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ARTICLE

Genetic Algorithms as a Tool for Dosing Guideline 
Optimization: Application to Intermittent Infusion Dosing 
for Vancomycin in Adults

Pieter J. Colin1,*, Douglas J. Eleveld1 and Alison H. Thomson2

This paper demonstrates the use of a genetic algorithm (GA) for the optimization of a dosing guideline. GAs are well-suited to 
derive combinations of doses and dosing intervals that go into a dosing guideline when the number of possible combinations 
rule out the calculation of all possible outcomes. GAs also allow for different constraints to be imposed on the optimization 
process to safeguard the clinical feasibility of the dosing guideline. In this work, we demonstrate the use of a GA for the 
optimization of intermittent vancomycin administration in adult patients. Constraints were placed on the dose strengths, the 
length of the dosing intervals, and the maximum infusion rate. In addition, flexibility with respect to the timing of the first 
maintenance dose was included in the optimization process. The GA-based optimal solution is compared with the Scottish 
Antimicrobial Prescribing Group vancomycin guideline.

Genetic algorithms (GAs) were invented by John Holland 
in the 1960s to study biological evolution and the phenom-
enon of adaptation as it occurs in nature.1 Currently, GAs 
are considered “general-purpose” search methods that 
find the optimal solution to a problem by examining only a 
small fraction of the possible candidate solutions. This is 
particularly interesting for complex optimization and search 
problems when the number of possible solutions prevent 
the evaluation of all possible solutions. GAs are omni-
present in science and are used in machine learning, the 
development of artificially intelligent systems, economics, 
social sciences, etc.

In clinical pharmacology, GAs have been explored in 
the context of pharmacokinetic/pharmacodynamic (PK/
PD) model selection,2,3 the optimization of sampling times 

for PK studies,4 and as alternative structural models to the 
multicompartment mammillary models in a machine learning 
approach to PK/PD.5

To the best of our knowledge, GAs have not been used 
previously to develop a drug dosing guideline. Nevertheless, 
GAs are a more efficient approach to the (modeling and sim-
ulation (M&S) supported) trial-and-error type evaluations 
that usually go into the development of a dosing guideline. 
Furthermore, algorithm-based optimization of dosing regi-
mens is a natural extension to the already widely embraced 
M&S centered approach to drug development (i.e., mod-
el-informed drug development). Finally, the approach of 
using a GA to develop a dosing guideline aligns with the use 
of optimal control techniques to mathematically optimize 
drug dosing regimens, as recently advocated by Moore.6
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
✔  Genetic algorithms (GAs) have been explored in the 
context of pharmacokinetic/pharmacodynamic (PK/PD) 
model selection, the optimization of sampling schemes, 
and as alternative structural PK models in a machine 
learning approach to PK/PD.
WHAT QUESTION DID THIS STUDY ADDRESS?
✔  Are GAs informed by clinical trial simulations useful for 
deriving dosing guidelines? If so, how does the GA-based 
solution compare with current expert knowledge-based 
derived guidelines?

WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
✔  GAs can be successfully applied to derive dosing 
guidelines. An advantage is that GAs require formaliza-
tion of the different steps in the process, which increases 
transparency in decision making, and that practical con-
straints can be imposed, which facilitate the implementa-
tion of the guideline in clinical practice.
HOW MIGHT THIS CHANGE DRUG DISCOVERY,  
DEVELOPMENT, AND/OR THERAPEUTICS?
✔  GAs could help to move away from modeling and sim-
ulation (M&S)-based trial-and-error type optimizations of 
dosing guidelines and could be seen as a natural exten-
sion of the M&S centered approach to drug development.
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In this work, we demonstrate the use of a GA for the op-
timization of a dosing guideline for intermittent infusions 
of vancomycin in adult patients. As a starting point for the 
optimization, we used a modified version of the Scottish 
Antimicrobial Prescribing Group (SAPG) vancomycin guide-
lines.7 The SAPG guidelines contain loading and maintenance 
dosage regimens based on body weight and kidney function. 
These guidelines are currently being revised and the modified 
version, based on expert opinion, aimed to address feedback 
from users that patients who are obese or with estimated 
creatinine clearance (eCLCR) > 120 mL/min tend to be under-
dosed. During the GA optimization, constraints were placed 
on the dose strengths, the length of the dosing intervals, and 
the maximum infusion duration to facilitate implementation 
of the final guideline in clinical practice. In addition, flexibility 
with respect to the timing of the first maintenance dose was 
included in the optimization process. The final GA-based op-
timal dosing guideline was compared with the modified and 
the original versions of the SAPG guideline.

METHODS

A steady-state GA was used to identify the optimal com-
bination of doses and dosing intervals for the different 
weight-function and kidney-function classes specified in 
the modified SAPG dosing guideline (Table 1). For this, 
we simultaneously optimized a combination of six loading 
doses and nine maintenance doses and dosing intervals. In 
the remainder of the paper, one such combination of doses 
and dosing intervals is called a “solution.” There were 
1.51·1012 theoretical solutions taking into account the prac-
tical constraints as detailed in the section “Evaluation of 
the fitness of the solutions.” The individual components of 
the solutions are referred to as control variables. The gen-
eral workflow for the GA-based optimization is described 
in the following sections. The “tidyverse” package (version 
1.1.1.; Wickham H. 2017) in R (R Foundation for Statistical 
Computing, Vienna, Austria) was used for data manage-
ment, calculations, and graphical analyses.

Selection of the initial population of solutions
An initial population of 200 solutions was randomly gen-
erated. This was achieved by randomly sampling a value 
for each control variable from the discrete distribution of 
possible values, taking into account the following practical 
constraints provided by clinicians:

1.	 Loading doses were multiples of 250 mg and ranged 
between 500  mg and 4,000  mg.

2.	 Maintenance doses were multiples of 250  mg and 
ranged between 500 mg and 2,000 mg.

3.	 Dosing intervals were q48h, q24h, q12h, or q8h.

Next, the fitness of the solutions was tested. Solutions not 
meeting the practical constraints, as outlined in the next sec-
tion, were not included in the initial population.

Evaluation of the fitness of the solutions
A two-stage approach was used to evaluate the fitness 
of the solutions. First, to ensure that the optimal dosing 

guideline was practical for implementation in routine clinical 
practice, we evaluated the following practical constraints:

1.	 Loading doses do not decrease with increasing pa-
tient weight.

2.	 The dosing interval does not increase with increasing 
patient eCLCR.

3.	 Daily doses (product of maintenance dose and dos-
ing interval) do not decrease with increasing patient 
eCLCR.

Candidate solutions not fulfilling these criteria were penal-
ized (i.e., their fitness criterion was fixed to −10). For all other 
candidate solutions, the fitness criterion was derived from the 
simulated concentration time profiles. To simulate concentra-
tion time profiles, we used a virtual adult patient population 
based on the adult data from the vancomycin PK model de-
veloped by our group8 (n = 1,635 patients from 10 studies). 
From this dataset, 10,000 sets of patient characteristics were 
randomly sampled. In the virtual population the median [min, 
max] age, weight, serum creatinine, body mass index, and 
eCLCR was 66 years [19; 100], 71 kg [29; 282], 0.94 mg/dL [0.17; 
9.7], 25 kg/m2 [10; 80], and 80 mL/min [5.4; 427], respectively.

PK parameters were then simulated according to the model 
by Colin et al.,8 taking into account interindividual variability. 
Vancomycin administration was simulated as a short infusion. 
The infusion duration was calculated by dividing the dose by 
the maximum infusion rate of 500 mg/h and rounding up to 
the nearest half hour (i.e., infusion durations were multiples of 
30 minutes). To reflect clinical practice,9 some flexibility was 
allowed in the timing of the first maintenance dose relative to 
the loading dose. The first maintenance dose on the q12h, 
q24h, and q48h regimen was allowed to be given in an in-
terval between 6 and 12, 12 and 24, and 24 and 48 hours 
after the loading dose, respectively. We added this flexibility 
to 50% of all simulated dosing regimens, with the exact mo-
ment of administration determined by a random draw from a 
uniform distribution. For simulations without flexibility, the first 
maintenance dose was given as defined by the dosing inter-
val (i.e., 12, 24, or 48 hours after the loading dose).

Next, concentration time profiles from 0 to 72 hours were 
calculated using the deSolve package10 in R. Areas under the 
curve (AUCs) were calculated from the differential equations. 
Calculations were parallelized on an HP Z640 workstation 
with an Intel E5-2670 version 3 (2.30 GHz) 12-core proces-
sor using the future package (version 1.13.0; Bengtsson H. 
2019) in R. The fitness criterion was calculated according 
to Eq. 1.

In this equation, fAUC denotes the fraction of calculated 
patients where the AUC is below 400  (mg.h)/L or above 
600 (mg.h)/L. The fraction of patients with AUC24 between 
400 and 600  (mg.h)/L is calculated for each day as 1 
minus the fraction of patients where the AUC24 is below 
400  (mg.h)/L minus the fraction of patients where the 

(1)

fitness =1− fAUC0−24hours<400− fAUC0−24hour>600

+1− fAUC24−48h<400− fAUC24−48h>600

+1− fAUC48−72h<400− fAUC48−72h>600
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AUC24 is above 600  (mg.h)/L. This target exposure win-
dow is a frequently reported target in the literature for the 
optimization of vancomycin therapy assuming a minimum 
inhibitory concentration ≤ 1 mg/L.11,12 To avoid the opti-
mization being driven by the most populated subgroup in 
the virtual patient population, we split up the calculation of 

the fitness criterion according to body mass index (< 18.5, 
< 30, or > 30 kg/m2), age (< 50, < 75, or > 75 years), and 
eCLCR according to Cockcroft-Gault13 (<  50, <  120, or 
> 120 mL/min). Subgroups with less than 100 individuals 
(i.e., < 1% of the virtual population) were combined. The 
fitness criterion used for the optimization was the mean 

Table 1  Comparison among the original SAPG dosing guideline, the expert knowledge-based modified version of the SAPG guideline, and the 
GA-based optimal dosing guideline

  Original SAPG dosing guideline Modified SAPG dosing guideline GA-based optimal solution

Patient weight, kg   Loading dose, mg  

< 40 750 750 1,000

40–59 1,000 1,000 1,500

60–89 1,500 1,500 2,000

> 90 2,000 - -

90–119 - 2,000 2,500

120−160 - 2,500 3,250

> 160 - 3,000 3,750

Patient eCLCR, mL/min   Maintenance dose (mg)/tau (h)  

< 20 500/48 500/48 750/48

20–25 - 500/24 500/24

20–30 500/24 - -

26–34 - 750/24 1,000/24

30–40 750/24 - -

35–49 - 500/12 1,250/24

40–55 500/12 - -

50–69 - 750/12 750/12

55–75 750/12 - -

70–89 - 1,000/12 500/8

75–89 1,000/12 - -

90–119 - 750/8 750/8

90–110 1,250/12 - -

> 110 1,500/12 - -

120–180 - 1,000/8 1,000/8

> 180 - 1,250/8 1,250/8

Performance

Cmax after LD, mg/L 26.5 [26.3; 26.7]* 26.6 [26.4; 26.8]** 33.7 [33.4; 33.9]*,**

Cmin after LD, mg/L 9.01 [8.90; 9.11]* 11.0 [10.9; 11.1]** 15.7 [15.5; 15.8]*,**

AUC0–24h, (mg.h)/L 376 [373; 379]* 404 [401; 407]** 485 [481; 489]*,**

fAUC [400–600]0–24h 0.336 [0.324; 0.348]* 0.398 [0.385; 0.411]** 0.492 [0.479; 0.505]*,**

fAUC [400–600]24–48h 0.400 [0.387; 0.413]* 0.430 [0.417; 0.443] 0.445 [0.432; 0.458]*

fAUC [400–600]48–72h 0.411 [0.398; 0.424] 0.429 [0.416; 0.442] 0.432 [0.419; 0.445]

Cmin,SS, mg/L 17.9 [16.8; 19.0]* 20.1 [19.0; 21.2] 21.0 [19.4; 22.7]*

fAUC < 10 mg/L 0.242 [0.231; 0.253]* 0.146 [0.137; 0.155] 0.156 [0.147; 0.165]*

fAUC [10–15 mg/L] 0.278 [0.266; 0.290] 0.262 [0.251; 0.273] 0.260 [0.249; 0.271]

fAUC [15–20 mg/L] 0.211 [0.200; 0.222]* 0.240 [0.229; 0.251] 0.234 [0.223; 0.245]*

fAUC > 20 mg/L 0.268 [0.257; 0.279]* 0.352 [0.340; 0.364] 0.350 [0.338; 0.362]*

Css, mg/L 26.3 [25.2; 27.4] 27.3 [26.2; 28.4] 28.8 [27.1; 30.4]

AUC24,SS, (mg.h)/L 632 [606; 659] 656 [629; 682] 690 [651; 730]

fAUC < 400 (mg.h)/L 0.214 [0.203; 0.225]* 0.171 [0.161; 0.181] 0.170 [0.160; 0.180]*

fAUC [400–600 (mg.h)/L] 0.376 [0.364; 0.388] 0.375 [0.363; 0.387] 0.361 [0.349; 0.373]

fAUC > 600 (mg.h)/L 0.410 [0.397; 0.423]* 0.455 [0.442; 0.468] 0.469 [0.456; 0.482]*

Green and red shading depicts loading doses and daily maintenance doses (mg q24h), which are higher or lower for the GA-based solution compared with the 
expert knowledge-based solution. Performance metrics are reported as means or proportions and corresponding 99% confidence intervals (CIs). Significant 
differences, judged by nonoverlapping CIs, between the GA-based solution and the original and modified SAPG guideline are shown with asterisks.
Cmax, maximum concentration; Cmin, minimum concentration; CSS, steady-state concentration; eCLCR, estimated creatinine clearance; fAUC, fraction of area 
under the curve; GA, genetic algorithm; LD, loading dose; SAPG, Scottish Antimicrobial Prescribing Group. 
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across the subgroups. By design, the fitness criterion 
ranged between 0 and 3, with 3 indicating the best possi-
ble performance.

Elitism, crossover, and mutation
After evaluating the fitness of all candidate solutions in the 
population, a new generation of 200 solutions was gener-
ated according to the following rules:

1.	 The two best performing solutions were carried over 
to the next generation (this is also known as “elitism”).

2.	 The other candidate solutions were created as follows:
a	 Two parent solutions (also referred to as chromo-

somes) were selected via tournament selection (i.e., 
for each parent, first two candidate solutions are 
randomly selected and the solution with the higher 
fitness criterion is retained as the parent solution).

b	 Fivefold crossover was performed with a crossover 
rate of 0.8.

c	 Pointwise mutation was performed with a mutation 
rate of 0.05.

d	 Steps a-c were repeated until a new population of 
size 200 was reached.

There were 14 locations on the solution where crossover 
was allowed. Positions between adjacent loading doses (n = 6) 
and daily doses (n  =  9; i.e., combinations of maintenance 
doses and dosing intervals) on the chromosome were eligible 
for crossover. The crossover locations were determined by a 
random draw from the 14 possible crossover locations.

Pointwise mutations were considered for loading doses 
and maintenance doses. Mutation consisted of randomly 
sampling from the discrete distribution of possible values 
for each variable as described under “Selection of the initial 
population of solutions.”

Additional calculations to benchmark the optimal 
solution
The AUC and maximum concentration (Cmax) and minimum 
concentration (Cmin) at steady-state were calculated from 
Eqs. 2–4.

In Eqs. 2–4, MD denotes the maintenance dose, τ is the 
dosing interval, and DUR is the duration of the drug infusion.

RESULTS

The evolution of the fitness of the solutions for the first 100 
generations is shown in Figure 1. The median fitness in 

the population increased over the first 50 generations from 
0.991 to 1.293 and leveled off over the next 50 generations 
at a mean value of 1.320 (SD = 0.029). The original SAPG 
guideline had a fitness of 1.126 and the modified guideline 
(i.e., the expert-knowledge-based dosing guideline had a 
fitness of 1.244). The fraction of solutions performing bet-
ter than the modified SAPG guideline increased during the 
optimization from 4.5% in the first generation to 61% in the 
100th generation.

The solution with the highest average fitness was se-
lected as the final solution. This approach was taken 
because the fitness for a particular solution varied slightly 
across evaluations (mean SD  =  0.004). This was due to 
the stochastic nature of the simulations to accommodate 
the flexibility in the timing of the first maintenance dose. 
The overall highest average fitness was 1.352. There was 
only one solution associated with this maximum fitness. 
Nevertheless, several solutions with similar fitness were 
identified. Figure 2 shows the distribution of loading 
doses, maintenance doses, and dosing intervals for 33 
solutions that had a fitness < 2 SDs below the fitness of 
the final solution (i.e., fitness > 1.344). Figure 2 shows that 
there was some variability in the individual components 
of the solutions. Except for the loading dose for patients 
with body weights between 120 and 160 kg (LD5) and the 
maintenance dose for patients with eCLCR below 20 mL/
min (MD1), the distribution of solutions centered around 
the final solution.

A comparison between the dosing guideline according 
to the GA-based optimal solution and the original and ex-
pert knowledge-based modified SAPG guideline is shown 
in Table 1. Loading doses for the optimal GA-based solu-
tion were higher, irrespective of patient body weight. Daily 
maintenance doses (mg q24h) were only higher for pa-
tients with eCLCR below 50 mL/min. The fraction of patients 
who attained an AUC between 400 and 600  (mg.h)/L was 
higher for the GA-based solution. The increase in AUC tar-
get attainment was most pronounced on day 1 (0.492 vs. 
0.398 and 0.336) and day 2 (0.445 vs. 0.430 and 0.400). 
Interestingly, as shown in Figure 3, the increase in target 
attainment was consistent in the virtual population leading 
to less variable target attainment across subgroups. For ex-
ample, on day 2, the 10th and 90th percentiles for target 
attainment across subgroups were 0.413 and 0.481, 0.365 
and 0.482, and 0.308 and 0.456 for the GA-based solution 
compared with the original and modified SAPG guideline. 
AUC24,SS was highest for the GA-based solution (690 vs. 656 
vs. 632 (mg.h)/L) and the fraction of patients who attained an 
AUCss between 400 and 600 (mg.h)/L was lowest (0.361 vs. 
0.375 vs. 0.376).

The high dimensionality of the problem presented here, 
with 24 individual components to optimize, resulted in 
62  hours of computation time for the GA optimization. 
The practical constraints on the optimization added to the 
complexity of the calculations and likely slowed down con-
vergence of the GA. For example, the fraction of solutions 
not fulfilling the practical constraints increased over the first 
20 generations to 92% and then gradually decreased to 
around ± 50% of the population (data not shown). Overall, 
16,833 unique solutions were identified and 5,197 of these 
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satisfied the constraints and performed better than the initial 
solution.

DISCUSSION

In this study, we have shown that a genetic algorithm is a 
useful tool to aid the development of a dosing guideline. 
In this example, GA-based optimization was applied to 
an adult dosing guideline for intermittent infusion of van-
comycin. We found that in order to further optimize the 
modified SAPG dosing guideline, loading doses should be 
increased for all patients and daily maintenance doses (mg 
q24h) should be increased for patients with eCLCR below 
50 mL/min. The GA approach allowed us to formalize prac-
tical constraints, which will facilitate implementation of the 
guideline in clinical practice. Moreover, the approach sug-
gested here used a weighted version of the fitness criterion, 
which resulted in an optimal solution with a balanced per-
formance across subgroups of patients in the population.

Guidelines for dose individualization in routine clinical prac-
tice are often based on local experience or expert opinion and 
it is unclear to what extent such guidelines actually achieve 
target concentrations or exposure. A recent study8 found 
that consensus guidelines produced by the US Food and 
Drug Administration (FDA) and also the Summary of Product 
Characteristics for vancomycin performed poorly when tested 
using a large population of patients. Furthermore, even when 
guidelines are available, they may not be in a form that can 
be implemented effectively. For example, although Colin et 
al.8 found that modified versions of the FDA and Summary of 
Product Characteristics guidelines were more likely to achieve 
target exposure, the resulting dose amounts were impracti-
cal for routine clinical application. Within Scotland, the SAPG 
guidelines for vancomycin,7 originally introduced in 2009, were 
based on a population study of vancomycin PK.14 Although 
effective implementation of these guidelines led to an im-
provement in the achievement of target concentrations,15 
it became clear that some doses were too low, especially in 

Figure 1  Maximization of the fitness criterion over 100 generations of solutions. Solutions not satisfying the constraints had a fitness 
of −10 and were excluded from this figure. The fitness for the starting point for the optimization (i.e., the expert knowledge-based 
modified Scottish Antimicrobial Prescribing Group guideline), is shown with a solid red line. Shown with a dashed red line is the 
theoretical maximum fitness of 1.353 as explained in the Discussion section of the paper.
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patients who were obese or had higher estimates of eCLCR. 
Consequently, a set of modified guidelines, based on expert 
opinion and clinical experience, was developed for discussion. 

The present study compares the performance of original and 
modified guidelines with a GA-based guideline that targets 
AUC24 on days 1–3 of therapy.

Figure 2  The distribution of the individual components of the solutions with fitness < 2 SDs below the fitness for the final solution (n = 33). 
The final solution is shown with a vertical blue line. LD denotes loading doses (mg) for the six body weight classes defined in Table 1. MD 
and Tau denote the maintenance dose (mg) and dosing interval (hours) for the nine kidney function classes defined in Table 1.

Tau6 Tau7 Tau8 Tau9

Tau2 Tau3 Tau4 Tau5

MD7 MD8 MD9 Tau1

MD3 MD4 MD5 MD6

LD5 LD6 MD1 MD2

LD1 LD2 LD3 LD4

8 12 8 12 8 8

24 48 24 12 24 12

750 1000 1000 1250 24 48

1000 500 1000 1250 750 500 750 1000

3000 3250 3500 3250 3500 3750 4000 500 750 1000 500 750 1000

500 750 1000 1250 1500 1250 1500 2000 2250 2250 2500
0

5

10

15

0

10

20

0

5

10

15

0

10

20

30

0

10

20

30

0

10

20

30

0

10

20

30

0

5

10

15

0

10

20

30

0

10

20

30

0

10

20

30

0

10

20

30

0

10

20

30

0

5

10

15

0

10

20

30

0

10

20

30

0

10

20

30

0

5

10

15

0

5

10

15

0

5

10

15

20

0

10

20

30

0

5

10

15

0

10

20

30

0

5

10

15

Value

C
ou
nt



300

CPT: Pharmacometrics & Systems Pharmacology

Genetic Algorithm-Based Dosing Optimization
Colin et al.

National consensus guidelines that recommended troughs 
of 15–20 mg/L for patients with serious infections16–18 has 
resulted in many new guidelines and nomograms to support 

vancomycin dosing.19–24 The methodologies used to create 
these guidelines ranged from local experience, 21,24–26 re-
gression analysis,19,23,27,28 simulations based on traditional 

Figure 3  The fraction of the area under the curve (fAUC) target attainment for days 1–3 for the original and revised Scottish Antimicrobial 
Prescribing Group dosing guideline (respectively shown in orange and green) and the genetic algorithm (GA)-based optimal solution 
(shown in blue). AUC target attainment was defined as the proportion of patients achieving an AUC between 400 and 600 (mg.h)/L in a 
24-hour time period. The solid and dashed lines denote the median and 10th and 90th percentiles across the subgroups.
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or population PK models20,22 to more sophisticated ap-
proaches using Monte Carlo simulation.29,30 In most cases, 
the numbers of patients used to develop and validate these 
guidelines was relatively small and the methodology used to 
choose the dose amounts and intervals unclear. Furthermore, 
although these guidelines typically improved target achieve-
ment when compared with previous approaches, they often 
focused on specific patient groups or excluded patients out-
side restricted ranges of weight or renal function.19

The present study uses a novel approach to define a 
dosing guideline and, due to the extensive patient data-
base used for the original population PK study,8 covers a 
wide range of patient characteristics with no specific exclu-
sions except renal replacement therapy. This study aimed 
to optimize dosing during the first 3 days of therapy, with 
the assumption that early target attainment potential avoids 
therapy failure,31 and that therapeutic drug monitoring sam-
ples will be measured within this timescale that can be used 
to further individualize therapy. The lower target attainment 
in steady-state for the GA-based solution should be inter-
preted in this context and represents the unlikely scenario 
when no therapeutic drug monitoring is used for treatment 
individualization.

A practical limitation of the GA-based approach is that 
there are no established rules for assessing convergence 
of the algorithm, nor are there methods available to ascer-
tain that the global maximum has been found. We handled 
this by calculating the theoretical maximum target attain-
ment rate that could be achieved when dosing is informed 
by all covariates in the population PK model. In the ab-
sence of any bias in the model, the highest performance 
would then be achieved by aiming for an AUC24 target at 
the midpoint (on the log scale) of the target AUC24 window 
(i.e., 490 (mg.h)/L). Due to the between-subject variability 
on clearance, which in the model by Colin et al.8 is 33.9% 
for a 35-year-old, 70-kg patient with a serum creatinine 
level of 0.83  mg/dL, only 45.1% of AUCs are expected 
to fall within the 400–600  (mg.h)/L target window, lead-
ing to a maximum fitness of 1.353 (target attainment over 
3 days). In situations where no such theoretical value or 
global maximum can be calculated, convergence of the 
GA might have to be assumed from empirical testing (run-
ning the GA for longer).

Drug labeling is a process of “discrete parameter opti-
mization.” Currently, labeling is often supported by M&S to 
derive optimal dose strengths and/or identify subgroups of 
patients that require dose modifications. From an economic 
point-of-view, one of the concerns for drug companies is 
to keep the label as simple as possible, requiring, for ex-
ample, as few dose strengths as possible. Regulators and 
clinicians, however, might favor a more granular approach. 
In that respect, algorithm-based optimization could be use-
ful because it forces the different stakeholders to agree on 
a target (i.e., fitness) and practical constraints (number of 
doses, dose strengths, patient stratification, etc.) up front. 
At the same time, this approach might facilitate acceptance 
of the drug label once the drug company has shown that the 
proposed dosing regimen is optimal, given the constraints, 
without the need to share data with regulators or having to 
provide simulations for alternative labeling options.

The use of the GA-based optimization is not restricted to 
drug development programs. The components that are piv-
otal for applying the approach are (i) the availability of a PK 
(PD) simulation model that is fit-for-purpose, and (ii) a good 
understanding of an appropriate PK(PD) target for the optimi-
zation. In addition to the application presented in this study, 
we envisage an added value for this approach in situations 
where the development of a dosing regimen is complicated 
by, for example, a narrow therapeutic toxic margin, nonlin-
ear PKs, acute or chronic tolerance development, etc. The 
amount of clinical evidence that will be required to confirm 
the results, much like any other M&S-supported dose find-
ing, will depend on the level of extrapolation and the (clinical) 
data package supporting the components of the GA-based 
optimization.

In conclusion, we have shown that a genetic algorithm 
informed by clinical trial simulations is a useful tool to de-
velop dosing guidelines and could help to move away 
from (M&S-based) trial-and-error type optimizations of 
dosing guidelines. For drug development companies, algo-
rithm-based optimization is a natural extension of the M&S 
centered approach to drug development. Moreover, the 
prerequisite to algorithm-based optimization (i.e., that the 
different steps in the process have to be formalized; e.g., 
choice of patient subgroups, number of dose strengths, 
PKPD target, …), will increase transparency in the develop-
ment of dosing guidelines and could facilitate acceptance 
by clinicians and regulatory authorities.
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