGrip (P = 0.012); similarly, the interaction between IGF-1 SNP rs35767 and

FOXO3 SNP rs2153960 on armGrip (P = 0.035). However, these significant interactions

became borderline significant or insignificant after FDR adjustment.

The significant gene–physical activity interactions after FDR adjustment are summarized in

Table 4. For TUG and GS, the interactions of IGF-1 SNP rs6214 (P = 0.045 and 0.038, respec-

tively) and rs35767 (P = 0.045 and 0.038, respectively) with regular physical activity were sig-

nificant. The interactions between AKT2 SNP rs892119 and FOXO3 SNP rs9480865 with

regular physical activity on armGrip were also significant (P = 0.011 and 0.040, respectively).

For the gene–physical activity interaction, among elders with no regular physical activity, the

A genotype carriers at AKT2 rs892119 had higher armGrip measures than those with the GG

genotype (0.94, 95% CI: 0.34, 1.55) (Fig 1A). Among elders with no regular physical activity,

the A genotype carriers at IGF-1 rs6214 and rs35767 had lower TUG measures than those with

the GG genotype (−2.17, 95% CI: −4.00, −0.34; −2.40, 95% CI: −4.27, −0.54, respectively) (Fig

1B). The GS of inactive elderly carrying AA/AG genotype of IGF-1 rs6214 or rs35767 was

higher than that of elders with GG genotype (0.10, 95% CI: 0.01, 0.18; 0.09, 95% CI: 0.01, 0.17,

respectively) (Fig 1C).

Discussion

The IGF1–AKT–FOXO pathway may play an important role in aging and incident functional

disability [18]. Physical performance has also been correlated with physical activity levels and

Table 1. Demographic characteristics and health status of study subjects.

Characteristic All Women Men p-value �

(n = 472) (n = 221) (n = 251)

Gender, n (%) 221 (46.8%) 251 (53.2%) n.a.

Age (years) 73.80 ± 6.07 72.78 ± 5.46 74.7 ± 6.45 0.001

BMI (kg/m2) 23.51 ± 3.24 23.48 ± 3.33 23.54 ± 3.18 0.523

Physical performance

Handgrip strength (kg) 27.55 ± 8.53 20.89 ± 5.41 33.42 ± 6.14 <0.001

armGrip (kg/kg) 6.35 ± 1.25 6.07 ± 1.45 6.59 ± 0.99 <0.001

Timed up and go test (s) 7.94 ± 4.77 7.99 ± 4.79 7.90 ± 4.76 0.036

Gait speed (m/s) 0.85 ± 0.22 0.84 ± 0.21 0.87 ± 0.23 0.039

Leg press strength (%) 93.93 ± 38.10 82.64 ± 36.01 103.65 ± 37.22 <0.001

Performance score 6.67 ± 3.23 6.57 ± 3.27 6.77 ± 3.18 0.532

Health indicators

Regular physical activity (%) 376 (79.66) 167 (75.57) 209 (83.27) 0.038

Alcohol drinking (%) 94 (19.92) 14 (6.33) 80 (31.87) <0.001

Smoker (%) 100 (21.19) 7 (3.17) 93 (37.05) <0.001

Disease history

Hypertension 221 (47.42) 98 (45.16) 123 (49.40) 0.361

Diabetes 65 (13.92) 21 (9.55) 44 (17.81) 0.010

Hyperlipidemia 118 (25.65) 70 (32.11) 48 (19.83) 0.003

CVA 21 (4.56) 10 (4.59) 11 (4.53) 0.975

Cancer 25 (5.53) 13 (6.10) 12 (5.02) 0.615

Data were presented as mean±SD for continuous variables or n (%) for categorical variables.

armGrip: arms muscle mass-adjusted handgrip; BMI: body mass index; CVA: cerebral vascular accident.

�: Two-sample t test for continuous variables or chi-square test for categorical variables.

n.a.: not applicable.

https://doi.org/10.1371/journal.pone.0239530.t001
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functional decline risks in the elderly population [2, 3, 15, 16]. This study is the first to report

the correlation between the variations in IGF-1, AKT2, FOXO1, and FOXO3 and the physical

performance in community-dwelling elderly subjects in Taiwan. We investigated the associa-

tions of physical performance with gene–gene interactions and explored the interaction effect

of gene and physical activity. For gene–physical activity interaction, physically inactive elders

with the AA/AG genotype of AKT2 rs892119 had high adjusted mean differences in armGrip.

Table 2. Genotype and allele distributions of study subjects and their handgrip strength, armGrip, TUG, GS, LPS, and performance score distributions based on

genotype statusa.

SNP Genotype or allele n

(%)

Handgrip strength (kg) armGrip (kg/kg) TUG (s) GS (m/s) LPS (%) Performance score

IGF-1
rs6214 G G 125 (26.5) 26.99 ± 8.24 6.43 ± 1.27 8.68 ± 6.20 0.82 ± 0.25 90.21 ± 35.80 6.44 ± 3.43

A G 235 (49.8) 27.58 ± 8.78 6.27 ± 1.27 7.75 ± 4.42 0.86 ± 0.21 95.35 ± 38.11 6.69 ± 3.19

A A 112 (23.7) 28.12 ± 8.37 6.41 ± 1.21 7.48 ± 3.31 0.88 ± 0.19 95.08 ± 40.53 6.86 ± 3.08

A� 459 (48.6)

rs5742692 A A 241 (51.1) 27.43 ± 8.63 6.34 ± 1.28 8.28 ± 5.49 0.84 ± 0.23 92.17 ± 36.04 6.44 ± 3.35

A G 188 (39.8) 27.85 ± 8.53 6.33 ± 1.18 7.69 ± 4.15 0.87 ± 0.21 96.80 ± 40.24 6.82 ± 3.13

G G 41 (8.7) 27.14 ± 8.27 6.46 ± 1.44 7.19 ± 2.09 0.88 ± 0.19 90.84 ± 38.95 7.23 ± 2.91

G� 270 (28.7)

rs35767 G G 184 (39.0) 27.80 ± 8.37 6.38 ± 1.19 8.02 ± 5.16 0.86 ± 0.23 95.01 ± 36.92 6.76 ± 3.35

A G 219 (46.4) 27.33 ± 8.95 6.25 ± 1.35 7.88 ± 4.49 0.84 ± 0.21 94.75 ± 39.74 6.46 ± 3.20

A A 55 (11.7) 27.59 ± 7.35 6.55 ± 1.14 7.92 ± 4.17 0.87 ± 0.19 88.64 ± 36.21 6.98 ± 2.92

A� 329 (35.9)

AKT2
rs892119 G G 362 (76.7) 27.34 ± 8.63 6.30 ± 1.30 8.06 ± 5.18 0.86 ± 0.23 93.69 ± 38.43 6.61 ± 3.27

A G 94 (19.9) 27.96 ± 7.78 6.54 ± 1.10 7.36 ± 2.40 0.85 ± 0.18 95.08 ± 36.91 6.84 ± 3.10

A A 10 (2.1) 29.29 ± 10.66 6.39 ± 0.87 8.27 ± 4.82 0.83 ± 0.22 87.64 ± 38.00 6.60 ± 3.31

A� 114 (12.2)

FOXO1
rs17446593 A A 372 (78.8) 27.64 ± 8.66 6.32 ± 1.30 7.78 ± 4.20 0.86 ± 0.22 94.27 ± 39.14 6.76 ± 3.27

A G 93 (19.7) 26.99 ± 7.93 6.44 ± 1.10 8.19 ± 5.19 0.83 ± 0.21 93.14 ± 33.56 6.43 ± 3.06

G G 7 (1.5) 30.20 ± 9.92 6.56 ± 0.54 12.94 ± 15.44b, c 0.75 ± 0.28 84.69 ± 45.78 4.86 ± 2.48

G� 107 (11.3)

FOXO3
rs9480865 A A 418 (88.6) 27.63 ± 8.69 6.36 ± 1.31 7.91 ± 4.51 0.85 ± 0.22 94.46 ± 38.64 6.71 ± 3.26

A G 52 (11.0) 27.25 ± 7.22 6.23 ± 0.72 8.27 ± 6.57 0.86 ± 0.22 91.48 ± 33.45 6.29 ± 3.02

G G 2 (0.4) 18.64 ± 1.51 5.98 ± 0.05 6.29 ± 0.17 0.96 ± 0.02 51.95 ± 4.60 7.00 ± 0.00

G� 56 (5.9)

rs2153960 A A 232 (49.2) 28.36 ± 8.95 6.43 ± 1.28 7.77 ± 4.14 0.86 ± 0.22 98.59 ± 37.96 6.77 ± 3.22

A G 196 (41.5) 26.29 ± 8.04 6.21 ± 1.27 8.37 ± 5.80 0.84 ± 0.23 88.92 ± 37.02b 6.51 ± 3.23

G G 42 (8.9) 29.30 ± 7.85 6.57 ± 0.95 6.85 ± 1.50 0.91 ± 0.18 93.79 ± 41.52 6.98 ± 3.27

G� 280 (29.8)

Data were presented as n (%) for genotypes and alleles or mean±SD for handgrip strength, armGrip, TUG, GS, LPS, and performance score.

�: Minor allele.
a: All p-values > 0.05 from Hardy–Weinberg equilibrium test.
b: p-value < 0.017 for comparing with AA genotype using Bonferroni test.
c: p-value < 0.017 for comparing with AG genotype using Bonferroni test.

https://doi.org/10.1371/journal.pone.0239530.t002
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Table 3. Comparison of handgrip strength, armGrip, TUG, GS, and LPS among the genotype and recessive models.

SNP Genotype or minor

allele

Handgrip strength (kg) armGrip (kg/kg) TUG (s) GS (m/s) LPS (%)

Crude

β (SE) a
Adjusted

β (SE) a,b
Crude

β (SE) a
Adjusted

β (SE) a,b
Crude

β (SE) a
Adjusted

β (SE) a,b
Crude

β (SE) a
Adjusted

β (SE) a,b
Crude

β (SE) a
Adjusted

β (SE) a,b

Genotype modelc

IGF-1
rs6214 A G 0.59 (0.95) −0.02

(0.53)

−0.16

(0.14)

−0.21

(0.13)

−0.93

(0.53)

−0.26

(0.48)

0.04

(0.02)

0.01 (0.02) 5.14 (4.44) 1.20 (3.90)

A A 1.13 (1.11) 0.42 (0.62) −0.03

(0.16)

−0.08

(0.15)

−1.21

(0.62)

−0.62

(0.55)

0.06

(0.03)�
0.03 (0.02) 4.87 (5.19) 1.42 (4.51)

rs5742692 A G 0.42 (0.83) 0.42 (0.46) −0.01

(0.12)

−0.04

(0.12)

−0.59

(0.47)

−0.23

(0.42)

0.03

(0.02)

0.01 (0.02) 4.63 (3.90) 3.90 (3.37)

G G −0.29

(1.45)

−0.13

(0.80)

0.12

(0.21)

0.05 (0.20) −1.09

(0.82)

−0.63

(0.72)

0.04

(0.04)

0.02 (0.03) −1.33 (6.55) −0.90 (5.66)

rs35767 A G −0.47

(0.86)

0.56 (0.48) −0.12

(0.13)

−0.08

(0.12)

−0.14

(0.48)

−0.40

(0.43)

−0.02

(0.02)

0.00 (0.02) −0.26 (4.03) 2.87 (3.53)

A A −0.21

(1.31)

0.89 (0.73) 0.18

(0.19)

0.19 (0.18) −0.10

(0.73)

−0.36

(0.65)

0.01

(0.03)

0.02 (0.03) −6.37 (6.02) −1.44 (5.27)

AKT2
rs892119 A G 0.61 (0.99) 0.22 (0.55) 0.24

(0.15)

0.24 (0.14) −0.70

(0.56)

−0.46

(0.49)

0.00

(0.03)

−0.01

(0.02)

1.39 (4.64) 0.67 (4.04)

A A 1.95 (2.73) 0.90 (1.51) 0.09

(0.40)

0.12 (0.38) 0.21

(1.52)

−0.53

(1.35)

−0.02

(0.07)

0.01 (0.06) −6.06

(12.24)

−2.7 (10.64)

FOXO1
rs17446593 A G −0.65

(0.99)

−0.07

(0.55)

0.12

(0.15)

0.21 (0.14) 0.42

(0.55)

−0.21

(0.49)

−0.03

(0.03)

0.00 (0.02) −1.13 (4.63) 2.01 (4.01)

G G 2.56 (3.26) 1.25 (1.80) 0.24

(0.48)

0.29 (0.45) 5.16

(1.81)�
4.07

(1.59)�
−0.11

(0.08)

−0.07

(0.07)

−9.58 (17.2) −17.80

(14.93)

FOXO3
rs9480865 A G −0.38

(1.25)

−0.30

(0.70)

−0.13

(0.18)

−0.03

(0.17)

0.36

(0.71)

0.06 (0.62) 0.00

(0.03)

0.01 (0.03) −2.98 (5.89) −2.29 (5.11)

G G −9.00

(6.05)

−3.28

(3.35)

−0.38

(0.89)

−0.4 (0.84) −1.62

(3.38)

−0.16

(2.97)

0.10

(0.16)

0.05 (0.13) −42.51

(26.99)

−36.33

(23.38)

rs2153960 A G −2.06

(0.83)�
−0.50

(0.46)

−0.22

(0.12)

−0.11

(0.12)

0.60

(0.47)

0.07 (0.42) −0.02

(0.02)

0.01 (0.02) −9.67

(3.88)�
−4.07 (3.40)

G G 0.94 (1.42) 0.02 (0.79) 0.14

(0.21)

0.09 (0.20) −0.92

(0.80)

−0.83

(0.70)

0.05

(0.04)

0.04 (0.03) −4.80 (6.48) −5.69 (5.64)

Recessive model

IGF-1
rs6214 A 0.75 (0.92) 0.43 (0.51) 0.08

(0.14)

0.06 (0.13) −0.61

(0.52)

−0.45

(0.46)

0.04

(0.02)

0.02 (0.02) 1.52 (4.31) 0.64 (3.73)

rs5742692 G −0.47

(1.40)

−0.32

(0.77)

0.13

(0.21)

0.07 (0.19) −0.83

(0.79)

−0.53

(0.70)

0.03

(0.04)

0.02 (0.03) −3.38 (6.32) −2.65 (5.46)

rs35767 A 0.04 (1.23) 0.58 (0.69) 0.24

(0.18)

0.24 (0.17) −0.02

(0.68)

−0.14

(0.61)

0.02

(0.03)

0.02 (0.03) −6.24 (5.61) −2.99 (4.91)

AKT2
rs892119 A 1.82 (2.72) 0.85 (1.51) 0.04

(0.40)

0.08 (0.38) 0.35

(1.52)

−0.44

(1.34)

−0.02

(0.07)

0.01 (0.06) −6.34

(12.19)

−2.83

(10.60)

FOXO1
rs17446593 G 2.69 (3.25) 1.26 (1.80) 0.22

(0.48)

0.25 (0.45) 5.08

(1.80)�
4.12

(1.58)�
−0.11

(0.08)

−0.07

(0.07)

−9.35

(17.15)

−18.17

(14.9)

FOXO3

(Continued)
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Similarly, inactive individuals carrying the AA/AG genotype of IGF-1 rs6214 or rs35767 had

low adjusted mean differences in TUG and a high GS.

The minor allele frequencies (MAFs) of the SNPs in our subjects were distributed similarly

to those of the Han Chinese in China (CHB) (data available from the International HapMap

Project, http://hapmap.ncbi.nlm.nih.gov; Data Rel 27 Phase II+III, Feb 09). Our study also

analyzed the pairwise relation among seven variants by using the genotypic data from 472

unrelated elders. LD between SNPs with moderate allelic correlation was observed between

IGF-1 rs5742692 and rs35767 variants (r2 = 0.48), and weak LD existed between FOXO3
rs9480865 and rs2153960 (r2 = 0.12).

Two common SNPs in IGF-1 (rs35767 and rs972936) can affect the circulating IGF-1 level

[22, 51]. IGF-1 concentration progressively decreases with age [52]. For example, circulating

IGF-1 levels decrease with age at a rate of 1.7 ng/mL per year in individuals older than 50 years

[53]. Low IGF-1 levels in older women are associated with poor muscle strength, slow walking

speed, and difficulty in performing mobility tasks [23]. Our previous study reported elders car-

rying G allele of rs6214 on IGF-1 are significantly correlated with lower serum IGF-1 levels

and serum IGF-1 level of the low appendicular skeletal muscle mass index (ASMI) group is sig-

nificantly lower than that of the normal ASMI group [54]. Alfred et al. [55] reported SNP

rs35767 of IGF-1 is not correlated with physical performance, and this observation is consis-

tent with our findings, which revealed the main effects of three common genetic variants

(rs6214, rs5742692, and rs35767 SNPs) of IGF-1 were unrelated to physical performance of

elderly persons.

A previous study identified the main effect of IGF-1 (SNP rs35767) on endurance perfor-

mance in athletes [56]. Because this SNP rs35767 is located in the promoter region of the

Table 3. (Continued)

SNP Genotype or minor

allele

Handgrip strength (kg) armGrip (kg/kg) TUG (s) GS (m/s) LPS (%)

Crude

β (SE) a
Adjusted

β (SE) a,b
Crude

β (SE) a
Adjusted

β (SE) a,b
Crude

β (SE) a
Adjusted

β (SE) a,b
Crude

β (SE) a
Adjusted

β (SE) a,b
Crude

β (SE) a
Adjusted

β (SE) a,b

rs9480865 G −8.96

(6.04)

−3.25

(3.35)

−0.37

(0.89)

−0.40

(0.84)

−1.66

(3.38)

−0.17

(2.97)

0.10

(0.16)

0.05 (0.13) −42.18

(26.96)

−36.11

(23.35)

rs2153960 G 1.89 (1.38) 0.24 (0.77) 0.24

(0.20)

0.14 (0.19) −1.20

(0.77)

−0.86

(0.68)

0.06

(0.04)

0.04 (0.03) −0.33 (6.27) −3.87 (5.44)

a: β is estimated coefficient of regression model and SE is standard error.
b: Adjustment for age, sex, BMI, physical activity, smoking status, and alcohol drinking.
c: Using major/major genotype as reference genotype in genotype model.

�: p-value < 0.05.

https://doi.org/10.1371/journal.pone.0239530.t003

Table 4. Significant gene–physical activity interactions on armGrip, TUG, and GS.

Gene SNP P for interactiona

armGrip TUG GS

IGF-1 rs6214 0.045 0.038

IGF-1 rs35767 0.045 0.038

AKT2 rs892119 0.011

FOXO3 rs9480865 0.040

a: FDR p-value. Additionally adjustment of age, sex, BMI, smoking status, and alcohol drinking.

https://doi.org/10.1371/journal.pone.0239530.t004
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IGF-1 gene, it may influence the gene expression of IGF-1, and then affect physical perfor-

mance. Additionally, another study pointed out that muscle strength was influenced by the

polymorphisms in the promoter region of IGF-1 after strength training in older adults [57].

These two prior studies demonstrated the main effect of IGF-1 on physical performance

and our study provided further evidence that physical performances of the elderly were

affected by the interaction between polymorphism of IGF-1 and regular physical activity.

The inactive elders who carried the GG genotype of rs6214 or rs35767 had worse TUG and

GS. On the contrary, among the elderly with regular physical activity habits, no matter what

genotypes they carried, there were no significant differences in their physical performances.

Therefore, exercise programs should target the elderly to develop a habit of regular physical

activity, especially those with the GG genotype of rs6214 or rs35767 of IGF-1 to prevent

poor physical performance.

AKT2 is one of three isoforms of AKTs (AKT1, AKT2, and AKT3) [58]. In a mouse experi-

ment, AKT has been genetically disrupted express growth defects [59], and AKT2 is disrupted

suffer skeletal muscle atrophy [60]. However, our study indicated no association between

SNPs in AKT2 and physical performance was observed but SNPs in AKT2 interacted with

physical activity in the elderly.

Mammalian skeletal muscle cells contain three isoforms of the FOXO family, namely,

FOXO1, FOXO3, and FOXO4 [61]. Transgenic expression of FOXO1 in skeletal muscle mass

causes a marked decrease in muscle mass and fiber atrophy in transgenic mice [35]. FOXO3
promotes atrophy-related gene expression and muscle atrophy in vivo. We found that the risk

allele G at FOXO1 rs17446593 is associated with an increased risk of slow TUG among the

elderly. In terms of armGrip, although the interaction of FOXO3 rs9480865 and physical activ-

ity was significant, it turned into non-significant in the stratification analysis which was strati-

fied by physical activity. This possible explanation is our sample size was not large enough

because FOXO3 rs9480865was borderline significant (P = 0.0537, Fig 1(A)) among elders with

no regular physical activity.

Our study has two potential limitations. First, our findings should be carefully interpreted

because of the relatively small sample size. The number of individuals who underwent physical

performance measurements might be too small to provide sufficient statistical power for strati-

fied analysis. However, significant gene–physical activity interactions were detected even with

a small sample and limited power. Future research to examine this issue using a larger sample

would provide more precise estimates that could help lead to firmer conclusions regarding the

role of interactions among IGF-1, AKT2, FOXO1, and FOXO3 variations and between genes

and physical activities on physical performance. Study samples recruited from a well-defined

geographical area could improve the representativeness of older people. Second, we searched

for candidate variants in relevant literature to assess their effects. Our observed effect might be

due to high LD with a true susceptibility allele. Future studies may involve the sequencing of

these genes to further answer these questions.

Conclusion

This study presented evidence supporting the interactive effects of IGF-1, AKT2, and FOXO3
with physical inactivity on poor physical performance, suggesting that physical activity might

modulate the effects of genotypes on physical performance. These findings could reveal the

genetic mechanisms underlying physical performance. A sedentary lifestyle may increase the

risk of impairing physical performance and regular physical activity is a remedy for sarcopenia,

even a little regular physical activity can overcome carrying some risk alleles in this pathway.
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