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Transfer RNAs (tRNAs) are abundantly expressed, small non-coding RNAs that have long
been recognized as essential components of the protein translation machinery. The tRNA-
derived small RNAs (tsRNAs), including tRNA halves (tiRNAs), and tRNA fragments (tRFs),
were unexpectedly discovered and have been implicated in a variety of important
biological functions such as cell proliferation, cell differentiation, and apoptosis.
Mechanistically, tsRNAs regulate mRNA destabilization and translation, as well as retro-
element reverse transcriptional and post-transcriptional processes. Emerging evidence
has shown that tsRNAs are expressed in the heart, and their expression can be induced
by pathological stress, such as hypertrophy. Interestingly, cardiac pathophysiological
conditions, such as oxidative stress, aging, and metabolic disorders can be viewed as
inducers of tsRNA biogenesis, which further highlights the potential involvement of
tsRNAs in these conditions. There is increasing enthusiasm for investigating the
molecular and biological functions of tsRNAs in the heart and their role in
cardiovascular disease. It is anticipated that this new class of small non-coding RNAs
will offer new perspectives in understanding disease mechanisms and may provide new
therapeutic targets to treat cardiovascular disease.

Keywords: tRNA-derived small RNAs (tsRNAs), tRNA halves, tRNA fragments, heart, cardiac hypertrophy,
mitochondria, non-coding RNAs, cardiovascular disease
INTRODUCTION

Small noncoding RNA (sncRNA) usually refers to RNA molecules less than 200 nucleotides (nt) in
length, which are transcribed from DNA, but not translated into protein. SncRNAs include but are
not limited to microRNAs (miRNAs), endogenous short interfering RNAs (siRNAs), small nuclear
RNAs (snRNAs), small nucleolar RNAs (snoRNAs), piwi interacting RNAs (piRNAs), ribosomal
RNA derived fragments (rRFs), transfer RNAs (tRNAs), and their derived small RNAs (tsRNAs)
(Mattick and Makunin, 2006; Kirchner and Ignatova, 2015; Wei et al., 2017; Lambert et al., 2019).
With the advance of high-throughput RNA sequencing (Giraldez et al., 2018; Liu et al., 2019), new
classes of sncRNAs are being discovered and studied.

Different sncRNAs exert diverse but specific functions in cells. For example, miRNAs and siRNAs
regulate gene expression by tuning mRNA stability and translational efficiency (Valencia-Sanchez et al.,
2006). In addition, snRNAs promote proteome diversity by regulating pre-mRNA splicing (Valadkhan,
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https://www.frontiersin.org/articles/10.3389/fphar.2020.572941/full
https://www.frontiersin.org/articles/10.3389/fphar.2020.572941/full
https://www.frontiersin.org/articles/10.3389/fphar.2020.572941/full
https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:Da-Zhi.Wang@childrens.harvard.edu
https://doi.org/10.3389/fphar.2020.572941
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2020.572941
https://www.frontiersin.org/journals/pharmacology
http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2020.572941&domain=pdf&date_stamp=2020-09-17


Cao et al. tsRNAs in Cardiac Hypertrophy
2005), snoRNAs modify rRNAs, snRNAs, and even mRNAs with
2′-O-methylated nucleotides (Kiss, 2002), and piRNAs contribute
to transposon silencing (Ozata et al., 2019). Studies have also
uncovered multiple molecular pathways and functions related to a
single type of sncRNAs (Kiss, 2002; Pillai, 2005; Rojas-Rios and
Simonelig, 2018). Consequently, it is conceivable that new
mechanisms and functions of sncRNAs remain to be discovered.

The important and various molecular functions of sncRNAs in
cells make them vital regulators in both physiological and
pathological conditions, such as during development (Mendell,
2008; Chen and Wang, 2012; Rojas-Rios and Simonelig, 2018),
cancer progression (Ling et al., 2013; Peng and Croce, 2016;
Romano et al., 2017), neurodegenerative disease (Rege et al., 2013;
Watson et al., 2019), and cardiovascular disease (Romaine et al.,
2015; Zhou et al., 2018). Among sncRNAs, tRNA-derived small
RNAs (tsRNAs) have gained considerable attention as these
molecules have various subtypes that are generated by different
mechanisms and exert a variety of critical functions in cells.
Moreover, they are also implicated in development and disease.
As tsRNAs are expressed in the heart and participate in the function
of this organ, we will focus on their biogenesis and function, and we
will discuss potential research opportunities to study the role of
tsRNAs in the heart.
Frontiers in Pharmacology | www.frontiersin.org 2
BIOGENESIS AND EXPRESSION OF
NUCLEAR AND MITOCHONDRIAL
ENCODED TRANSFER RNAs
In eukaryotic cells, both the nucleus and mitochondria encode
tRNA genes, producing two types of tRNAs—cytoplasmic
tRNAs and mitochondrial tRNAs (mt-tRNAs). There are more
than 500 tRNA genes either identified or predicted to exist in
humans (Chan and Lowe, 2009; Chan and Lowe, 2016). About
half of them are verified to be actively expressed genes
(Schimmel, 2018), which are transcribed to 51 isoacceptor
tRNA types and decode to 61 codons for translation (Mahlab
et al., 2012; Chan and Lowe, 2016). Therefore, some codons are
derived from multiple tRNA genes in the human genome. In
contrast, mt-tRNAs are transcribed from only 22 mt-tRNA genes
in the mitochondrial genome. These mt-tRNA genes play critical
roles in assisting translation of mitochondrial proteins with less
redundancy. Mutations in mt-tRNAs have also been implicated
as important components in cardiovascular diseases such as
coronary heart disease (Jia et al., 2013; Jia et al., 2019),
cardiomyopathy (Taniike et al., 1992; Casali et al., 1995;
Arbustini et al., 1998; Marin-Garcia et al., 2001; Hsu et al.,
2008), and hypertension (Liu et al., 2009; Wang et al., 2011; Jiang
FIGURE 1 | The biogenesis of human nuclear and mitochondrial encoded tRNAs. Pre-tRNAs can be transcribed by Pol III in the nucleus or by POLRMT in
mitochondria. The pre-tRNAs have 5’-leader and 3’-trailer sequences, which are trimmed by RNase P and RNase Z, respectively. A minority of nuclear pre-tRNAs
have introns, which are spliced by the TSEN complex. A single “CCA” sequence is then added to all trailer trimmed 3’-ends of human tRNAs by the TRNT1 protein.
Processed nuclear tRNAs are transported to the cytoplasm, while mitochondrial tRNAs predominantly remain in mitochondria.
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et al., 2016). It is worth noting that cytoplasmic tRNAs can be
imported to mitochondria, which suggests that they may also
play essential roles in mitochondrial biology and disease (Rubio
et al., 2008; Mercer et al., 2011).

Human nuclear tRNA genes are initially transcribed by RNA
polymerase III (RNA Pol III) as pre-tRNAs, which contain 5’-
leader and 3’-trailer sequences (Phizicky and Hopper, 2010). The
5’-leader and 3’-trailer are trimmed by RNase P (Frank and Pace,
1998) and RNase Z (Maraia and Lamichhane, 2011), respectively
(Figure 1). Following that, a single “CCA” sequence is added to
all trailer trimmed 3’-ends of human tRNAs by tRNA nucleotidyl
transferase (TRNT1) (Anderson and Ivanov, 2014). A minority
of human pre-tRNAs have intron sequences, which are spliced
by a nuclear tRNA splicing endonuclease (TSEN) during tRNA
processing (Anderson and Ivanov, 2014). TSEN cleaves a pre-
tRNA containing intron into three parts: a 5’-exon with a 2’-3’-
cyclic phosphate at its 3’ end, a 3’-exon with a 5’-hydroxyl group
(5’-OH) at its 5’-end, and the excised intron (Anderson and
Ivanov, 2014). After the cleavage, the 5’-exon and 3’-exon are
ligated to become a mature tRNA before being transported to the
cytoplasm. In contrast, mitochondrial tRNA genes are
transcribed by mitochondrial RNA polymerase (POLRMT)
along with mitochondrial rRNA and mRNA genes in a long
mitochondrial polycistronic DNA template (Suzuki et al., 2011).
The mt-tRNA transcripts are then cleaved from rRNA and
mRNA transcripts by mitochondrial RNA-processing enzymes
according to the mt-tRNA “punctuation” model (Ojala et al.,
1981; Rossmanith et al., 1995; Barchiesi and Vascotto, 2019).
Similar to cytoplasmic pre-tRNAs, mitochondrial pre-tRNAs
require RNase P and ELAC2 (mitochondrial RNase Z) to
remove the 5’-leader and 3’-trailer, respectively (Rossmanith
et al., 1995; Brzezniak et al., 2011; Suzuki et al., 2011; Haack
et al., 2013; Siira et al., 2018). Finally, a “CCA” sequence is
attached to the 3’ terminus of mt-tRNA by a mitochondrial
TRNT1 to complete mt-tRNA maturation (Suzuki et al., 2011).
Mature human cytoplasmic tRNAs are usually 76 to 93 nts in size
and form a cloverleaf-like secondary structure with stem and
loop regions, and they are eventually compacted into an L-shape
tertiary structure (Schimmel, 2018). Mature mt-tRNAs range
from 59 to 75 nts in size with smaller stem and loop regions, and
some of them lack entire domains (Schimmel, 2018). The mt-
tRNAs form a non-canonical cloverleaf-like secondary structure
(Helm et al., 1998; Suzuki et al., 2011; Schimmel, 2018) and L-
shape tertiary structure (Messmer et al., 2009; Salinas-Giege
et al., 2015). It is worth noting that mitochondrial tRNA-
lookalikes have been detected in the nuclear genome in human
and some other primates (Telonis et al., 2014; Telonis et al.,
2015a), suggesting that mitochondria may not be the sole source
of mitochondrial tRNAs. However, it remains elusive 1) whether
these nuclear-encoded mitochondrial tRNA lookalikes are
actively expressed; 2) if so, whether these tRNAs are
transported to cytoplasm and/or mitochondria; and 3) what
functions they may exert in different cellular compartments.

Although it seems that tRNA processing undergoes two
parallel and separate systems in the nucleus and mitochondrion,
we should not rule out the possibility of tRNA dynamics between
Frontiers in Pharmacology | www.frontiersin.org 3
these organelles (Figure 1). As mentioned above, nuclear-encoded
tRNAs are able to shuttle between the cytoplasm and
mitochondria (Rubio et al., 2008; Mercer et al., 2011);
mitochondrial tRNA lookalikes exist in the nuclear genome
(Telonis et al., 2014; Telonis et al., 2015a). On the other hand,
though mature human mt-tRNAs mainly function in the
mitochondria for mitochondrial gene translation, they have also
been reported to be in the cytoplasm (Maniataki and Mourelatos,
2005). Moreover, the tRNA splicing endonuclease TSEN, which is
expressed solely in the nucleus in humans, is located on the
mitochondrial surface in yeast (Dhungel and Hopper, 2012;
Hopper and Nostramo, 2019). In yeast, nuclear pre-tRNAs with
introns have to be exported to the cytoplasm and spliced on the
surface of mitochondria (Dhungel and Hopper, 2012; Hopper and
Nostramo, 2019). These spliced tRNAs are subsequently modified
in the cytoplasm, and imported back to the nucleus for additional
modification before being again exported to the cytoplasm to carry
out their intended function (Dhungel and Hopper, 2012; Hopper
and Nostramo, 2019). Even though human cytoplasmic tRNA
processing does not have this splicing step on mitochondria like
yeast, it remains unclear whether these organelles play any other
roles in cytoplasmic tRNA processing or modification, and
whether mt-tRNAs have any function in the cytoplasm.
TRANSFER RNA-DERIVED SMALL
RNAs (tsRNAs)

In general, tsRNAs can be grouped into two categories based on
their size and biogenesis: tRNA halves (or tRNA-derived, stress-
induced RNAs, also known as tiRNAs) and tRNA-derived
fragments (also known as tRFs) (Anderson and Ivanov, 2014)
(Figure 2). The tRNA halves or tiRNAs refer to the tsRNAs that
are half the size of tRNAs. The tRFs usually refer to even smaller
tsRNAs, which have a range of sizes based on their cleavage.

It is worth noting that “tRFs”, “tRNA halves”, and “tsRNAs”
were sometimes used interchangeably because the nomenclature
for them was not initially clear. For instance, some studies
referred to “tRNA halves” as “tRFs” (Ivanov et al., 2011; Li
et al., 2016; Sharma et al., 2016), while other studies referred to
“tsRNAs” as “tRFs” (Anderson and Ivanov, 2014; Liapi et al.,
2020). Therefore, we advise authors to scrutinize the literature
carefully when reading and/or citing them so as to obtain
extensive and precise information for each category of tsRNAs.

Transfer RNA Halves (tiRNAs)
The tRNA halves are generated by specific cleavage in or close to
the anticodon region, which leads to 30-50 nt long 5’ and 3’
tRNA halves (Anderson and Ivanov, 2014). A number of studies
showed that tRNA halves are expressed minimally in human cell
lines, but are induced during stress conditions including
oxidative stress (Thompson et al., 2008; Yamasaki et al., 2009),
nutritional deficiency (Fu et al., 2009), hypoxia (Fu et al., 2009),
heat shock (Fu et al., 2009; Yamasaki et al., 2009), UV irradiation
(Yamasaki et al., 2009), and viral infection (Wang et al., 2013).
Since tRNA halves are part of mature tRNAs, there is a question
September 2020 | Volume 11 | Article 572941
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whether these tRNA halves are artificial degradation by-products
derived from tRNAs that have real functions in cells and tissues.
Multiple pieces of evidence have demonstrated the specificity of
tiRNA biogenesis, implying that they may actually possess
unique functions in the cell. First, several studies have shown
the level of tRNA halves do not always correlate with the levels of
their cognate mature tRNAs (Gebetsberger and Polacek, 2013;
Honda et al., 2015; Krishna et al., 2019). For instance, arsenite
stress induced Met-tRNA halves without affecting their parental
mature Met-tRNA levels (Yamasaki et al., 2009). Second, tRNA
halves were enriched in fetal mouse liver, while expressed at low
levels in the heart (Fu et al., 2009), which suggests that tRNA
halves have specific expression patterns in different tissues. In
addition, Gly-, Val-, Met-, and Arg- tRNA halves were
dramatically increased upon nutritional starvation, while Tyr-
tRNA halves were not induced (Fu et al., 2009); thereby,
reinforcing the idea of specific biogenesis of tRNA halves in
different conditions. In line with this work, a recent study
identified tRNA halves in mouse serum by RNA-Seq, and
revealed that Gly- and Val- tRNA halves together account for
~90% of circulating tRNA halves, whereas the majority of these
molecules are below detectable limits (Dhahbi et al., 2013).
Interestingly, 5’ tRNA halves were found to be much more
Frontiers in Pharmacology | www.frontiersin.org 4
enriched than 3’ tRNA halves in serum (Dhahbi et al., 2013),
which indicates a specific role for 5’ tRNA halves compared with
3’ tRNA halves in mouse serum (Dhahbi et al., 2013). However,
we would like to point out that we could not rule out the
possibility that 3’ tRNA halves may be underestimated. 3’-
tRNA halves were found to be charged with amino acids at
their 3’-end in cancer cells, which may prevent their detection in
small RNA sequencing or PCR amplification based methods
involving adaptor ligations (Honda et al., 2015). In addition,
some of the 3’-tRNA halves, such as 3’-His-tRNA halves, cannot
be detected by RACE due to the presence of guanine at their 5’
end, as that residue is often modified to 1-methyl-guanosine
(m1G), which inhibits reverse-transcription (Honda et al., 2015).
In summary, the expression levels of tRNA halves vary across
different conditions, tissues, species, and 5’ vs 3’ origins, and they
do not always correlate with their cognate mature tRNA
expression levels, which together demonstrate a specificity in
their biogenesis. Although individual tRNA halves have been
characterized in different cells or tissues, how genome wide
tRNA halves are expressed in various tissues and conditions
remains an open question.

tRNA halves are recognized to be generated by angiogenin
cleavage during stress (Fu et al., 2009; Yamasaki et al., 2009).
FIGURE 2 | The biogenesis and function of different tsRNAs derived from pre- and mature- tRNAs. The 5’ leader-exon tRFs and tRF-1s are generated from
cleavage of pre-tRNAs by TSEN and ELAC2, respectively. The 5’- and 3’- tRNA halves are generated by cleavage of mature tRNAs at the anticodon region by ANG.
tRF-2s contain anticodon stem and loop regions of mature tRNAs. The tRF-5 group includes tRF-5a, tRF-5b, and tRF-5c, which are generated by endonucleolytic
cleavage of mature tRNAs at D loop, D stem, and the stem regions between the D stem and anticodon loop, respectively. The tRF-3 group includes the tRF-3a and
tRF-3b subgroups, which are generated by endonucleolytic cleavage of mature tRNAs at different locations of their T arms. The i-tRFs are generated from internal
parts of tRNAs, whose 5’ termini start from the second or subsequent nucleotide of mature tRNAs. They are usually about 36 nts in size, and have various subtypes.
This figure only showed two examples of i-tRFs. The different tsRNAs contribute to a variety of molecular processes such as translational regulation, RNA silencing,
and retro-element regulation. They are also involved in tumor metastasis, apoptosis, cell proliferation, and differentiation.
September 2020 | Volume 11 | Article 572941
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Angiogenin (ANG), also known as ribonuclease 5, is a secreted
ribonuclease that cleaves tRNAs into tRNA halves both in vitro
and in vivo (Fu et al., 2009; Yamasaki et al., 2009; Su et al., 2019).
Exogenous expression of ANG (Fu et al., 2009) or the
knockdown of an ANG inhibitor (RNH1) (Yamasaki et al.,
2009) promotes the generation of tRNA halves, while knock
down of ANG itself reduces the levels of stress-induced tRNA
halves (Yamasaki et al., 2009). After ANG cleaves tRNAs at the
anticodon region, it leaves 2’- 3’- cyclic phosphates at the 3’ ends
and hydroxyl groups at 5’ ends of tRNA halves (Yamasaki et al.,
2009). It is worth noting that since these 2’-3’-cyclic phosphates
may inhibit detection by small RNA sequencing or PCR
amplification based methods involving adaptor ligations, there
might be an underestimation of existing tRNA halves when
performing the above quantification methods. The 2’- 3’- cyclic
phosphates at the 3’ ends and hydroxyl groups at 5’ ends of tRNA
halves differentiate tRNA halves from other small RNAs cleaved
by Dicer or RNase III type enzymes, which usually have a 5’
phosphate rather than a 5’ hydroxyl group (Kumar et al., 2016).
Although ANG is a major contributor for tRNA halves, it is not
clear what other nucleases may also contribute to the generation
of tRNA halves. Additional research would provide a greater
understanding of the biogenesis of tRNA halves.

Transfer RNA-Derived Fragments (tRFs)
tRFs are even smaller fragments derived from mature tRNAs or
pre-tRNAs—usually 14–32 nt in length. Similar to tRNA halves,
various tRFs have distinct expression patterns in different tissues
(Kawaji et al., 2008), and there is no correlation between parental
tRNA levels and their derived tRF levels (Kim et al., 2017). In
addition, certain parental tRNAs only produce certain subtypes
of tRFs (Su et al., 2019). Even when derived from the same
parental tRNAs, some tRFs are differentially expressed (Li et al.,
2012; Kumar et al., 2014; Telonis et al., 2015b), which is referred
to as asymmetric processing of tRFs from mature tRNAs (Li
et al., 2012). For instance, a recent research study examined the
abundance of tRFs in transcriptomic data from 452 healthy
people and 311 breast cancer patients, and found that different
tRFs form the same parental tRNAs do not have correlated
abundance (Telonis et al., 2015b). In addition, it identified
specific genomic loci clusters that may be responsible for
generation of particular types of tRFs (Telonis et al., 2015b),
which suggests that the abundance of particular tRFs, at least
partially, depends on their genomic location. Collectively, these
studies indicate that tRFs are likely not random degradation by-
products of tRNAs, but seem to have their own specific
biogenesis and function independent of their parental tRNAs
in different biological conditions.

Depending on their cleavage sites and origin, tRFs can be
divided into several groups such as tRF-1s (also known as 3’U
tRFs), tRF-2s, tRF-3s (also known as 3’CCA tRFs), tRF-5s, i-tRFs
(Telonis et al., 2015b), and 5’ leader-exon tRFs (Gebetsberger
and Polacek, 2013; Goodarzi et al., 2015; Shen Y. et al., 2018).
The tRF-2s, tRF-3s, tRF-5s, and i-tRFs are derived from mature
tRNAs, whereas tRF-1s and 5’ leader-exon tRFs are generated
from pre-tRNAs (Shen Y. et al., 2018). As discussed above, a
mature tRNA forms a cloverleaf secondary structure. Cloverleaf-
Frontiers in Pharmacology | www.frontiersin.org 5
like tRNAs have four arms, which are designated as the acceptor
stem, dihydrouridine (D) stem-loop (D arm), anticodon stem-
loop, and TyC stem-loop (T arm) (Schimmel, 2018). tRF-2s are
a newly discovered type of tRF identified in breast cancer cells,
and they primarily contain anticodon stem and loop regions of
tRNAs (Goodarzi et al., 2015; Kumar et al., 2016). This type of
tRF is stress sensitive, and is significantly increased under
hypoxic conditions (Goodarzi et al., 2015). The tRF-3s and
tRF-5s are generated by endonucleolytic cleavage of mature
tRNAs at the T arm and D arm, respectively (Anderson and
Ivanov, 2014). A recent study sequenced tRFs in HEK293 cells
and divided tRF-5s to three subtypes: tRF-5a (~15 nt in size),
tRF-5b (~22 nt in size) and tRF-5c (~32 nt in size), which are
generated by endonucleolytic cleavage of mature tRNAs at D
loop, D stem, and the stem region between the D stem and
anticodon loop, respectively (Kumar et al., 2014). The tRF-5cs
may straddle the categories of tRF-5s and tRNA halves, as it is
known that ANG can cleave tRNAs before the anticodon region
which could potentially generate tRNA halves shorter than the
typical 35 nts (Honda et al., 2015; Shigematsu and Kirino, 2017).
The tRF-3s were classified into two sub-classes based on their
tRF sequencing in HEK293 cells: tRF-3a (~18 nt in size) and tRF-
3b (~22 nts in size), which are generated by endonucleolytic
cleavage of mature tRNAs at different areas of their T arms
(Kumar et al., 2014). It is worth noting that the subgroups of tRFs
are not strictly defined by length, as tRF size may vary in different
tissues or biological conditions. For example, additional tRF-5s
with lengths of 20, 26, 33, and 36 nts as well as tRF-3s with
lengths of 33 and 36 nts, were identified in a dataset from
lymphoblastoid cell lines (Telonis et al., 2015b). The i-tRFs
(internal fragments) were newly identified tRFs in breast
cancer samples and breast cancer cell lines (Telonis et al.,
2015b). This type of tRFs correspond to an internal part of
mature tRNAs, which means that they neither start from the
exact 5’ terminus (the first nucleotide of 5’ terminus) nor end at
the 3’ terminus (any base in 3’ terminal “CCA” sequence) of
mature tRNAs (Telonis et al., 2015b). Instead, the 5’ terminus of
i-tRFs starts from the second or subsequent nucleotide of mature
tRNAs, and they are usually about 36 nts in size (Telonis et al.,
2015b). This differentiates this type of tRFs from tRF-3s and
tRF-5s.

Aside from tRNA halves, small tRFs usually possess both a 5’-
phosphate and 3’-hydroxyl group (Haussecker et al., 2010). Since
Dicer recognizes the 5’-phosphate group of small RNAs (Park
et al., 2011), it was initially considered to be required for the
processing of tRF-3s and tRF-5s. However, there are studies that
indicate the existence of both Dicer-dependent and Dicer-
independent biogenesis of tRFs. Therefore, it remains
unknown if Dicer is indispensable for generation of tRFs or
whether it is required for some types of tRFs under certain
conditions. Some tRF-3s were detected by high-throughput
sequencing in wild-type mouse embryonic stem cells (mESCs),
but not in mESCs with a Dicer 1 deletion, which suggests that the
generation of tRF-3s requires Dicer 1 (Babiarz et al., 2008). In
line with this work, depletion of Dicer significantly reduced the
abundance of tRF-5s derived from Gln-tRNAs in HeLa cells
(Cole et al., 2009), which reinforces the importance of Dicer for
September 2020 | Volume 11 | Article 572941

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Cao et al. tsRNAs in Cardiac Hypertrophy
the generation of tRFs. On the other hand, there are a number of
studies that show Dicer is dispensable for tRF biogenesis. For
instance, knockout of Dicer or DGCR8 (a microprocessor
complex subunit) did not exert any effect on tsRNA expression
in mESCs (Li et al., 2012). Consistently, mutation of DICER1/
DGCR8 did not decrease tRF expression in mouse ESCs (Kumar
et al., 2014). In addition, ANG, which has been identified as an
endonuclease contributing to the biogenesis of tRNA halves, was
found to contribute to the generation of tRFs (Li et al., 2012).
RNase A, RNase I, and RNase T1 were also found to be able to
cleave tRNAs to tRFs, and the tRFs derived from RNase T1
cleavage were different from the ones digested by ANG and
RNase A/I (Li et al., 2012).

tRF-1s derived from the 3’ end of pre-tRNAs contain a stretch
of U residues that are usually produced by RNA polymerase III
(Lee et al., 2009). Since the tRF-1s are generated from pre-
tRNAs, they would be assumed to reside in the nucleus; however,
tRF-1s can also be located in the cytoplasm (Lee et al., 2009;
Kumar et al., 2014). The tRF-1s were found to be cleaved by
ELAC2 in the cytoplasm, and tRF-1 expression levels are
regulated by ELAC2 in prostate cancer cell lines (Lee et al.,
2009). On the other hand, Dicer was found not to be a regulator
for tRF-1 in HEK293 cells (Haussecker et al., 2010). Another type
of tRFs derived from pre-tRNAs are the 5’ leader-exon tRFs,
which were discovered in mouse embryonic fibroblasts (MEFs)
with RNA sequencing (Hanada et al., 2013). This type of tRFs
contain a complete 5’ leader triphosphate group followed by the
5’ exon tRNA sequence, and their expression decreases upon
TSEN depletion (Figure 2) (Hanada et al., 2013). The 5’ leader-
exon tRFs are stress sensitive, as they were induced by H2O2, but
not ANG in MEFs (Hanada et al., 2013).
MOLECULAR AND BIOLOGICAL
FUNCTIONS OF tsRNAs

The tRNA halves and different tRFs have specific molecular
functions that allow them to play distinct roles in different
conditions. The tsRNAs regulate a variety of biological
processes including translation (Emara et al., 2010; Ivanov
et al., 2011) (Kim et al., 2017), RNA stability (Haussecker
et al., 2010; Kumar et al., 2014; Kuscu et al., 2018), retro-
element reverse transcription and post-transcription (Schorn
et al., 2017; Boskovic et al., 2020), apoptosis (Saikia et al.,
2014), cell proliferation and differentiation (Honda et al., 2015;
Krishna et al., 2019). These characteristics involve them in many
physiological and pathological conditions, including
development (Krishna et al., 2019), aging (Dhahbi et al., 2013),
neurodegenerative diseases (Hanada et al., 2013), cancer (Honda
et al., 2015), and cardiovascular diseases (Shen L. et al., 2018)
(Table 1) (Figure 2).

tRNA Halves (tiRNAs)
The most well-characterized function of tRNA halves is their
inhibitory effect on protein translation (Ivanov et al., 2011;
Sobala and Hutvagner, 2013; Krishna et al., 2019). Exogenous
Frontiers in Pharmacology | www.frontiersin.org 6
expression of 5’-tRNA halves but not 3’-tRNA halves have been
found to induce phospho-eIF2a independent assembly of stress
granules and inhibit protein translation in cultured U2OS cells
(Emara et al., 2010; Ivanov et al., 2011). In particular, the 5’-Ala
tRNA halves were found to bind with translation inhibitor YB-1,
and cooperate with YB-1 to displace eIF4G/A from uncapped
and capped mRNAs as well as dissociate eIF4F from the m7G
cap, which leads to repression of protein translation (Ivanov
et al., 2011).

Despite it being accepted that ANG induces tRNA halves vivo
(Fu et al., 2009; Yamasaki et al., 2009; Su et al., 2019), there are
many outstanding questions about the relationship between
stress, ANG, enriched tRNA halves, and translational arrest
that have yet to be answered. For instance, is ANG the only
stress-induced enzyme responsible for tRNA halves? Is there any
difference in the species of tRNA halves derived from different
sources of stress? Is YB-1 indispensable for the translational
inhibition by tRNA halves? A recent study showed that there are
both ANG-dependent and ANG-independent tRNA halves
induced by high concentration arsenite, which suggests that
ANG may be not the only RNase responsible for generation of
tRNA-halves under this particular stress condition (Su et al.,
2019). Moreover, high concentrations of arsenite resulted in
translational arrest in both wild-type and ANG depleted U2OS
cells, suggesting that ANG regulated translational repression
does not account for all of the translational control caused by
stress (Su et al., 2019). To comprehensively answer these
questions, more research needs to be done.

At cellular level, a variety of tRNA halves have been shown to
exert divergent functions such as cell apoptosis, proliferation,
and differentiation. ANG-induced tRNA halves were fund to
interact with cytochrome c (Cyt c) to protect cells from chronic
hyperosmotic stress-induced apoptosis (Saikia et al., 2014). Cyt c
is a peripheral protein located at the mitochondrial inner
membrane, where it functions to transport electrons between
complex III and complex IV of the respiratory chain (Garrido
et al., 2006). During apoptosis, the mitochondrial membrane is
permeabilized, allowing Cyt c to be released into the cytoplasm
(Reubold and Eschenburg, 2012). Cytosolic Cyt c binds apoptotic
protease activating factor 1 (Apaf-1) (Zou et al., 1999) to activate
caspase pathways, which leads to the morphological changes
observed in apoptosis (Zou et al., 1999; Wang, 2001). A recent
study detected 20 enriched tRNA halves in the Cyt c
ribonucleoprotein complex, and showed that ANG treatment
mitigated stress-induced apoptosis in primary neurons (Saikia
et al., 2014). As a result, it proposed that ANG-induced tRNA
halves bind to Cyt c and prevent it from activating caspases and
apoptosis (Saikia et al., 2014).

Sex hormone-dependent tRNA halves were found to be
enriched in estrogen receptor-positive breast cancer and
androgen receptor-positive prostate cancer, where they
enhanced cell proliferation (Honda et al., 2015). In addition,
stable tRNA halves were found to be in extracellular exosomes
and transferred between breast cancer cell cells (Gambaro et al.,
2019). Proliferative cancer cells are prone to migration, escaping
the immune response to form a metastatic niche that undergoes
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TABLE 1 | Summary of transfer RNA-derived small RNAs (tsRNAs) and their biological functions.
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angiogenesis (Osaki and Okada, 2019). Therefore, tRNA halves
seemingly participate in both intracellular and extracellular
signal transduction in cancer.

Besides their role in cancer, tRNA halves also define the
cellular state of mESCs (Krishna et al., 2019). Sequencing of
small RNAs in mESCs under several differentiation regimens
revealed that tsRNAs such as 5’-Gln-, Glu-, Val-, and Gly-tRNA
halves were enriched in differentiated cells compared with
isogenic stem-like cells (Krishna et al., 2019). Transfection of
mimics of these 5’-tRNA halves inhibited pluripotency, whereas
blocking these 5’-tRNA halves using antisense oligonucleotides
enhanced cell pluripotency (Krishna et al., 2019). This study also
identified tsRNA associated proteins such as IGF2BP1, YBX1,
and RPL10 by pulldown assays flowed with mass spectrometry,
and showed that binding of 5’-tRNA halves with IGF2BP1
prevented it from binding to c-myc mRNA; thereby, facilitating
differentiation of mESCs (Krishna et al., 2019).

Transfer RNA Fragments
At molecular level, tRFs have been demonstrated to be involved
in regulating mRNA stability (Haussecker et al., 2010; Kumar
et al., 2014; Kuscu et al., 2018), translation (Kim et al., 2017), and
retro-element regulation (Boskovic et al., 2020). The tRF-5s and
tRF-3s were found to be associated with the human Argonaute
proteins AGO1, 3, and 4 by photoactivatable ribonucleoside-
enhanced crosslinking and immunoprecipitation (PAR-CLIP) in
HEK293 cells (Kumar et al., 2014), which raised the question of
whether tRFs are involved in gene silencing pathways like
miRNAs. miRNAs usually harbor 7–8 nucleotide long seeding
sequences at their 5’ end to base pair with the 3’UTR of mRNAs
(Bartel, 2009) at the same time nucleotide positions 8–13 interact
with AGO (Hafner et al., 2010; Kumar et al., 2014). Interestingly,
tRF-5s and tRF-3s were found to be associated with AGO in a
miRNA like pattern (i.e. tRF-3s interact with AGO at nucleotide
positions 8–12 and tRF-5s binds to AGO at nucleotide position 7
(Kumar et al., 2014). Additionally, thousands of RNAs were
found to interact with tRF-3s and tRF-5s via AGO1 by human
AGO1 cross-linking, ligation, and sequencing of hybrids
(CLASH) (Kumar et al., 2014).

A recent study revealed that tRF-3s regulate mRNA
expression via AGO-dependent and Dicer-independent
pathways (Kuscu et al., 2018). The tRF-3s were demonstrated
to be associated with Argonaute by immunoprecipitation
followed by northern blotting (Kuscu et al., 2018). Transfection
of tRF-3s decreased luciferase activity of mRNAs containing the
complementary sequence of tRF-3s (Kuscu et al., 2018). This
regulation of luciferase activity by tRF-3s was abolished by
depletion of Argonaute proteins but not Dicer (Kuscu et al.,
2018). In addition, the tRF-3s were also found to be associated
with GW182/TNRC6 proteins (Kuscu et al., 2018), which are
critical players in assisting mRNA degradation processes with
RNA-induced silencing complexes (RISCs) (Eulalio et al., 2009).
Collectively, these findings illustrated the mechanism by which
tRFs base-pair match with target RNAs, and slice RNAs by
associating with Argonaute and GW182/TNRC6 proteins
(Eulalio et al., 2009). Not only have tRFs been found to be
Frontiers in Pharmacology | www.frontiersin.org 8
loaded on Argonaute proteins, but also the loading itself is cell-
type-specific (Telonis et al., 2015b).

Apart from regulation of mRNA degradation, tRF-3s were
also determined to be able to influence proteomics by affecting
ribosomal biogenesis (Kim et al., 2017). The tRF-3s from
LeuCAG tRNAs were found to bind to ribosomal protein
mRNAs RPS28 and RPS15 by base-pairing (Kim et al., 2017).
Inhibition of LeuCAG tRF-3s resulted in reduced translation of
RPS28 and RPS15 mRNAs, which decreased abundance of 40S
ribosomal subunits and eventually led to cell apoptosis (Kim
et al., 2017). Furthermore, tRFs have also been shown to be
associated with RNA binding proteins to affect gene expression.
The tRF-2s derived from tRNA-Glu in breast cancer cells were
shown to harbor YBX1 binding motifs and able to bind YBX1
protein, thus displacing the 3’UTR of oncogenic transcripts from
YBX1 and suppressing the stability of oncogenic transcripts
(Goodarzi et al., 2015). Similarly, several tRFs from nuclear
tRNA-His, tRNA-Ala, and mitochondrial tRNA-Glu were
found to harbor HuR binding motifs in breast cancer datasets
(Telonis and Rigoutsos, 2018). Since HuR is involved in multiple
biological functions including alternative splicing (Zhu et al.,
2006; Izquierdo, 2008; Zhou et al., 2011; Akaike et al., 2014),
alternative polyadenylation (Zhu et al., 2007; Dai W. et al., 2012),
stabilizing mRNA transcripts (Fan and Steitz, 1998;
Peng et al., 1998; Wang et al., 2000a; Wang et al., 2000b;
Sengupta et al., 2003), destabilizing transcripts (Kim et al.,
2009; Chang et al., 2010; Cammas et al., 2014), and mediating
translation efficiency (Kullmann et al., 2002; Gorospe, 2003;
Mazan-Mamczarz et al., 2003; Glorian et al., 2011), it is
conceivable that tRFs may interact with HuR similar to YBX1.
The molecular functions of tRFs associated with RNA binding
proteins such as HuR remain to be fully understood. Besides
these effects on mRNA stability and translation, particular tRFs
were found to modulate histone expression and mediate reverse
transcriptional and post-transcriptional regulation of
endogenous retro-elements (Schorn et al., 2017; Boskovic et al.,
2020). The regulation of tRFs on retro-elements not only helped
to protect genome integrity, but could also regulate the
expression of protein-coding genes through these embedded
retro-elements in their introns and/or exons (Sharma et al.,
2016; Boskovic et al., 2020).

The multiple functions of tsRNAs in various pathways
demonstrates their critical role in biological processes such as
apoptosis, proliferation, and differentiation as well as (Lee et al.,
2009; Hanada et al., 2013; Kim et al., 2017) in pathological
TABLE 2 | Summary of transfer RNA-derived small RNAs (tsRNAs) expressed in
cardiac tissue.

tsRNA types Examples of tsRNA References

5’ tRNA halves 5’-Val-tRNA halves (Fu et al., 2009; Dhahbi et al., 2013)
5’ tRNA halves 5’-Gly-tRNA halves (Dhahbi et al., 2013; Dhahbi, 2015)
5’ leader-exon tRFs tRF-Tyr (Hanada et al., 2013)
tRF-3s tRF-Arg; tRF-Gln (Torres et al., 2019)
tRF-5s tRF-Gly; tRF-Cys (Torres et al., 2019)
tRF-5s tRF-Gly (Shen L. et al., 2018)
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conditions such as neurodegenerative diseases (Hanada et al.,
2013) and cancer (Goodarzi et al., 2015).
TRANSFER RNA-DERIVED SMALL RNAs
IN THE HEART

Investigation of the expression and function of tsRNAs in the
heart has just started, which opens up both opportunities and
challenges. Previous studies have shown the existence of tsRNAs
in the heart (Table 2). 5’ tRNA halves from Val- (Fu et al., 2009;
Dhahbi et al., 2013) and Gly-tRNAs (Dhahbi, 2015) (Dhahbi
et al., 2013) were detected in mouse hearts by northern blot
analysis. The 5’ leader-exon tRFs from Tyr-tRNAs are also
expressed in mouse hearts, and their levels were augmented
upon CLP1 deletion (Hanada et al., 2013). CLP1 is a component
of the mRNA 3’ end processing complex, and it has been found
to be associated with the TSEN complex and, potentially,
contributes to pre-tRNA splicing (Hanada et al., 2013).
Depletion of CLP1 led to accumulation of Tyr-5’ leader-exon
tRFs in multiple tissues including the cortex, spinal cord, heart,
and kidney, and eventually results in progressive motor neuron
loss (Hanada et al., 2013). Transgenic expression of CLP1 in
motor neurons can rescue impaired neuronal function in CLIP1
knockout mice (Hanada et al., 2013), but it remains elusive how
these Tyr- 5’ leader-exon tRFs in cardiac tissue may affect heart
function. Specific tRF-3s and tRF-5s were also detected human
heart tissues. For example, tRF-3s from Arg- and Gln-tRNA, as
well as tRF-5s from Gly- and Cys- tRNAs were detected in
human heart tissues (Torres et al., 2019).
ROLE OF TRANSFER RNA-DERIVED
SMALL RNAs IN CARDIAC
HYPERTROPHY

A very recent study identified tRF-5s enriched in isoproterenol
(ISO)-induced hypertrophic rat hearts by small RNA
transcriptome sequencing, and indicated that these tRF-5s may
contribute to intergenerational inheritance of cardiac
hypertrophy (Shen L. et al., 2018). These tRF-5s were
demonstrated to bind to the 3’UTR of the hypertrophic
regulator Timp3 mRNA to inhibit its expression, leading to
hypertrophy of cardiomyocytes (Shen L. et al., 2018).
Importantly, these tRFs were found enriched in sperm from
ISO-induced hypertrophic mice compared to healthy male mice
(Shen L. et al., 2018). In addition, the F1 offspring derived from
ISO-treated mice exhibited increased cardiac muscle fiber
breakage, hypertrophic marker gene expression, cell apoptosis,
and fibrosis in their hearts when compared to the F1 from
healthy controls (Shen L. et al., 2018). Therefore, the study
raised a very intriguing question of whether tsRNAs induced
by cardiac hypertrophy could be inherited by the next generation
and lead to pathogenesis. In fact, there are several lines of
evidence consistently indicating that tsRNAs are enriched in
sperm (Chen et al., 2016; Sharma et al., 2016; Natt et al., 2019;
Frontiers in Pharmacology | www.frontiersin.org 9
Sarker et al., 2019; Zhang et al., 2019). Some studies
demonstrated the intergenerational inheritance of tsRNAs by
injecting tsRNAs from the sperm of males fed a high fat diet into
normal zygotes, and showed the offspring had altered expression
of metabolic pathway components in addition to developing a
metabolic disorder (Chen et al., 2016; Sarker et al., 2019).
Therefore, it would be interesting to investigate more
thoroughly whether tsRNAs-induced cardiac hypertrophy
could also be inherited, which may identify novel
therapeutic targets.

At the molecular level, the tRF-5s may not be the only
functional tsRNAs involved in cardiac hypertrophy. Deep
small RNA sequencing with advanced bioinformatic tools
could help to identify or verify extensive tsRNAs in cardiac
hypertrophy. High-throughput sequencing combined with
immunoprecipitation (i.e. RNA immunoprecipitation (RIP)-
seq) could be employed to detect Argonaute protein associated
tsRNAs involved in cardiac hypertrophy. It would be also
important to test whether neutralization of tsRNAs by
antisense oligonucleotides could rescue the heart from fibrosis
and the hypertrophic response. Moreover, because tRF-5s can
inhibit retro-element transcription and regulate Cajal body
biogenesis (Boskovic et al., 2020), it would be interesting to
test whether these functions are all or partly associated with tRF-
5-mediated cardiac hypertrophy. Furthermore, upon having
defined specific tsRNAs involved in cardiac hypertrophy, the
mRNA networks which are associated with tsRNAs in cardiac
hypertrophy could be explored by pulling down mRNAs in
hypertrophic hearts with in vitro transcribed tsRNAs that are
labeled with digoxigenin or biotin. Alternatively, CLASH-seq
experiments could be employed to directly crosslink endogenous
tsRNA-mRNA hybrids in hypertrophic hearts for detection. On
the other hand, tsRNA-associated protein networks could be
determined through tsRNA pull down assays followed by mass-
spectrometry or western blotting. It is anticipated that
identification of cardiac hypertrophy associated tsRNAs and
further defining their function in the heart will shed light onto
novel therapeutic targets and approaches to treat cardiac disease.
ROLE OF TRANSFER RNA-DERIVED
SMALL RNA INDUCERS AND
REGULATORS IN CARDIAC
HYPERTROPHY

While increasing evidence supports the direct involvement of
tsRNAs in the heart, we may also learn how tsRNA biogenesis-
related “inducers” and “regulators” participate in governing
cardiac function and hypertrophy. The inducers and regulators
mentioned here refer to currently known factors that control
expression of tsRNAs.

Oxidative Stress in Cardiac Hypertrophy
Cardiac cells undergo pathological hypertrophy in response to
mechanical stress. Although it is an adaptive process to increase
contractility (i.e. compensated hypertrophy), it eventually leads
September 2020 | Volume 11 | Article 572941
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to a high risk for heart failure through pathological remodeling
(i.e. decompensated hypertrophy) (Frey and Olson, 2003; Diwan
and Dorn, 2007; Nakamura and Sadoshima, 2018). Oxidative
stress is an important inducer of this response (Takimoto and
Kass, 2007; Maulik and Kumar, 2012). It occurs when excessive
reactive oxygen species (ROS) are produced that cannot be offset
by the intrinsic antioxidant defenses (Takimoto and Kass, 2007).
ROS include superoxide and hydroxyl radicals as well as
hydrogen peroxide (Takimoto and Kass, 2007). Because these
molecules are inducers of tRNA halves (Thompson et al., 2008;
Yamasaki et al., 2009) it would be interesting to study their role
in oxidative stress-induced cardiac hypertrophy. Specifically,
ROS induces mitochondrial DNA mutations, damages
mitochondrial membrane permeability, as well as the
respiratory chain and anti-oxidant defenses (Guo et al., 2013),
which can further trigger cell apoptosis through mitochondrial
stress and downstream signaling pathways (Chen et al., 2018).
Mitochondrial dynamics and metabolism have been found to
play a pivotal role in regulating differentiation of stem cells to
cardiomyocytes (Chung et al., 2007; Porter et al., 2011);
maintaining cardiomyocyte function (Piquereau et al., 2013;
Eisner et al., 2017; Zhao et al., 2019), and mediating
hypertrophy of cardiomyocytes (Rosca et al., 2013; Pennanen
et al., 2014). The intrinsic links between ROS, mitochondria
biology, and cardiac hypertrophy/cardiac function makes it an
intriguing area to explore how tsRNAs might be functionally
involved in any of these processes. Although not much research
has been done, there are several lines of evidence indicating the
existence of mitochondrial-derived tsRNAs in humans (Telonis
et al., 2015b; Natt et al., 2019). Moreover, mitochondrial-derived
tsRNAs were found to be enriched in sperms from people eating
a high-sugar diet for a week compared to sperms from the same
people eating a normal diet (Natt et al., 2019). These findings
imply a potentially significant role for mitochondrial tsRNAs in
intergenerational inheritance. As mentioned above, cardiac
hypertrophy has been shown to affect offspring through sperm
tsRNAs, it would therefore be extremely interesting to unveil the
potential role of mitochondrial tsRNAs in cardiac function, and
decipher whether these small ncRNAs could lead to
intergenerational inheritance of cardiac hypertrophy. On the
other hand, a very recent study showed that a paternal low-
protein diet promoted ROS production in the testicular germ
cells, which led to ATF7 activation and further reduced
H3K9me2 expression (Abel and Doenst, 2011; Zhang and
Chen, 2020). The altered epigenetic status affected tsRNA
biogenesis and their expression profile in the spermatozoa,
which resulted in intergenerational effects (Abel and Doenst,
2011; Zhang and Chen, 2020). This not only reinforced the
tsRNA function in intergenerational inheritance but also
revealed the link between oxidative stress, tsRNA generation,
and epigenetic regulation. These studies also raised questions
about whether oxidative stress-induced cardiac hypertrophy
could transmit intergenerationally, and if so, whether ATF7
and/or epigenetic alterations could be considered as therapeutic
targets for inherited cardiac hypertrophy.
Frontiers in Pharmacology | www.frontiersin.org 10
Aging and Caloric Intake in
Cardiac Hypertrophy
Aging and excessive caloric intake are highly associated with
cardiac hypertrophy (Dong et al., 2007; Dai D. F. et al., 2012;
Chiao and Rabinovitch, 2015; Wang et al., 2015). Elevated ROS
released by mitochondria has been proposed to be the primary
driving force of aging and a major determinant of lifespan
(Harman, 1972; Miquel et al., 1980; Dai et al., 2014). Consistent
with this, ROS production by mitochondria, as well as disrupted
mitochondrial function, have been shown in the aging brain,
heart, and skeletal muscle tissues (Sawada and Carlson, 1987;
Capel et al., 2005; Retta et al., 2012; Tocchi et al., 2015; Lesnefsky
et al., 2016; Boengler et al., 2017; Grimm and Eckert, 2017). Aging
intertwines with ROS related mitochondrial DNA mutation,
respiratory chain deterioration, and mitochondrial metabolism
impairment (Fleming et al., 1982; Wallace, 1992). The disrupted
mitochondrial function along with aging increases production of
ROS, which, in turn (as introduced above), could affect
mitochondria by damaging mitochondrial DNA and causing
functional deterioration, which is referred to as the “vicious
cycle” concept (Alexeyev et al., 2004; Dai et al., 2014).
Therefore, age-related cardiac hypertrophy is a complex
syndrome from a mitochondrial function and oxidative stress
perspective. On the other hand, 3’-tRFs and 5’-tRFs were detected
in rat brain, and the 3’-tRFs were found to be increased with rat
age (Karaiskos and Grigoriev, 2016). Thus it is conceivable that
tsRNAs might be enriched in aging hearts, and age-related
hypertrophic hearts. Moreover, there is also an interesting link
between calorie restriction and aging retardation as well as
cardiac functional improvement. A number of studies suggest
that caloric restriction can prevent or reduce cardiac hypertrophy,
improve cardiac function, and even retard aging (Yu, 1994;
Cruzen and Colman, 2009; Dolinsky et al., 2010; de Lucia et al.,
2018; An et al., 2020). Although the mechanisms are still unclear,
there is evidence showed that aging and caloric restriction can
modulate specific 5’ tRNA halves (Dhahbi et al., 2013). Val- and
Gly-5’-tRNA halves were found to be enriched in aged mouse
serum when compared to young mice and that caloric restriction
mitigated these differences (Dhahbi et al., 2013). In addition, as
introduced above, several studies have shown that high sugar or
high fat diets affect mitochondrial and other tsRNA expression
profiles in sperm (Chen et al., 2016; Natt et al., 2019; Sarker et al.,
2019). So, it would be interesting to determine the role of tsRNAs
in the dynamics of aging, oxidative stress, and metabolism during
development of cardiac hypertrophy.
ANG in Cardiac Hypertrophy and
Heart Failure
ANG is a major inducer of tRNA halves (Thompson et al., 2008;
Fu et al., 2009; Yamasaki et al., 2009; Su et al., 2019), and several
studies suggest ANG is involved in cardiac hypertrophy and
heart failure (Patel et al., 2008; Jiang et al., 2014; Yu et al., 2018;
Oldfield et al., 2020). ANG not only functions as an RNase, but is
also a potent stimulus for angiogenesis (Tello-Montoliu et al.,
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2006). Pro-angiogenic factors such as vascular endothelial
growth factor (VEGF), basic fibroblast growth factor, and
ANG, are involved in the development of cardiac hypertrophy
(Oldfield et al., 2020). Cardiomyocytes secret pro-angiogenic
molecules to support vascular growth to increase blood flow in
the hypertrophic heart (Oldfield et al., 2020). Interestingly, ANG
has been proposed to be a biomarker for left ventricular systolic
dysfunction and heart failure (Patel et al., 2009; Jiang et al., 2014;
Yu et al., 2018). A clinical study collected serum from 16 patients
with heart failure with preserved ejection fraction (HFpEF) and
16 healthy individuals, and found that ANG differed the most
among 507 proteins between the two groups (Jiang et al., 2014).
Particularly, the average serum ANG level was 374 ng/ml (%95
CI 348–400 ng/ml) in healthy controls and 477 ng/ml (95% CI
438–515 ng/ml) in HFpEF patients (P<0.001) (Jiang et al., 2014).
A follow-up study were performed in 203 patients with coronary
heart failure (CHF), 413 coronary heart disease patients without
chronic heart failure (also called CHD disease controls), and 53
healthy controls to explore the potential utility of ANG as a
biomarker (Yu et al., 2018). The CHF group were further
subgrouped into heart failure with reduced ejection fraction
(HFrEF) and heart failure with preserved ejection fraction
(HFpEF). It was found that the CHF group had higher ANG
plasma levels compared with either healthy controls or CHD
disease controls. The HFrEF patients had higher ANG plasma
levels compared with HFpEF patients or CHD disease
control patients.

Besides cardiac hypertrophy and heart failure, ANG has been
linked to other diseases such as diabetes (Altara et al., 2018) and
hypertension (Marek-Trzonkowska et al., 2015). Therefore, it is
likely that dysregulation of ANG in cardiac hypertrophy, heart
failure, and other cardiovascular diseases may lead to tsRNA
dysregulation in the heart, and it is worth further investigating
the potential biological function of ANG-induced tsRNAs in
these instances.

ELAC2 in Cardiac Hypertrophy
Cytosolic ELAC2 contributes to the generation of tRF-1 (Lee
et al., 2009), while mitochondrial ELAC2 is responsible for mt-
tRNA processing (Brzezniak et al., 2011; Siira et al., 2018). A few
studies suggest that ELAC2 is implicated in mitochondrial
disorders and cardiac hypertrophy (Haack et al., 2013; Siira
et al., 2018). Cardiac-specific ELAC2 deletion in mice leads to
reduced mitochondrial protein synthesis, OXPHOS biogenesis,
mitochondrial oxygen consumption, and disruption of
regulatory non-coding RNAs (Siira et al., 2018). The combined
disruptive effects causes early-onset dilated cardiomyopathy and
premature death by 4 weeks (Siira et al., 2018). Furthermore,
mutations in the human ELAC2 gene is associated with mt-tRNA
processing defects associated with cardiac hypertrophy (Haack
et al., 2013). Unfortunately, the underling mechanisms remain
unclear and the role of mitochondria in cardiac hypertrophy and
heart failure is dynamic and complicated.

During the development of cardiac hypertrophy, mitochondria
compensate by increasing oxidative phosphorylation and ATP
synthesis (Rabinowitz and Zak, 1975); however, this can result in
mitochondrial dysfunction (Zhou and Tian, 2018). This
Frontiers in Pharmacology | www.frontiersin.org 11
complication can disrupt the electron transport chain and APT
production, as well as affecting the modification of proteins,
calcium homeostasis, and inflammation, which are important
contributors to cardiac hypertrophy and heart failure (Abel and
Doenst, 2011; Rosca et al., 2013; Zhou and Tian, 2018).
Consequently, it would be interesting to determine the
following: 1) ELAC2 function in mitochondria during
compensation and decompensation, 2) ELAC2 levels in
hypertrophic hearts, and 3) the functional role of these tsRNAs
in cardiac hypertrophy.

Hypoxia in Cardiac Hypertrophy
Though hypoxia can generate tRNA halves (Fu et al., 2009), it is
also associated with cardiac hypertrophy due to increases in
oxygen consumption and reductions in the blood supply to the
enlarged heart (Kumar et al., 2018). Sustained hypoxia leads to
reprogramming of gene expression and metabolism, which
further aggravate decompensated cardiac hypertrophy and,
ultimately, lead to heart failure (Giordano, 2005; Chu et al.,
2012; Mirtschink and Krek, 2016). So, it is not surprising that an
ischemic injury causes up-regulation of Val-and Gly-tRNA
derived tRF-5s in the rat brain as determined using deep
sequencing (Li et al., 2016). Consistent with this observation,
these tRF-5s were also enriched in a hind limb ischemia model
and in hypoxic endothelial cells (Li et al., 2016). Moreover,
exogenously expressed Val- and Gly-tRF-5s repress cell
proliferation, migration, and tube formation in hypoxic
endothelial cells (Li et al., 2016). Coincidently, tsRNAs from
Val- (Fu et al., 2009) (Dhahbi et al., 2013) and Gly-tRNAs
(Dhahbi, 2015) (Dhahbi et al., 2013) were documented to be
detectable in mouse hearts by northern blot. Therefore, it would
be worthwhile to test whether these tsRNAs are regulated by
hypoxia during cardiac hypertrophy.
CONCLUSION AND PERSPECTIVES OF
TRANSFER RNA-DERIVED SMALL RNAs
IN CARDIOVASCULAR BIOLOGY
AND MEDICINE

The tsRNAs are newly-identified sncRNAs derived from
endonucleolytic cleavage of pre-tRNAs or mature tRNAs.
Based on differences in cleavage sites and the size of cleavage
products, tsRNAs are divided into tRNA halves and tRFs. tRNA
halves can regulate stress granule assembly and protein
translation (Emara et al., 2010; Ivanov et al., 2011), and affect
cell apoptosis (Saikia et al., 2014), proliferation (Honda et al.,
2015) and differentiation (Krishna et al., 2019). tRFs are also
involved in mRNA stability regulation (Haussecker et al., 2010;
Kumar et al., 2014; Kuscu et al., 2018), translation regulation
(Kim et al., 2017), and retro-element transcriptional regulation
(Boskovic et al., 2020). These tsRNAs play important roles in
physiological and pathological conditions such as development
(Krishna et al. , 2019), aging (Dhahbi et al. , 2013),
neurogenerative diseases (Hanada et al., 2013), cancer (Honda
et al., 2015), and cardiovascular diseases (Shen L. et al., 2018).
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As tsRNAs are relatively new, limited studies have been
performed on their role in cardiac function. However, several
studies suggest that tsRNAs exist in cardiac tissues (Fu et al.,
2009; Dhahbi et al., 2013; Dhahbi, 2015). There is also a study
that shows tsRNAs are implicated in the inheritance of cardiac
hypertrophy (Shen L. et al., 2018). Furthermore, there appears to
be a relationship between cardiac hypertrophy and tsRNA
inducers or regulators such as oxidative stress (Takimoto and
Kass, 2007; Maulik and Kumar, 2012), hypoxia (Kumar et al.,
2018) (Giordano, 2005; Chu et al., 2012; Mirtschink and Krek,
2016), ANG (Patel et al., 2009; Jiang et al., 2014; Yu et al., 2018),
ELAC2 (Haack et al., 2013; Siira et al., 2018), aging, and caloric
intake, (Dong et al., 2007; Dai D. F. et al., 2012; Chiao and
Rabinovitch, 2015; Wang et al., 2015), which indicates an
important role for tsRNAs in cardiac hypertrophy.

Therefore, there are a number of research opportunities to
examine the role of tsRNAs in cardiac hypertrophy and other
cardiac diseases. While it is not clear how global tsRNAs are
changed during the development of cardiac hypertrophy,
although tRF-5s were identified in ISO-induced hypertrophy
(Shen L. et al., 2018). Whether other inducers modulate tsRNA
in different cardiac hypertrophy models remains unknown. If
this happens to be the case, it would be interesting to see if
different hypertrophy inducers generate different tsRNAs and
understand their biological function. As we discussed, cardiac
Frontiers in Pharmacology | www.frontiersin.org 12
hypertrophy can be categorized into compensation and
decompensation stages (Frey and Olson, 2003; Diwan and
Dorn, 2007; Nakamura and Sadoshima, 2018). Dissecting the
role of tsRNAs in these stages may provide new perspectives or
therapeutic targets. Since there is very limited research that has
investigated the role mitochondrial tsRNAs, most of the
molecular and biological functions of tsRNAs described here
are cytoplasmic tsRNAs generated from nuclear-encoded tRNAs.
So, mitochondrial-encoded tRNAs (Suzuki et al., 2011) and those
that can shuttle between the cytoplasm and mitochondria (Rubio
et al., 2008; Mercer et al., 2011) represent an opportunity for
further investigation.

Several lines of evidence demonstrate that mitochondrial
tsRNAs differ from nuclear tsRNAs in terms of their sequence
and size (Hirose et al., 2015; Telonis et al., 2015b; Loher et al.,
2017). Mitochondrial tsRNAs may also contribute to miRNA
biogenesis in these organelles (Venkatesh et al., 2017). As
mitochondria are heavily involved in hypertrophic responses
(Ballinger, 2005; Abel and Doenst, 2011; Rosca et al., 2013) and
mt-tRNA mutations are associated with cardiovascular disease
(Jia, Wang et al., 2013; Scheibye-Knudsen et al., 2015), there is a
pressing need to uncover the role of tsRNAs in the heart. Lastly,
tRNAs (especially mt-tRNAs) undergo extensive post-
transcriptional regulation that may affect their function
(Suzuki and Suzuki, 2014; Lyons et al., 2018; Richter et al.,
FIGURE 3 | Function of nuclear and mitochondrial tsRNAs in cardiac hypertrophy. Pathological stress (e.g. oxidative stress) leads to the development of cardiac
hypertrophy. Emerging evidence indicates that the disruption of mitochondrial tsRNAs plays a role in this process. Consequently, it would be interesting to investigate
the following questions: 1) Whether nuclear-tsRNAs or mt-tsRNAs are induced or dysregulated during cardiac hypertrophy, 2) Whether any of these tsRNAs exert
molecular functions such as the regulation of retro-element transcription, RNAi silencing, and translation, or cellular functions such as cell proliferation, differentiation,
and apoptosis, and 3) Whether nuclear-tsRNAs and mt-tsRNAs shuttle between the nucleus and mitochondria, and if their function in different organelles affects
cardiac hypertrophy (Created with BioRender.com).
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2018). For instance, cytosin-C5 tRNA methylation by DNMT2
and NSUN2 promoted tRNA stability (Tuorto et al., 2012).
Deletion of DNMT2 caused upregulation of tsRNA-Gly in
mouse sperm (Zhang et al., 2018), whereas loss of NSUN2
promoted tsRNA generation in tumors (Blanco et al., 2016).
PUS7 is a pseudouridylation epigenetic “writer” of tRNAs, the
deletion of which leads to altered expression of tsRNAs in
embryonic stem cells, which further impairs tRF-mediated
translation regulation and results in defective germ layer
specification (Guzzi et al., 2018). Understanding these
modifications may provide insights into tsRNA biology and
their role in cardiac disorders and diseases (Figure 3).

tsRNAs have also been linked to the gene translational program
in embryonic stem cells (Blanco et al., 2016; Krishna et al., 2019),
thus it would be interesting to define the role of tsRNAs in cardiac
development as well as differentiation of stem cells into mature
cardiomyocytes. In addition, retro-elements are highly expressed in
stem cells (Boroviak et al., 2018), whose regulation helps to
determine cell differentiation and development (Schoorlemmer
et al., 2014; Robbez-Masson and Rowe, 2015). As introduced
above, tsRNAs are implicated in the regulation of retro-element
expression (Schorn et al., 2017; Boskovic et al., 2020); therefore, it
would be interesting to decipher whether tsRNAs are implicated in
Frontiers in Pharmacology | www.frontiersin.org 13
determining these developmental stages by regulating retro-
element expression.
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