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Abstract: A model of a COVID-19 epidemic is used to predict the effectiveness of vaccination in the
US. The model incorporates key features of COVID-19 epidemics: asymptomatic and symptomatic
infectiousness, reported and unreported cases data, and social measures implemented to decrease
infection transmission. The model analyzes the effectiveness of vaccination in terms of vaccination ef-
ficiency, vaccination scheduling, and relaxation of social measures that decrease disease transmission.
The model demonstrates that the subsiding of the epidemic as vaccination is implemented depends
critically on the scale of relaxation of social measures that reduce disease transmission.
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1. Introduction

The objective of this study is to predict the outcome of vaccine implementation for the
mitigation of the COVID-19 epidemic in the United States. Vaccine distribution began in
the US on 14 December 2020. As of 15 June 2021, approximately 148,000,000 people have
been fully vaccinated, approximately 45% of the total US population. (https://covid.cdc.
gov/covid-data-tracker/#vaccination-demographic (accessed on 15 June 2021)). Vacci-
nation offers great hope for curtailment and elimination of the COVID-19 pandemic, but
there is uncertainty in terms of vaccine effectiveness, vaccine opposition, and the conse-
quences of resumption of normal social behaviour as the number of vaccinated people
increases. This study addresses these issues with a mathematical model incorporating
key features of COVID-19 epidemics and key features of COVID-19 vaccination imple-
mentation. In our References we have listed relevant studies of mathematical models
of COVID-19 vaccination implementation [1–81]. Our study brings new understanding
of vaccination implementation to COVID-19 models, in our focus on the existing daily
reported cases to parameterize the model and extend the model time-frame outcomes to
varied vaccine efficiencies and varied social behavior restoration.

A key issue in developing a mathematical model of a COVID-19 epidemic, is informing
the model dynamics in terms of reported epidemic data. For the US, this data consists
of daily reported cases to the Centers for Disease Control and Prevention (CDC). In the
US, daily cases are reported by jurisdictional health departments through the National
Notifiable Diseases Surveillance System (NNDSS), as well as through resources provided
by the CDC COVID-19 response (https://www.cdc.gov/coronavirus/2019-ncov/hcp/
clinical-guidance-management-patients.html (accessed on 16 February 2021)).

This daily reported cases data is extremely erratic, and subject to on-going updating.
A standard method of managing this data is to use a rolling weekly averaging of the daily
reported values. The rolling weekly averaged data still fluctuates considerably, which
makes the dynamic infection transmission parameters of the model difficult to establish.
In this study, the formulation of the model will be used to identify the transmission
parameterisation of the model in terms of the rolling weekly average daily reported cases.
For the projection forward in time after the last date of daily reported cases, the infection
transmission parameters will be extrapolated from the most recent daily reported data.
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Another key issue in developing a mathematical model of a COVID-19 epidemic
concerns the fraction of reported cases and fraction of unreported cases. These fractions
are critical in estimating the number of people still susceptible to infection as vaccination
implementation proceeds, since a sizeable number of people vaccinated have already
been infected and have significant immunity to re-infection [78]. As of 14 April 2021, the
CDC estimated that 1 in 4.3 COVID-19 infections were reported and 1 in 3.9 symptomatic
illnesses were reported. (https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/
burden.html (accessed on 16 February 2021)) In this study, it will be assumed that 1 in 4 of
total COVID-19 cases have been reported in the US.

Other key issues in COVID-19 model development concern the lengths of the asymp-
tomatic infectiousness period and the symptomatic infectiousness periods for reported and
unreported cases [10,11,39,43]. Since people who are asymptomatic are not always tested,
the prevalence of asymptomatic infection and detection of pre-symptomatic infection is
not yet well understood (https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-
guidance-management-patients.html (accessed on 16 February 2021)). All these issues
concerning parameterisation relate to the impact of social distancing measures that reduce
disease transmission. As vaccination proceeds, there is a reduction of these social distanc-
ing measures, which effects the fraction of people not susceptible to infection, so-called
herd immunity. In this study these issues will be examined for projections for the subsiding
of the COVID-19 epidemic in the US as vaccination proceeds. In this study, the COVID-19
model projections for the US will show that epidemic will subside to low levels in late 2021
and early 2022.

In an earlier work, ref. [79] a method similar to the method developed here was used to
evaluate the COVID-19 vaccination program in the United Kingdom. In [79], it was shown
that the COVID-19 vaccination program in the UK would cause the epidemic to subside
to a very low level by early 2022. In future works, these methods will be applied to other
countries and locations. These future works will utilise the many studies of mathematical
models of COVID-19 epidemics listed in the References.

2. Materials and Methods

The model is a system of ordinary differential equations for the epidemic popu-
lation compartments. The compartments are S(t) = susceptible individuals at time t,
I(t) = asymptomatic infectious individuals at time t, R(t) = symptomatic infectious indi-
viduals at time t who will be reported, and U(t) = symptomatic infectious individuals at
time t who will not be reported, The flow diagram of the model is shown in Figure 1. The
equations of the model are as follows:

S′(t) = −τ(t, S(t), I(t), R(t)) − v(t)S(t), t ≥ t0, (1)

I′(t) = τ(t, S(t), I(t), R(t))− (ν1 + ν2)I(t), t ≥ t0, (2)

R′(t) = ν1 I(t)− ηR(t), t ≥ t0, (3)

U′(t) = ν2 I(t)− ηU(t), t ≥ t0. (4)

The model parameters of the COVID-19 epidemic in the US are given below.

2.1. The Transmission Rate before the Last Day of Daily Reported Cases

The time-dependent transmission rate in the model before the last date of daily
reported cases, is obtained from the daily reported cases data. A reported case is defined
by clinical or laboratory criteria (https://ndc.services.cdc.gov/conditions/coronavirus-
disease-2019-covid-19/ (accessed on 15 June 2021)). Since the daily reported cases data is
typically very erratic, a rolling weekly average of the daily reported cases data is used to
smooth this data. The discrete smoothing of the daily reported cases data to rolling weekly
average values, can be interpolated by a continuum cubic spline curve CS(t). This curve is
constructed by defining cubic polynomials on successive pairs of intervals [t1, t2], [t2, t3],
[t3, t4], [t4, t5], . . . , where the interpolation agrees with the rolling weekly average daily
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cases data at the integer values, and is three times differentiable from the first to last
day of rolling weekly average daily cases. In Figure 2 the graphs of the daily reported
cases data, the rolling weekly averaged daily reported cases data, and the cubic spline
interpolation of the rolling weekly averaged daily reported cases data are shown for the
US from 1 March 2020 to 15 June 2021.

Figure 1. Flow diagram of the model compartments: susceptible, asymptomatic infected, reported
symptomatic infected, and unreported symptomatic infected. The time units are days.
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Figure 2. Red dots are discrete rolling weekly averaged daily reported cases from 1 March 2020 to
15 June 2021, and the green graph is the continuum cubic spline interpolation CS(t) of the red dots.

Let dr(t1), dr(t2), . . . be the rolling weekly average number of daily reported cases
each day, from the first week of March, 2020 up to the last day of daily reported cases
15 June 2021, where time t1, t2, . . . is discrete, day by day. In the model, the continuum
version DR(t) of dr(t1), dr(t2), . . . , can be assumed to satisfy

DR′(t) = ν1 I(t)− DR(t) ⇒ I(t) =
(

DR′(t) + DR(t)
ν1

)
. (5)

Model Equation (2) implies the transmission rate τ(t, S(t), I(t), R(t)) satisfies, until
the last day of reported cases data,

τ(t, S(t), I(t), R(t)) = I′(t) + (ν1 + ν2) I(t)

=
DR′′(t) + DR′(t)

ν1
+ (ν1 + ν2)

(
DR′(t) + DR(t)

ν1

)
.
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DR(t) in (5) for the model can be equated to the continuum cubic spline interpolation
CS(t) of the discrete rolling weekly averaged data, and the derivatives DR′(t) = CS′(t)
and DR′′(t) = CS′′(t) can also be obtained. Thus, the continuum interpolation CS(t)
derived from the rolling weekly average daily data agrees exactly with this data at discrete
day by day values, and has continuous first and second derivatives on its domain. The
continuum time-dependent transmission rate in the model before the last date of daily
reported cases, is thus given by

τ(t, S(t), I(t), R(t)) =
CS′′(t) + CS′(t)

ν1
+ (ν1 + ν2)

(
CS′(t) + CS(t)

ν1

)
. (6)

In Figure 3, the transmission rate as in (6), is graphed from 7 March 2020 to 15 June 2021.
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Figure 3. The transmission rate before the last date of reported daily cases, as in (6) for the COVID-19
epidemic in the US from 7 March 2020 to 15 June 2021.

The model with this form for the transmission dynamics provides information about
S(t), I(t), R(t), and U(t) up to the last date of daily reported cases. This method to
parameterize the transmission rate using daily reported cases data was used in [79]. Sim-
ilar methods have been used in [18,27,28,46–48] to relate reported cases data to model
dynamics.

2.2. The Transmission Rate after the Last Day of Daily Reported Cases

After the last day of daily reported cases, the transmission dynamics can be extrap-
olated, based on their most recent history before this last date, and the dynamics of the
epidemic can be projected forward in time. After the last day of daily reported cases, the
transmission rate has the standard mass-action form τ̂(t) (I(t) + 4R(t)) S(t)), where it is
assumed that asymptomatic cases, unreported symptomatic cases, and reported symp-
tomatic cases have equal likelihood of transmission to susceptibles. The ratio of unreported
symptomatic cases and reported symptomatic cases is assumed to be 3 to 1. The function
τ̂(t) incorporates the transmission rate before the last day of daily reported cases, as well as
the time dependent relaxation of social distancing behavior as vaccination is implemented.

Before the last day 15 June 2021, of daily reported cases, the transmission rate in (1) has
the form as in (6). After time tD = 15 June 2021, a time t1 = 1 July 2021 is set such that there
is an increasing return to normalcy of social distancing behaviour, and the transmission
rate in (1) has the form for tD ≤ t ≤ t1

τ(t, S(t), I(t), R(t)) =
(

τ(tD, S(tD), I(tD), R(tD))

)(
(I(t) + 4R(t))S(t)

(I(tD) + 4R(tD))S(tD)

)
.
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After time t1 = 1 July 2021, a later time t2 = 1 October 2021 is set, such that there is a
further return to normalcy of social distancing behaviour, involving a scaling factor ω. For
t1 ≤ t ≤ t2, the transmission rate has the form

τ(t, S(t), I(t), R(t)) =(
1.0 + ω(t− t1)

)(
τ(tD, S(tD), I(tD), R(tD))

)(
(I(t) + 4R(t))S(t)

(I(tD) + 4R(tD))S(tD)

)
.

After time t2 = 1 October 2021, there is no further change in social distancing be-
haviour. For t2 ≤ t, the transmission rate has the form

τ(t, S(t), I(t), R(t)) =(
1.0 + ω(t2 − t1)

)(
τ(tD, S(tD), I(tD), R(tD))

)(
(I(t) + 4R(t))S(t)

(I(tD) + 4R(tD))S(tD)

)
.

The transmission rate is continuous, and in particular, continuous at day tD = 15 June 2021,
day t1 = 1 July 2021, and day t2 = 1 October 2021. The magnitude of the parameter ω, corre-
sponding to level of resumption of normal social distancing behaviour, is critical for resurgence
of the epidemic.

The formulas for the transmission rates after the last day of daily reported cases
can be interpreted as corresponding to a emergence of a new viral strain with greater
transmissibility, as well as a restoration of normal social behavior. Vaccination could be
less efficient for the new viral strain, and result in greater transmissibility, with dynamics
represented by these formulas.

2.3. The Rates of Transition from Asymptomatic Infection to Symptomatic Infection

Asymptomatic infectious individuals I(t) are infectious for an average period of one
week before being symptomatic. The fraction 1/4 of asymptomatic infectious become
symptomatic R(t) at rate ν1 = 0.25/7 per day, and the fraction 3/4 become unreported
symptomatic infectious at rate ν2 = 0.75/7 per day. Reported symptomatic individuals
have transmission capability for an average period of one week before becoming incapable
of transmission, and the same average period of transmissibility holds for unreported
symptomatic individuals. Thus, η = 1.0/7 days. The values for ν1, ν2, and η are assumed,
and consistent with current information about transmissibility of COVID-19 infection
(https://www.cdc.gov/coronavirus/2019-ncov/hcp/faq.html (accessed on 15 June 2021)).

2.4. The Rate of Vaccination

In (1), susceptible individuals are removed from the possibility of infection at a rate
v(t) per day, as a result of vaccination, where this time dependent rate assumes they
are fully vaccinated. In Figure 4, the daily number of vaccinated individuals vdaily(t)
and cumulative version of vdaily(t) are graphed from 14 December 2020 to 15 June 2021
(https://covid.cdc.gov/covid-data-tracker/vaccination-trends (accessed on June 15 2021)).
After the last day of daily reported vaccination data 15 June 2021, vdaily(t) is assumed
to be constant at 1,000,000 per day until a later date tVmax. After tVmax, the daily vac-
cination rate vdaily(t) = 0. The date tVmax will be set to values that represent the ulti-
mate fraction of the US population vaccinated at 90%, 85%, and 80% of the total popula-
tion. These fractions incorporate vaccination resistance within the US population. In (1),
v(t) = 0.95 vdaily(t) S(t)/(S(0)− CV(t)), where CV(t) = the cumulative number of vac-
cinated individuals up to time t. The efficiency of vaccination is assumed to be 95%,
and the removal of susceptibles due to vaccination is the fraction S(t)/(S(0) − CV(t))
of the number vaccinated, which excludes individuals vaccinated who were previously
infected. The future daily vaccination rates are chosen for illustration, since their values
are very uncertain.

https://www.cdc.gov/coronavirus/2019-ncov/hcp/faq.html
https://covid.cdc.gov/covid-data-tracker/vaccination-trends
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Figure 4. Daily vaccination data vdaily(t) (top) and cumulative version CV(t) of this data (bottom) for
the US from 14 December 2020 to 15 June 2021, as step functions in continuous time. After 15 June 2021,
vdata(t) = 1,000,000 per day is assumed constant until t = tVmax. After tVmax, it is 0.

3. Results

Set t0 = 7 = 7 March 2020. Set S(t0) = 331,500,000, the population of the US ac-
cording to the April 2020 census. Set I(t0) = 1, R(t0) = 1, U(t0) = 1. The model out-
put before the last day of daily reported cases 15 June 2021, is graphed in Figure 5. For
tD =15 June 2021, S(tD) = 109,931,000, I(tD) = 339,353, R(tD) = 101,039, U(tD) = 303,117,
and τ(tD, S(tD), I(tD), R(tD)) = 44,188. The graphs of the model compartments S(t), R(t), U(t),
the cumulative reported cases CR(t), the cumulative unreported cases CU(t), and the cumu-
lative vaccinated individuals CV(t) are shown. The cumulative unreported cases CU(t) and
cumulative reported cases CR(t) are in a ratio of 3 to 1, as are the unreported cases U(t) and
reported cases R(t).

After 15 June 2021, the last day of daily reported cases, the model is projected forward
to 1 January 2022, to predict outcomes of vaccination implementation for varying scenarios
involving the fraction of the population vaccinated and the level of return to normal
social distancing behaviour. The ultimate fraction of the population vaccinated is set to
90%, 85% and 80% of the total population. The restoration of normal social behaviour as
vaccination proceeds is scaled to three different levels, as determined by ω. These outcomes,
all together, predict the effect of vaccination for the COVID-19 epidemic in the US.
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Figure 5. Model output from 7 March 2020 to the last day of daily reported cases data 15 June 2021. The
graphs are S(t) (black), R(t) (magenta), U(t) (purple), CR(t) (blue), CU(t) (green), and CV(t) (orange).

3.1. 90% of the Population Becomes Fully Vaccinated

After the last day tD = 15 June 2021, of daily reported cases, for 90% of the population
to be ultimately vaccinated, the daily vaccination rate vdaily(t) is

vdaily(t) = 1,000,000, 15 June 2021 ≤ t ≤ tVmax = 11 November 2021

vdaily(t) = 0, tVmax = 11 November 2021 < t.

For the case that 90% of the population is ultimately vaccinated, the transmission
rates are graphed in Figure 6 and the daily reported cases are graphed in Figure 7 for
ω = 0.015, 0.02, 0.025, 0.03.
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Figure 6. Transmission rates for the level of social distancing resumption ω = 0.03 (green), ω = 0.025
(orange), ω = 0.02 (red), ω = 0.015 (purple). The ultimate vaccinated population reaches 90%.
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Figure 7. Model outcomes for the daily reported cases DR(t), for the level of social distancing
resumption ω = 0.03 (green), ω = 0.025 (orange), ω = 0.02 (red), ω = 0.015 (purple).

3.2. 85% of the Population Becomes Fully Vaccinated

After the last day tD = 15 June 2021, of daily reported cases, for 85% of the population
to be ultimately vaccinated, the daily vaccination rate vdaily(t) is

vdaily(t) = 1,000,000, 15 June 2021 ≤ t ≤ tVmax = 26 October 2021

vdaily(t) = 0, tVmax = 26 October 2021 < t.

For the case that 85% of the population is ultimately vaccinated, the transmission
rates are graphed in Figure 8 and the daily reported cases are graphed in Figure 9 for
ω = 0.015, 0.02, 0.025, 0.03.
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Figure 8. Transmission rates for the level of social distancing resumption ω = 0.03 (green), ω = 0.025
(orange), ω = 0.02 (red), ω = 0.015 (purple). The ultimate vaccinated population reaches 85%.
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Figure 9. Model outcomes for the daily reported cases DR(t), for the level of social distancing
resumption ω = 0.03 (green), ω = 0.025 (orange), ω = 0.02 (red), ω = 0.015 (purple).
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3.3. 80% of the Population Becomes Fully Vaccinated

After the last day tD = 15 June 2021, of daily reported cases, for 80% of the population
to be ultimately vaccinated, the daily vaccination rate vdaily(t) is

vdaily(t) = 1,000,000, 15 June 2021 ≤ t ≤ tVmax = 9 October 2021

vdaily(t) = 0, tVmax = 9 October 2021 < t.

For the case that 80% of the population is ultimately vaccinated, the transmission
rates are graphed in Figure 10 and the daily reported cases are graphed in Figure 11 for
ω = 0.015, 0.02, 0.025, 0.03.
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Figure 10. Transmission rates for the level of social distancing resumption ω = 0.03 (green),
ω = 0.025 (orange), ω = 0.02 (red), ω = 0.015 (purple). The ultimate vaccinated population reaches 80%.
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Figure 11. Model outcomes for the daily reported cases DR(t), for the level of social distancing
resumption ω = 0.03 (green), ω = 0.025 (orange), ω = 0.02 (red), ω = 0.015 (purple).

The model output from Figures 7, 9, and 11 is summarized in Table 1 for time t =1 January 2022.
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Table 1. Model simulations for daily reported cases DR(t), susceptibles S(t), and cumulative reported
cases CR(t) − CR(tD) since the last date of data, where t = 1 January 2022 for fully vaccinated
= 90%, 85%, 80% and social behaviour scaling factor ω = 0.03, 0.025, 0.02, 0.015.

Vaccinated ω = 0.03 ω = 0.025 ω = 0.02 ω = 0.015

90% DR(t) = 761 DR(t) = 398 DR(t) = 105 DR(t) = 18
S(t) = 14,768,000 S(t) = 17,985,000 S(t) = 19,771,000 S(t) = 20,570,000
CR(t)− CR(tD) = CR(t)− CR(tD) = CR(t)− CR(tD) = CR(t)− CR(tD) =
3,768,000 2,068,000 1,155,000 745,000

85% DR(t) = 2651 DR(t) = 1558 DR(t) = 397 DR(t) = 62
S(t) = 20,971,000 S(t) = 26,023,000 S(t) = 28,821,000 S(t) = 29,954,000
CR(t)− CR(tD) = CR(t)− CR(tD) = CR(t)− CR(tD) = CR(t)− CR(tD) =
3,967,000 2,171,000 1,184,000 750,000

80% DR(t) = 10,147 DR(t) = 7352 DR(t) = 1915 DR(t) = 265
S(t) = 25,486,000 S(t) = 33,142,000 S(t) = 37,926,000 S(t) = 34,712,000
CR(t)− CR(tD) = CR(t)− CR(tD) = CR(t)− CR(tD) = CR(t)− CR(tD) =
4,788,000 2,624,000 1,310,000 774,000

4. Discussion

A model of a COVID-19 epidemic is used to predict the effectiveness of vaccination
in the United States. The model incorporates basic elements of COVID-19 dynamics:
transmission due to asymptomatic and symptomatic infected individuals, transmission
due to reported and unreported cases, and transmission mitigation due to social distancing
measures. A rolling weekly averaging method is used to smooth the highly variable daily
cases data reported to the CDC. The model formulation is constructed so that the daily
reported cases in the model is in agreement with the rolling weekly averaged daily cases
data reported to the CDC.

The model dynamics are projected forward from the last day 15 June 2021 of daily
reported cases data, in order to examine the effectiveness of vaccination in controlling
the epidemic. The vaccination rate forward from 15 June 2021 is set so that the ultimate
number of people vaccinated is 90%, 85%, or 80% of the US population, which varies due to
vaccine hesitancy and opposition within the US population [75]. As time proceeds forward
from 15 June 2021, the transmission rate is moderated, in correspondence with a restoration
of normal social distancing, as the number of susceptible individuals is reduced due to
vaccination. Between 15 June 2021 and 1 July 2021, the transmission rate increases due to a
relaxation of social distancing behaviour, from the transmission rate before the last date
15 June 2021 of daily reported cases. Between 1 July 2021 and 1 October 2021, the transmis-
sion rate increases still further due to a relaxation of social distancing behaviour, according
to a scaling factor that corresponds to the level of reduction of social distancing measures.
The model is simulated, with these assumptions on the ultimate vaccination level and the
reduction of social distancing measures level, as vaccination implementation proceeds.

The model simulations predict the following outcomes of the daily reported cases
between 15 June 2021 and 1 January 2022:

(1) For higher vaccination levels and lower levels of social distancing restoration, the
daily reported cases decrease rapidly to very low levels by 1 January 2022.

(2) For lower vaccination levels and higher levels of social distancing restoration, the
daily reported cases first increase slowly, and then decrease to relatively low levels by
1 January 2022.

The model predicts that the COVID-19 epidemic in the US will not extinguish com-
pletely in 2022, but will subside to a level that allows a return to normal social distancing
behaviours. The future of the COVID-19 epidemic in the US could be very different, if new
more virulent and vaccine-resistant strains develop, and are imported into the US from
other countries.
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In future works, COVID-19 epidemics in other countries and locations will be examined.
Extensions of the model will be developed to address other issues in COVID-19 epidemics,
including viral strains, vaccine efficiency, age based, demographic based, geographic based
population variation, as well as disease age of infected individuals, and vaccination age of
vaccinated individuals in the epidemic populations.
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