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Abstract

Chronic neck pain (CNP), a global health problem, involves a large amount of psychological

and socioeconomic burdens. Not only physical causes but also behavioral disorders such

as a fear-avoidance belief (FAB) can associate with the chronicity of neck pain. However,

functional brain mechanisms underlying CNP and its related behavioral disorders remain

unknown. The aim of the current resting-state functional magnetic resonance imaging

(fMRI) study was to explore how the functional brain networks differed between CNP

patients and age- and sex-matched healthy, pain-free controls (HCs). We also investigated

whether these possible brain network changes in CNP patients were associated with fear

avoidance belief (FAB) and the intensity of pain. We analyzed the resting-state fMRI data of

20 CNP patients and 20 HCs. FAB and the intensity of pain were assessed by Tampa Scale

for Kinesiophobia (TSK) and Visual Analog Scale (VAS) of pain. The whole brain analysis

showed that CNP patients had significant different functional connectivity (FC) compared

with HCs, and the right dorsolateral prefrontal cortex (DLPFC) was a core hub of these

altered functional networks. Furthermore, general linear model analyses showed that, in

CNP patients, the increased FC between the right DLPFC and the right anterior insular

cortex (aIC) significantly associated with increased TSK (p = 0.01, statistical significance

after Bonferroni correction: p<0.025), and the FC between the right DLPFC and dorsal pos-

terior cingulate cortex had a trend of inverse association with VAS (p = 0.04). Our findings

suggest that aberrant FCs between the right DLPFC and aIC associated with CNP and its

related FAB.
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Introduction

Chronic neck pain (CNP), a global health problem, poses a large socioeconomic burden,

including restrictions on social life, reduced work productivity, and the cost of healthcare. The

global point prevalence of cervical pain was reported to be about 5%, and the large population

of patients suffer neck pain-related disability.[1, 2]

Numerous neuroimaging studies involving other musculoskeletal pain such as chronic low

back pain (CLBP) have shown widespread structural and functional brain changes in individu-

als with chronic pain compared with healthy, pain-free controls (HCs).[3, 4] These changes

may be associated with emotional, cognitive and behavioral properties of chronic pain

patients.[5–7] Resting-state functional magnetic resonance imaging (fMRI) studies have

shown altered functional connectivity (FC) in three main networks: the central executive net-

work (CEN) (dorsolateral prefrontal cortex [DLPFC] and posterior parietal cortex), the

salience network (SN) (anterior insular cortices [aIC] and anterior cingulate cortex [ACC]),

and the default mode network (DMN) (posterior cingulate cortex [PCC]/precuneus[Pcu],

medial prefrontal cortex [mPFC], and angular gyrus) in patients with CLBP and knee osteoar-

thritis (OA).[8–11]

On the other hand, despite the large population of patients, neuroimaging analyses in CNP

are still understudied. Neck pain often results in physical disorders in the upper part of the

body and is accompanied by symptoms such as headache and shoulder stiffness.[12] These

unique properties may present with a different type of discomfort and disability from that

experienced in CLBP and OA, possibly leading to CNP-specific alteration in the functional

brain network. Two resting-state fMRI studies showed significantly different brain activity in

specific brain areas such as middle frontal gyrus, left insula, and superior frontal gyrus in CNP

patients compared to control groups.[13, 14] However, functional brain networks in CNP

remain unknown. Furthermore, CNP is attributed to not only biological causes but also behav-

ioral disorders, such as pain catastrophizing and fear avoidance beliefs (FAB).[15–17] A fear

avoidance model involving these psychological and behavioral disorders is broadly accepted to

explain a vicious cycle of persistent pain.[18] In fact, FAB has been reported to associate with

the prevalence and prognosis of chronic musculoskeletal pain including neck pain.[16, 17, 19–

21] Several neuroimaging studies of CLBP indicated that behavioral components included in

fear avoidance model such as pain catastrophizing and FAB may be associated with the dis-

rupted functional brain network.[5, 7, 22] However, the underlying brain mechanisms of FAB

in CNP is also unknown.

We hypothesized that CNP patients would show different functional brain networks com-

pared to individuals without pain in resting state. We also hypothesized that these disturbed

networks would be associated with increased pain and FAB in CNP patients. For this purpose,

we explored whether and how the resting-state FCs in CNP patients differed compared to

HCs. In addition, we investigated whether these possible FC differences in CNP patients were

associated with FAB and the severity of pain.

Materials and methods

Ethics statement

This study was approved by the institutional ethics committee of Keio University School of

Medicine (authorization number: 20160002), and all subjects provided their written informed

consent in line with the Declaration of Helsinki. The study was registered in the University

Hospital Medical Information Network Clinical Trials Registry (ID: 000024475).
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Subjects and clinical assessment measures

Twenty-one right-handed CNP patients from outpatients of Keio University Hospital and 25

age- and sex- matched HCs were enrolled. One CNP patient and 5 HCs were excluded due to

a high rate of invalid volumes, as mentioned below. A total of 20 CNP patients and 20 HCs

were analyzed in this study.

Specific inclusion criteria for chronic neck pain were 1) experiencing pain at the neck, 2)

pain persisting for three months or longer, and 3) pain of�4 on the Numerical Rating Scale

(NRS; scale of 0–10) at the initial visit. Subjects with any psychiatric disorders or any brain

anatomical abnormalities and ones who were expected to have difficulty keeping their head in

the same position because of neck pain during fMRI scanning were excluded from the enroll-

ment of the study.

We measured the current pain on a Visual Analog Scale (VAS; 0–100 mm) and FAB on the

short-version of Tampa Scale for Kinesiophobia (TSK; 11–44 points).[23, 24] Subjects

answered these questionnaires on the same day as their fMRI examination.

Data acquisition and preprocessing

A 3.0-T Sigma MRI system (GE Healthcare, Chicago, IL, USA) with an 8-channel phased array

coil was used to obtain brain imaging data. Anatomical images were acquired with 3-dimensional

brain volume imaging with an extended dynamic range T1-weighted sequence: voxel size = 1 × 1

× 1 mm; inversion time (TI)/flip angle (FA) = 650 ms/8˚; field of view (FOV) = 256 mm.

Resting state functional images were acquired using gradient echo planner imaging:

sequence = ascending; slice thickness/gap = 3.2/0.8 mm; FOV = 212 mm; acquisition

matrix = 64 × 64 mm, repetition time (TR) = 2500 ms; echo time (TE) = 30 ms; and flip

angle = 80˚; number of slices = 40; resting scanning time = 8 min. All subjects were directed to

stay awake with their eyes open without thinking of any specific thing during scanning. To

confirm subjects’ state of awakeness during scanning, we performed the Stanford Sleepiness

Scale (SSS; scale of 1–7)[25] immediately after scanning. We regarded SSS� 5 as an exclusion

criterion for data analysis, but no one met this criterion.[26]

The fMRI data were preprocessed using the CONN toolbox Version 17.f, [27] running on

MATLAB version R2015b (Mathworks, Inc., Natick, MA, USA). The preprocessing encom-

passed discarding the first four volumes to allow for magnetic field stabilization, skull extrac-

tion, slice time correction, motion correction, high-pass and low-pass temporal filtering (0.008

and 0.09 Hz), and scrubbing outlier volumes identified by Artifact Detection Toolbox. Several

sources of noise that might contribute to non-neuronal fluctuations were removed from the

data through linear regression. These included the six parameters obtained by rigid body cor-

rection of head motion, the global blood oxygenation level dependent (BOLD) signal averaged

over all voxels of the brain, and the signals from five components each of the white matter and

CSF region. Subjects with a high rate of outlier volumes (>10%) were excluded from the analy-

sis. Overall, all included healthy controls and patients exhibited minimal artifacts (standard-

ized global brain activation < 5 and relative mean displacement < 1 mm). There was no

significant difference in the number of volumes remained after the scrubbing process between

the groups. All preprocessed data were then normalized spatially in accordance with the Mon-

treal Neurological Institute (MNI) template. Finally, all resulting images were smoothed iso-

tropic a Gaussian filter kernel, with a full width at half maximum of 5 mm.

Statistical analyses

Questionnaire data analysis. The normality of the questionnaire data was assessed using

the Shapiro-Wilk test. The clinical assessment measures were compared between the CNP and
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HC groups using Wilcoxon’s rank test with the JMP software program (ver.13.0.0; Cary, NC,

USA).

Functional connectivity analysis. Each voxel was assigned to 499 well-validated regions

of interest (ROIs) for each participant (Fig 1). The parcellation of 499 ROIs was derived from

functional brain signals using a Ward hierarchical clustering incorporated with connectivity

constraints, respecting to common functional networks identified by an independent compo-

nent analysis.[28] Optimal parcellation was determined by supervised clustering using Python

Scikit-learn.[29] BOLD signal of ROI was computed as an average across voxels contained in

each ROI.

CONN calculated the Pearson’s correlation coefficients (r-values) of time courses of BOLD

signals for all combinations of ROIs and then analyzed the FC using the Fisher’s transformed

r-values. A general linear model (GLM) analysis and false discovery rate (FDR)-corrected p-

values (p-FDR) < 0.05 were used to identify the significance of the whole-brain analysis for

group-level comparisons after adjusting age and sex. The brain network results were visualized

using the BrainNet Viewer (http://www.nitrc.org/projects/bnv/).[30]

Association between clinical factors and functional connectivity. In the whole brain

analysis, the right DLPFC had 15 FCs that were significantly different between CNP patients

Fig 1. Brain surface schema of 499 regions. (A) Brain surface schema of 499 regions. (B) Histogram showing a distribution of number of

voxels each region contains. L: left, R: right, A: anterior, P: posterior, ROI: region of interest.

https://doi.org/10.1371/journal.pone.0221023.g001
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and HCs (p-FDR<0.05), thereby was identified as a ROI with the largest number of significant

links. Moreover, these significant DLPFC FCs included ROIs in the SN and DMN which had

the extensive a priori evidence regarding the involvement in chronic pain. Therefore, we

regarded the right DLPFC as an important hub in the functional brain networks in CNP, and

focused on the association between these 15 DLPFC FCs and clinical assessment measures

(TSK and VAS). To identify this association, additional GLM analyses on TSK and VAS were

performed specifying these DLPFC FCs as covariates of interest using the JMP software pro-

gram (ver.13.0.0; Cary, NC, USA). To determine the final GLMs, these 15 DLPFC FCs were

examined in a stepwise backward and forward selection procedure using the criterion of P

<0.1. After this selection process, we also considered the rationality of a parameter estimate of

each FC retained in stepwise selection procedure. Namely, as for FCs that exhibited CNP>HC

in the whole brain analysis, we considered a FC with positive parameter estimate in clinical

association analysis in CNP patients to be a rational covariate to the model. Conversely, as for

FCs that exhibited CNP<HC, we considered a FC with negative parameter estimate in clinical

association analysis in patients to be rational. Accordingly, when the positive/negative of the

estimate of each FCs retained in stepwise analysis contradicted the group-level contrast in the

whole brain analysis, such FCs were excluded from the final model. The final GLMs of TSK

and VAS were constructed by including age, sex, and the FCs selected by the process described

above. For these two GLM analyses, Bonferroni correction for multiple testing was applied

(statistical significance; p<0.05/2).

Post-hoc gray matter volume analysis. Gray matter volume (GMV) based on a

T1-weighted structural image was preprocessed including skull stripping, gray and white matter

segmentation, B1 bias field collection, non-linear registration to an MNI space, and surface

labeling corresponding to a predetermined anatomical brain atlas [31] using FreeSurfer v6.0

(http://surfer.nmr.mgh.harvard.edu/), an open-source software validated previously.[32–35] We

chose anatomical parcels including the DLPFC, the aIC, and the dorsal PCC identified in the

functional analyses and applied age- and sex-adjusted GLM to examine differences of gray mat-

ter volumes between HC and CNP and association of the volumes with TSK and VAS in CNP.

Results

Demographic and clinical assessment measures

Demographic data and questionnaire scores are shown in Table 1. The TSK scores were signif-

icantly higher in the CNP group than in the HC group.

Whole-brain analyses for group-level comparisons

We identified 29 connections of 38 ROIs with significantly different FCs between the CNP

patients and HCs (Table 2). PCC subregions were identified according to Vogt’s description.

[36] ROIs with multidirectional connectivity changes, i.e. with two or more significant differ-

ent links in group comparison, were shown in Fig 2. A ROI with the largest number of signifi-

cant links was identified as the right DLPFC according to the 499 ROI atlas.

Association between clinical factors and functional connectivity

After a stepwise selection and a consideration of rationality of each parameter estimate, the

FCs of the right DLPFC to the right aIC and the right Pcu were retained as significant determi-

nants for TSK, and FCs to the dorsal PCC and the right supramarginal gyrus were retained for

VAS. Thus, the final GLMs were constructed for the association of these FCs with TSK and

VAS (Table 3). The GLM for TSK revealed that increased FC between the right DLPFC and
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Table 1. Demographic and questionnaire scores.

CNP (n = 20) HC (n = 20) p value a

Age, y 45.2 ± 10.3 44.5 ± 9.9 0.75

Male, n (%) 6 (30) 6 (30) -

Disease duration, month 47.2 ± 40.7 - -

VAS 49.9 ± 21.6 - -

TSK 27.2 ± 4.3 16.8 ± 5.4 < 0.01

a: Wilcoxon’s rank test.

data are presented as mean ± standard deviation values or as the number of patients (percentage).

CNP: chronic neck pain, HC: healthy control, VAS: Visual Analog Scale, TSK: Tampa Scale for Kinesiophobia.

https://doi.org/10.1371/journal.pone.0221023.t001

Table 2. Functional Connectivity with significant difference between CNP and HC on the whole brain analysis.

ROI (MNI Coordinates) ROI MNI coordinates T-values p-FDR

CNP>HC

rt. DLPFC (36, 40, 18) rt. Central Opercular Cortex 55, -7, 5 3.50 0.012

rt. Parietal Operculum Cortex 45, -28, 24 3.57 0.024

rt. aIC 38, 14, 10 3.70 0.028

rt. Supramarginal Gyrus 58, -28, 34 3.96 0.028

lt. aIC -32, 16, 6 4.26 0.028

lt. hippocampus (26, -10, -27) lt. Frontal Pole -13, 60, 10 4.03 0.046

lt. Superior Frontal Gyrus -11, 18, 60 4.33 0.046

rt. Frontal Pole (39, 51, 13) lt. Postcentral Gyrus -58, -10, 30 4.27 0.034

rt. Precingulate Gyrus 53, -7, 30 4.46 0.034

rt. aIC (38, 14, 10) rt. Frontal Pole 25, 53, -15 4.46 0.038

rt. Cuneal Cortex (3, -88, 37) rt. Superior Parietal Lobule 27, -42, 70 4.45 0.040

CNP<HC

rt. DLPFC (36, 40, 18) dorsal PCC 2, -36, 36 4.61 0.012

rt. Middle Temporal Gyrus 60, -19, -22 4.35 0.024

rt. Pcu 3, -59, 33 3.94 0.028

ventral PCC -1, -46, 30 3.94 0.028

ventral PCC 0, -47, 12 3.86 0.028

lt. Angular Gyrus -51, -59, 27 3.60 0.047

lt. DLPFC -14, 59, 20 3.49 0.048

lt. Superior Frontal Gyrus -25, 20, 56 3.46 0.048

Pcu -1, -57, 24 3.45 0.048

rt. Middle Frontal Gyrus 26, 27, 49 4.06 0.028

lt. hippocampus (26, -10, -27) Post Postcentral Gyrus 1, -38, 77 4.05 0.046

dorsal PCC (2, -36, 36) lt. Pcu -8, -53, 60 4.23 0.026

dorsal PCC (-1, -35, 44) dorsal PCC 2, -36, 36 4.96 0.009

rt. Lateral Occipital Cortex 48, -59, 41 4.22 0.039

Middle Cingulate Cortex (12, -29, 44) lt. Occipital Pole -6, -95, 19 4.92 0.009

brain stem 4, -35, -15 4.28 0.033

lt. Middle Temporal Gyrus (-53, -32, -6) rt. Precingulate Gyrus 52, 7, 20 5.59 0.001

lt. Paracingulate Gyrus (-1, 54, 9) rt. Superior Parietal Lobule 23, -53, 57 4.50 0.034

MNI coordinates (x, y, z) are shown in mm.

ROI: Region of interest, CNP: chronic neck pain, HC: healthy control, p-FDR: false discovery rate-corrected p-values, rt: right, lt: left, DLPFC: dorsolateral prefrontal

cortex, aIC: anterior insular cortex, PCC: posterior cingulate cortex, Pcu: Precuneus Cortex.

https://doi.org/10.1371/journal.pone.0221023.t002
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Fig 2. Whole brain functional connectivity map for group-level comparison (CNP vs. HC). ROIs with two or more significant different links

in group comparison were shown as red spheres. Size of spheres represents number of links (p-FDR<0.05) that each ROI has. Width and color

of links represent the correlation coefficient and the vector of each connection; CNP>HC; orange, CNP<HC; blue. The numbers of voxels and

links of each ROI were shown in the table in the figure. HC: healthy control, CNP: chronic neck pain, ROI: region of interest, p-FDR: false

discovery rate-corrected p-values, FC: functional connectivity, L: left, R: right, A: anterior, P: posterior, rt: right, lt: left, DLPFC: dorsolateral

prefrontal cortex, PCC: posterior cingulate cortex, aIC: anterior insular cortex.

https://doi.org/10.1371/journal.pone.0221023.g002

Table 3. The final GLMs for association between clinical factors and functional connectivity of the right DLPFC in CNP patients (N = 20). Age- and sex-adjusted.

Clinical factors FC β T-value P-value

VAS adjusted R2 = 0.39, F = 4.01, p = 0.02

dorsal PCC -0.42 -2.25 0.04

rt. Supramarginal Gyrus 0.41 2.01 0.06

TSK adjusted R2 = 0.31, F = 3.09, p = 0.04

rt. aIC 0.60 2.84 0.01

rt. Pcu -0.05 -0.25 0.8

GLM: general linear model, CNP: chronic neck pain, FC: functional connectivity, VAS: visual analog scale, TSK: Tampa Scale for Kinesiophobia, rt: right, DLPFC:

dorsolateral prefrontal cortex, PCC: posterior cingulate cortex, aIC: anterior insular cortex, Pcu: Precuneus Cortex.

https://doi.org/10.1371/journal.pone.0221023.t003
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the right aIC was significantly associated with increased TSK in CNP patients. The GLM for

VAS showed a trend of inverse association between VAS and the intensity of FC between the

right DLPFC and dorsal PCC, whereas the association was insignificant after Bonferroni cor-

rection. Group difference in FC between the right DFPLC and the right aIC and the associa-

tion between TSK and the FC in CNP were shown in Fig 3A and 3B. For reference, we

examined the association of the FC between right DLPFC and right aIC with TSK in HCs,

whereas no significant association was observed. (Fig 3B).

Post-hoc gray matter volume analysis

The dorsal PCC showed significantly lager GMV in CNP patients than in HC. No significant

difference was found in GMV of the right DLPFC and the right aIC between the groups. There

were no significant associations of the GMVs of these regions with TSK and VAS in CNP

(Table 4).

Discussion

Our data showed that, in the resting state, CNP patients had significant different functional

brain networks compared with HCs, and the right DLPFC was a core hub of these altered

functional networks. We also showed that the FC between the right DLPFC and the right aIC

significantly associated with patients’ kinesiophobia, suggesting that aberrant right DLPFC

connectivity to the right aIC may play a key role in FAB in CNP patients.

The altered functional connectivity in chronic neck pain

The state of the brain in chronic pain encompasses both the disruption of whole-brain network

and the disruption of local FCs. As a disorganized whole brain network is commonly observed

in various chronic pain conditions, more generalizable neuroimaging analyses viewing large-

scale brain functional reorganization have been proposed rather than analyses focusing on a

specific local brain region.[37] However, as the disruption of local brain functional network

and its clinical association are unique to the types of the chronic pain, [8–11] the accumulation

of neuroimaging data focusing on local brain regions may also help understanding of disease-

specific alteration in local functional connections. To our knowledge, this is the first study to

show CNP-specific change in FC and its association with FAB and pain. From our results of

the whole-brain analysis of 499 ROIs, similar to other musculoskeletal pain such as CLBP and

OA, CNP patients also showed several altered FCs of the CEN, SN, and DMN. A systematic

review of neuroimaging studies on CLBP summarized that the altered DMN activity and/or

connectivity were predominantly associated with CLBP.[4] Several resting state fMRI studies

showed increased DMN FCs to aIC, ACC, and inferior parietal lobule and decreased FC

between mPFC and precuneus in CLBP, [9, 11] and increased anticorrelation between the aIC

and DMN and decreased FC between mPFC and precuneus in OA patients, [9, 10] indicating

that the SN and DMN are key networks in chronic musculoskeletal pain. Interestingly, in our

study, the DLPFC, a hub of the CEN, had the largest number of links with different FC

between CNP patients and HCs. Futhermore, these included links to aIC (SN) and PCC and

precuneus (DMN). This specific finding suggests that aberrant FC of the DLPFC may be

strongly associated with neural mechanisms of the chronicity of neck pain.

The role of DLPFC in pain

The DLPFC has been shown to be mainly related to cognitive processes such as attention, deci-

sion-making, working memory, planning ability, learning ability, and regulating emotion.

Fear avoidance and functional connectivity in chronic neck pain
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[38–41] The DLPFC is also included in the nociceptive system, which recognizes and processes

pain both perceptually (primary and secondary somatosensory cortex and thalamus) and affec-

tively (ACC, DLPFC, and aIC). [42]

Experimental pain stimuli evoke bilateral DLPFC activation [43–45] and enhance the

DLPFC connectivity to other brain regions, such as the aIC and ACC.[46] Furthermore, the

Fig 3. Brain network associated with TSK. (A) Group difference in functional connectivity (zr) between rt. DLPFC and rt. aIC. Data are

expressed as mean and standard deviation. (B) Association between the TSK and FC (rt. DLPFC-rt. aIC) in HC and CNP. Residuals added to

means of each score were plotted under age- and sex-adjusted regression analyses. P values represent significance of partial regression

coefficient. rt: right, DLPFC: dorsolateral prefrontal cortex, aIC: anterior insular cortex, FC: functional connectivity, HC: healthy control, CNP:

chronic neck pain, TSK: Tampa Scale of Kinesiophobia, zr: Fisher’s transformed correlation coefficient.

https://doi.org/10.1371/journal.pone.0221023.g003

Table 4. Group differences in gray matter volume of the main regions and correlations with clinical variables in CNP patients. Age- and sex adjusted.

ROI Gray matter volume Correlation with clinical variables in CNP (N = 20)

CNP>HC VAS TSK

T-value P-value T-value P-value T-value P-value

rt DLPFC 0.75 0.46 -1.66 0.12 -1.12 0.28

rt aIC -0.15 0.88 -0.84 0.49 0,19 0.85

dorsal PCC 2.69 0.01 1.56 0.13 0.61 0.55

ROI: Region of interest, CNP: chronic neck pain, HC: healthy control, rt: right, DLPFC: dorsolateral prefrontal cortex, PCC: posterior cingulate cortex, aIC: anterior

insular cortex, VAS: visual analog scale, TSK: Tampa Scale for Kinesiophobia.

https://doi.org/10.1371/journal.pone.0221023.t004
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activation of the DLPFC has been suggested to be involved in pain suppression. [45, 47–49]

On the other hand, in chronic pain patients, some studies have found that the gray matter vol-

ume or density in the DLPFC was reduced compared to HCs, and these structural abnormali-

ties were associated with pain.[50–52] In addition, other resting-state and task-based fMRI

studies have indicated that abnormal activation or connectivity of DLPFC in chronic pain

patients was restored by pain treatment or placebo.[53–55]. These findings imply that struc-

tural and functional abnormalities of the DLPFC may dull pain suppression, consequently

leading to the augmentation and prolongation of pain, but these abnormalities of the DLPFC

may be reversible by proper pain treatments.

Our results showed decreased FCs between the right DLPFC and PCC subregions in CNP

patients compared to HCs. Furthermore, the FC between the right DLPFC and dorsal PCC

had a trend of inverse correlation with the intensity of pain. The PCC, a key hub of the DMN,

is another important region in pain modulation. [4, 56] In a previous task-based fMRI study,

PCC was activated during pain stimulation. This stimulus-driven activation of PCC was aug-

mented in CLBP patients compared to HCs.[57] Another fMRI study showed dorsal PCC acti-

vation during task evoking pain catastrophizing was positively correlated with chronic pain

intensity in fibromyalgia patients.[58] These evidence suggest that the PCC, specifically, the

dorsal subregion is related to increasing pain perception. Taken together, a decreased FC

between the DLPFC and dorsal PCC in CNP may be related to disrupting normal pain sup-

pression processing, consequently increasing pain intensity.

Chronic neck pain and fear avoidance belief

According to previous studies, FAB is significantly stronger in chronic pain patients than in

others, [19, 20] and the intensity of FAB was a significant predictor of recovery from

impairment.[17, 59] Thus, the FAB is a core factor contributing to the chronicity of musculo-

skeletal pain, and modification of the FAB in chronic patients can be an important treatment

target to facilitate an early recovery from pain. Identifying brain regions and their functional

connection associated with the FAB of chronic pain patients may aid in visualizing these thera-

peutic effects.

The TSK, which was originally developed for the evaluation of FAB in low back pain

patients, has also been validated for pain in other parts of the body, including neck pain. The

TSK score has been suggested to be a sensitive predictor of the duration and degree of pain-

related disability and resistance of treatment in neck pain patients.[60–62] A previous study

showed that neurokinin 1 receptor function in the right ventromedial prefrontal cortex

(VMPFC) was associated with TSK. [63] This finding can infer that the function of the VMPFC

and its involving brain networks could be associated with FAB in chronic pain patients. From

our additional voxel-wise analysis performed by placing a seed on the VMPFC, we found some

significant FCs in the group-level comparison, while these FCs were not associated with TSK in

CNP patients (data not shown). Interestingly, our results showed a significant association

between TSK and the DLPFC connectivity in CNP patients, i.e., increased FC between the right

DLPFC and the right aIC was significantly associated with greater TSK scores, while no signifi-

cant association between the FC of these ROIs and TSK was observed in HCs.

The aICs have abundant connections to other brain regions and play a key role in integrat-

ing perceptual, cognitive, and affective pain.[44, 64, 65] A task-based fMRI study reported that

the TSK correlated positively with the activation of the aIC; furthermore, in CLBP, the TSK

correlated differently with the FC between aIC and the amygdala compared with HCs.[22]

While few studies to date have described the association of the DLPFC with FAB, the

DLPFC activity has been reported to have negative correlations with pain unpleasantness.[45]
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Furthermore, a task-based fMRI study showed that pain catastrophizing, another element of

the fear avoidance model, correlated negatively with the DLPFC activity but positively with the

IC activity evoked by pain stimuli.[66] A resting-state fMRI study showed that pain catastro-

phizing negatively correlated with the FC between the DLPFC and PCC in HCs but positively

in chronic pain patients.[67] Taken together, these findings suggest that the DLPFC activity

and its connection to other brain regions, such as the aIC and PCC, may play a key role in

modulating pain-related negative feelings in HCs, but such functional integration between

these brain regions may be disrupted in chronic pain patients, resulting in the augmentation

of fear avoidance and catastrophizing beliefs.

Brain structural implication in chronic neck pain

A structural brain change is another important aspect to understanding central mechanism

underlying chronic pain. Structural MRI studies have shown gray matter abnormalities in the

regions such as the DLPFC, IC, ACC, and PCC in chronic pain. [54, 67, 68] While we focused

on the functional brain networks in CNP throughout the study, we performed an additional

structural brain analysis to explore the potential involvement of structural brain change in the

observed FC differences between groups. Although our functional analysis showed that the

right DLPFC and the right aIC were the key regions associated with patients’ behaviors, nei-

ther structural differences between patients and controls nor their associations with patients’

behaviors were found. On the other hand, an increased GMV of the dorsal PCC was observed

in CNP patients while this structural change was not directly correlated with patients’ behav-

iors. Such a structural change in the dorsal PCC may involve in observed FC differences

between groups, while the relationship between the structural and functional brain changes is

still unknown, and each of these brain changes may provide unique information on pain cog-

nition and behavior.[68]

Limitations

Several limitations associated with the present study warrant mention. First, most patients had

used various medications, such as pregabalin, tramadol, and/or antidepressants, to relieve

pain, so we were unable to exclude the possible effect of these medication on the brain func-

tions. Second, no significant correlation was found between the TSK and the intensity of pain,

suggesting that FAB may estimate chronicity of neck pain via the disruption of functional

brain network, but not the degree of individual pain. More complex functional changes in the

brain may associate with the augmentation of neck pain. Third, because of the cross-sectional

study design, we were unable to demonstrate the causal relationship of FAB, pain, and the

altered FCs of brain regions. Therefore, whether or not the altered FCs in the brain may affect

FAB and thereby lead to the chronicity of pain remains unclear. To clarify these causal rela-

tionships, sequential data of neuroimaging and clinical evaluations from the onset of pain are

required.

Conclusions

The alteration of DLPFC connectivity may be involved in the pathology of CNP. Furthermore,

an aberrant FC between the DLPFC and aIC may disrupt normal integration in processing the

FAB in CNP patients. Therapeutic strategies amending FAB may restore normal brain func-

tional network, consequently help stop the vicious cycle of CNP. Further prospective longitu-

dinal and interventional studies are necessary to clarify these aspects.
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