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Abstract: This review describes different trials to model and predict drug payload in lipid and
polymeric nanocarriers. It traces the evolution of the field from the earliest attempts when numerous
solubility and Flory-Huggins models were applied, to the emergence of molecular dynamic simula-
tions and docking studies, until the exciting practically successful era of artificial intelligence and
machine learning. Going through matching and poorly matching studies with the wet lab-dry lab
results, many key aspects were reviewed and addressed in the form of sequential examples that
highlighted both cases.

Keywords: lipid; polymer; simulations; docking; machine learning; in-silico

1. Introduction

Nowadays, many efforts are exerted in the pharmaceutical field regarding the devel-
opment of different types of drug delivery systems (DDS). This aims to keep the therapeutic
efficacy of the active pharmaceutical ingredient (API), and successfully deliver the proper
dose to the physiological target site. Among different types of existing DDS, nanocarriers
have gained great interest due to their ultra-small size that controls the pharmacokinetics
and pharmacodynamics of the drug [1,2]. Nanocarriers made specifically of lipids and
polymers are extensively investigated in the literature, and the number of papers deal-
ing with them is dramatically increasing over time [3–6]. A core feature for a successful
lipid/polymeric formulation is the capacity of the carrier to retain its cargo, i.e., the drug
payload [7–9]. Selecting the optimum carrier for this purpose is an issue of time, cost
and effort if the design is solely built on the basis of wet-lab methods. In silico pharma-
ceutical formulation design now constitutes a key part of contemporary drug delivery
research. It is gaining popularity because it offers the experimentalists a highly pixilated
picture of their target based on molecular details of both the drug and the carrier. With
this knowledge, designing nanocarriers with optimized properties is much faster with
minimal laboratory effort and cost concerns. The scope of the current review is to illustrate
the different reported techniques to model and predict he drug payload in the lipid and
the polymeric nanocarriers. Evaluation of the consistency of these models with respect to
their experimental validation results is another perspective. Given the diversity of APIs
and the heterogeneity of lipids and polymeris that are used in nanocarriers preparation,
many modelling techniques are described in literature to explain the complex relationship
of drug-carrier systems. Some groups emphasized the use of the Flory-Huggins theory
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and the different solubility models for drug loading prediction. Similarly, increased un-
derstanding of the drug-carrier interaction process began reaching its full potential upon
reviews discussing molecular dynamics simulations and docking applications in this area.
Furthermore, recent related research reports that deal with larger number of parameters
tend to apply novel concepts of prediction such as the smart artificial intelligence-based
models. Thereby, the aim of this review is to cover all these techniques from naïve primitive
approaches to the most innovative ones. The investigated studies include the polymeric
and the lipid nanocarriers along with hybrids of them. Each section of the review ad-
dresses one modelling area from the perspective of its implications for DL prediction, to the
scientific and technical challenges associated with its development. Important literature
examples demonstrating these aspects are highlighted. Such a work, appeals to researchers
who are interested in the intervention between computer and formulation science to reach
state-of-the-art solutions for DL in lipid and polymeric nanocarriers.

Along with the review, the reader can find brief definitions and explanations of the
mentioned tools. Furthermore, some hints are provided that may help future tuning of
technique selection. Figure 1 depicts the scope of this review.
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Figure 1. Contribution of different analytical and in silico tools to the drug loading optimization in
different classes of nanocarriers.

2. Solubility Parameters and Flory-Huggins Theory

The essence of DL optimization is to predict molecules’ preferences in excipients depend-
ing on their physicochemical properties [10,11]. These are empirical mathematical equations
parameterized to wrap the physical details and some structural integration of the involved
molecules [11]. The most frequently noticed one is the Flory-Huggins theory (FH). It is a
thermodynamic model first introduced in the world of polymers to explain their behavior
in solutions [12], and this is well documented in polymers literature [13–15]. Recently, this
technique was used to extract valuable information regarding the plausible loading of many
drugs in polymeric [16–19] and even lipid [20]—carriers via predicting their mutual solubil-
ity/miscibility. It is well known that one of the most important factors that determine the
loading capacity of a carrier is the solubility of the drug in this carrier [10,21,22]. Thus, this
model depends on estimating specific solubility parameters (SP), usually Hildebrand and
Hansen SP, to calculate the final FH interaction parameter (XH) as follows:

XH = (δ polymer/carrier − δ drug)2 × Vd/RT (1)

where δ is the solubility parameter, Vd is the molar volume of the drug, R is the gas constant
and T is the temperature in kelvin [12].



Pharmaceuticals 2021, 14, 645 3 of 29

Assuming constant T and R, the equation clearly stated that the difference in solubility
parameters between the drug and the carrier (∆δ) constitutes the driving force of the model.
In other words, components with nearly the same solubility parameters are potential
companions and vice versa. Actually, the threshold of ∆δ below which components are
considered soluble slightly differs among published papers. For uniformity, a difference of
fewer than 4 MPa1/2 was commonly considered as the best approximation that represents
all the studied cases. Because of the extensive investigation of this old model, examples are
limited to the most recent applications and do not cover all similar cases (Table 1).

2.1. Classical Approach
2.1.1. Analytical Procedure

Both solubility parameters (Hansen and Hildebrand) have been used in FH models
as they are closely related [23,24]. It is worth mentioning that the group contribution
method (GCM) reported by Fedros [25] and Hoftyzer/Van Krevelen [12] is the most
common method used for the analytical estimation of SP. It is based on determining
the cohesive energy density (CED) in the form of polar, dispersion and hydrogen bond
(HB) contributions of various chemical groups -so the name of the method- within a
molecule. As shown in Table 1, the first three examples used GCM-based SP along with XH
to predict several drugs payload in different nano-formulations using different carriers.
In Ghitman et al. work [17], reasonable exponential correlation coefficients between
entrapment efficiency (%EE) and XH were obtained with better outcome in case of LPHN
(R2 of 0.86) c.f. PLGA nanoparticles (R2 of 0.61). In contrast, ∆δ values obtained by Sun
et al. [18] did not distinguish between high and low DL in the PLA core of the prepared
PEG-PLA micells. Similarly, their XH values did not provide a well-defined miscibility
region and therefore could not predict well the DL capability of these micelles (Table 1).
But for Raveendran et al. [19], values of ∆δ and XH served well in predicting the polymer
core with the highest curcumin payload among four synthesized polymers (Table 1).

2.1.2. Software

Currently, different computer software packages are accommodating computational
modules for easier, more interactive and more user-friendly estimation of these contri-
butions. Examples include Hansen Solubility Parameters in Practice (HSPiP) package,
Molecular Modeling Pro and Maple software. It is important to mention that using these
programs do not contribute in enhancing the performance of the model itself, and the same
limitations -like handling very polar and large molecules- still exist. For example, Makoni
et al. [20] used HSPiP software to calculate Hansen SP of different drugs and lipid carriers
prior to optimization of SLN. Some values were consistent with the experimental results
(like Geleol for efavirenz), while others were inconsistent (Table 1). Authors concluded that
simple SP predictions could not be used alone to identify the lipid with the best solubilizing
potential for a specific drug.
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Table 1. Recent classical applications of solubility parameters and Flory-Huggins interaction theory for different lipid and polymeric nanocarriers and their main outcomes.

Intended
Formulation Carrier/Carriers Applications Drug/Drugs Technique Predictive Dry-Lab Values Validating Wet-Lab

Values Correlation Reference

PN

LPHN

PLGA

PLGA-Nigella
sativa oil

Antioxidants,
anti-inflamatory
and anticancer

Indomethacin
Curcumin

Resveratrol
α-tocopherol

Hydrocortisone
Retinol

Izohidrafural
Nitrofurantoin
5-fluorouracil

GCM based
SP + FH

interaction
parameter

∆δ
PN

0.51
0.37
2.68
1.84
4.04
1.77
0.76

12.14
15.17

∆δ
LPHN

1.52
1.38
3.69
2.85
5.05
2.78
1.77

13.15
16.18

XH
PN

0.023
0.02
0.69
0.6

1.77
0.37

0.056
8.75
6.73

XH
LPHN

0.014
0.04
1.29
0.12
2.75
0.069
0.035
10.17
7.65

%EE *
PN

35
25
20
25
28
79
42
16
5

%EE *
LPHN

65
55
43
62
22
95
80
4
2

Exponential R2

0.61
0.86

For PN and
LPHN

respectively

[17]

PM PEG-PLA
copolymer

Antifungals and
anticancer

Diphenylpyrazole
Pyrene

Clotrimazole
Plerixafor
BLZ945

Combretastatin
Niraparib

Methoxytetralone
Tranilast

Plinabulin
Curcumin
Irinotecan

Griseofulvin
Cabazitaxel

Heptylhydroxybenzoate
Olaparib
Paclitaxel
Docetaxel

Podophyllotoxin

GCM based
SP + FH

interaction
parameter

∆δ

5.34
1.39
3.13
1.54

5
2.17
4.93
1.67

2
5.84
1.91
1.78
1.31
1.33
0.46
6.09
4.46
3.48

5

XH

9.32
5.93

11.82
7.24
9.72
2.12
4.31
1.27
2.68
2.92
1.11
3.44
0.82
3.51
0.88
2.76
4.74
2.81
0.61

%DL

7.85
3.85
5.15
4.55
1.8
5.35
88.65
14.95
4.15
0.55
80.1
60.6

14.35
78.95
78.35
94.7

87.75
76.5

89.05

Prediction results
did not align
with the real
experimental

results.

[18]
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Table 1. Cont.

Intended
Formulation Carrier/Carriers Applications Drug/Drugs Technique Predictive Dry-Lab Values Validating Wet-Lab

Values Correlation Reference

PM

Poly-
ethyloxazoline

shell and buteny-
loxazoline,

butyloxazoline,
pentyloxazoline,

or
nonyloxazoline

core

Anticancer Curcumin

GCM based
SP + FH

interaction
parameter

∆δ (core)

0.68
2.17
2.83
4.46
0.21

XH (core)

0.05
0.48
0.82
2.03

%EE and %DL

Upto 82.7% and 11.8%
respectively for

butenyloxazoline

- [19]

SLN

Geleol
Compritol ATO

888
Stearic acid

Perciol
Cetyl palmitate

Antibiotics,
antivirals and
corticosteroid

Minocycline- HCl
Didanosine Efavirenz

Clarithromycin
Mometasone- furoate

Software-
based

Hansen SP
(Yamamoto’s

Molecular
Breaking

method in
HSPiP

software)

∆δ

Geleol-mometasone
2.4

Geleol-minocyclin
8.65

Geleol-efavirenz
1.4

Geleol-didanosine
4.9

Compritol-didanosine
8

Stearic acid-clarithromycin
1.35

Quantity of lipid (gm) to
solubilize 10 mg drug *

12
0.67
1.8

No solubility detected
3
3

No obvious
prediction

pattern was
noticed.

Bulky
clarithromycin
encountered

some difficulties
in Hansen

calculations
resulting in
confusing

predictions.

[20]

* Refers to estimated approximate values extrapolated from reference graphs or recalculated from the given data. PN: Polymeric nanoparticles; LPHN: Lipid-polymer hybrid nanoparticles; PM: Polymeric
micelles; PLGA: Polylactic acid-co-glycolic acid; PEG-PLA: Polyethyleneglycol-polylactic acid; SLN: Solid lipid nanoparticles; SP: Solubility parameter; FH: Flory-Huggins; GCM: Group contribution method; ∆δ:
Difference in solubility parameters (drug and carrier); XH: Flory-Huggins interaction parameter; %EE: Entrapment efficiency percentage; %DL: Drug loading percentage.
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2.2. Computational (Modern) Approach

To this end, the classical representation of these solubility models needs upgrading to
more explicit versions by incorporating precise modeling techniques. Molecular dynamics
simulations (MD) and molecular docking calculations could enhance the performance of
solubility models towards complex systems [26]. That is because, MD treats both entities
of the model (carrier and drug) in a dynamic manner over time, which means calculating
the fine movements of atoms in addition to the rotation, stretching and bending of the
flexible bonds [27,28]. Also, instead of representing the carrier in the form of a single
unit, MD simulations allow repeating this unit (many chains of building units) to form a
3D structure of interacting, energy minimized carrier molecules that resemble the actual
case in the prepared nanoparticle. This tuning of volume difference along with mobility
considerations allows catching interactions equally between neighbors. Now, docking is
able to provide the binding energy (∆G) between the drug and its carrier based on the
whole space and geometry of the carrier, all possible orientations of the drug inside the
carrier, and of course accurate physical interactions.

On this basis, an early comparative study was designed by Patel et al. [29] using two
approaches for calculating the FH interaction parameter between two drugs and a series of
different molecular weights of PEO-PCL copolymer. The first approach was the traditional
GCM, and the second was MD simulation. Using Materials Studio (MS) software, MD
simulation was applied to the polymer and both API in their pure component form. The
output trajectory files were used for extracting CED for all structures and subsequent
calculation of FH interaction parameter according to Equation (1). Compared to the
analytical GCM which was reported to give paradoxical results to the observed solubility
of fenofibrate and nimodipine in liquid caprolactone, MD simulation results were consistent
with the experimental validation (Table 2). These findings confirmed the superiority of
modern approaches in the correct prediction of solubility and FH interaction parameters.

By the exact same computational protocol, Meunire et al. [30] predicted the loading
of six anticancer drugs inside the PLA core of PLA-PEG nanoparticles using the FH
interaction parameter. A relatively reasonable exponential correlation between theoretical
and experimental data was obtained despite being not completely satisfying for the author
(Table 2). The reason was that the author noticed more dispersion in the correlation at low
loading hydrophilic compounds especially SAR molecule (outlier) which scored higher
than expected XH value. (Table 2). He suggested alternative techniques implementing
more relevant algorithms that consider the potential energy of the entire drug-carrier
complex besides its pure components such as the mixing energy (Emix), for better results.
Figure 2 demonstrates in a schematic way the contrast between the classical drug-carrier
interaction (solubility parameters) with the modern 3D representation (molecular dynamics
and molecular docking).
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Table 2. Simulations-derived solubility parameters and Flory-Huggins interaction theory for different nanocarriers and their outcomes.

Intended
Formulation Carrier/Carriers Drug/Drugs Technique Predictive Dry-Lab Values Validating

Wet-Lab Values Correlation Reference

PM PEO-b-PCL Fenofibrate
Nimodipine

MD
simulation-based
SP (COMPASS FF
in MS software).

GCM based SP
and FH interaction

parameter.

∆δ and XH in MD

1.43–3.49
(0.05–0.33)

3–5.06
(0.23–0.68)

respectively

∆δ and XH in
GCM

2.3
(0.539)

1.4
(0.25) respectively

Drug solubility in
PCL core

120 mmol/mol

20 mmol/mol
respectively

- [29]

PM PLA-PEG

Doxorubicin
Cabazitaxel

Beta-lapachone
DrinabantSARRA

MD
simulation-based

Heldibrand SP
and FH interaction

parameter
(COMPASS II FF
in MS software)

XH *

0.63
0.04
0.1

0.01
0.75

Near 0

%DL

1
5

2.2
7

2.7
10

Exponential
correlation (no
associated R2)

[30]

PN

PLLA
PDLA
PGA
PEG

Cellulose
Chitosan

Cyclosporine A

MD simulation
(PCFF or

COMPASS FF in
MS software) and

docking-based
(mixing energy in
Blends module) SP
and FH interaction

parameter

XH

103.6
169.2
219

206.9
17.7
43.7

∆G

−801.98
−749.86
−828.69
−723.35
−935.26
−957.61

Cited work - [31]

* Refers to estimated approximate values extrapolated from references’ graphs. PM: polymeric micelles; PN: polymeric nanoparticles; MD: Molecular dynamics; FH: Flory-Huggins; SP: Solubility parameter;
GCM: Group contribution method; FF: Force field; MS: Materials studio software; ∆δ: Difference in solubility parameters (drug and carrier); XH: Flory-Huggins interaction parameter; PLLA: Poly-L-lactic acid;
PDLA Poly-D-lactic acid; PGA: Polyglycolic acid; PEG: Polyethyleneglycol; PEO-b-PCL: Polyethylene oxide-b-polycaprolactone copolymer; PLA-PEG: Polylactic acid-polyethylene glycol copolymer.
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Figure 2. Schematic presentation to contrast classical drug-carrier interaction (solubility parameters) with the modern 3D
representation (molecular dynamics and molecular docking).

In testing this hypothesis, it was noticed that Machacˇkova et al. [31] used this
modelling algorithm (Emix) to evaluate cyclosporine-A miscibility with six virtually built
polymers. Using Blends module in MS software, a docking method based on the generaliza-
tion of the FH theory was applied. The energy obtained after calculations is so called the
mixing energy (Emix) and leads to XH by replacing the numerator of Equation (1) to be Emix.
The values of XH revealed that both cellulose and chitosan seem to be the best carriers
for the modeled drug c.f. other polymers (Table 2). These results were in accordance
with previous experimental reports cited by the author, but it is always recommended
to consider differences in laboratory protocols while citing experimental validation. The
experimental tests remain an essential tool that is usually used to validate the simulation
results (should not be thought of as an alternative to experiments), but the two approaches
should be seen as complementary.

3. MD Simulations and Docking

Simulations and docking obviously add merits of power and accuracy to the prediction
models. Recently, these techniques have come into play and show up in published papers
as shifting paradigms in modelling nanocarriers. This new concept significantly aids the
pre-formulation stage utilizing knowledge-based procedures and hence reaching better
formulation targets.

3.1. Screening

Many reports confirmed the profound role of MD simulations and docking in the
pre-formulation screening of carriers and in identifying candidate drugs expected to have
high loading capacity towards specific carrier. This approach makes the whole formulation
process extremely time and cost-effective with accurate prediction results that compare
fairly well with experimental data.
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3.1.1. Carriers-Oriented Screening

For instance, Yadav et al. [32] screened curcumin against five polymers using MD
sim ulation and docking. Observations indicated that chitosan outperformed other tested
polymers with an excellent ∆G pattern (Table 3). Chitosan was therefore selected for the
experimental design of that study. Such a finding was not surprising as Dhanasekaran
et al. [33] previously experienced the same results. Curcumin docking results showed a
lower ∆G in chitosan c.f. chitin (Table 3). This was in good agreement with the experi-
mental findings, which interestingly offered the maximum capacity of a carrier that can be
experienced with any drug, i.e., about 100%.

Similarly, Aparna et al. [34] have picked gelatin as a polymeric carrier for the delivery
of amphotericin B based on an in silico outcome. Among eight different evaluated amino-
functionalized polymers, gelatin showed the highest docking score for amphotericin B
(Table 3). The experimental EE and loading of amphotericin B in gelatin nanoparticles were
found to be highly accepted.

Ahmed et al. [35] also screened fluticasone against different polymers prior to the
production of stable fluticasone nanoparticles. MD simulation and docking were per-
formed. PVP stabilized HPMC and PVP stabilized Eudragit complexes scored the best ∆G
results (−35.22 kcal/mol and −25.17 kcal/mol respectively) c.f. other simulated polymeric
structures. After preparation of these nanoparticles, EE percentage was >90% confirming
the in silico optimization.

Furthermore, a certain E-coli endotoxin structure was in silico screened by Altintas
et al. [36] against twenty-one monomer building blocks commonly used for the prepa-
ration of molecularly imprinted polymeric nanoparticles (nanoMIPs). According to the
results, itaconic acid, methacrylic acid and acrylamide with ∆G values of −52.24 kcal/mol,
−41.43 kcal/mol and −39.87 kcal/mol, respectively, were selected. Experimentally, surface
plasmon resonance (SPR) signaling revealed an affinity pattern of 99.5 RU, 66.4 RU and
35.6 RU for itaconic acid, methacrylic acid and acrylamide respectively. The experimental
analysis of nanoMIPs for endotoxin detection by SPR sensor yielded results of similar
pattern and conforming well to the computational modelling experiments (Table 3).

3.1.2. Drugs-Oriented Screening

A combination of MD simulations and docking calculations was also used to test
the stable incorporation of curcumin, paclitaxel and vitamin D3 in PEG-Tyrosine derived
polyarylates-PEG carrier. [37]. For the three drugs used, ∆G results that were computation-
ally obtained, were correlated with the maximum drug loading as measured experimentally
(Table 3), and a strong linear correlation (R2 = 0.93) was observed.

In other similar paper works, Gayathri et al. [38] and Geetha et al. [39] investigated the
loading of three antibacterial drugs and three anticancer drugs, respectively, inside chitin
nanocarriers. The antibacterial drugs and anticancer drugs were subjected to docking using
the same modeled chitin nanocarriers. In both papers, the DL values of the three antibacte-
rial drugs (8.9%, 5.6% and 3.5%) and the three anticancer drugs (3%, 2% and 1%) followed
a similar trend with respect to ∆G data (−8.1, −7.3, −5.1 and −6.9, −6.5, −5.4 kcal/mol
respectively). Excellent correlations between computational and experimental data were
obtained with R2 of 0.85 for the antibacterial drugs and 0.93 for the anticancer drugs.

In the same context, Nosrat M. Mahani [40] tested the ability of PLGA to accommodate
nine potent, but unstable, thiazoline derivatives with different alkyl and aryl substitutions.
Using the hybrid ONIOM calculation reported before [41], all derivatives exhibited negative
binding energies indicating good interaction with PLGA. Substitution with R = CH3
and Ar = 1-Methyl-1H-tetrazol-5-yl or 1-Phenyl-1H-tetrazol-5-yl in derivatives 3 and 7
respectively caused more potent binding interactions between the drug and the polymer
(best ∆G results) (Table 3). This led to the final selection of these moieties for the successful
preparation of stable, biologically active antimicrobial/anticancer formulations.

Talking about stability, Tais et al. applied MD simulations and docking studies to
predict the most stable stoichiometric inclusion complex of naringenin with cyclodextrin
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(CD) [42]. Their main goal was to enhance the solubility of this poorly water soluble
drug -and hence its dissolution rate- by high encapsulation inside CD with minimum
dissociation rate. Three stoichiometric ratios of naringenin to CD (1:1, 1:2 and 2:1) were
then in silico tested. Naringenin was docked on the energy minimized (MM+ FF) CD
structure using Polak-Ribiere algorithm in HyperChem® software. Results showed that the
1:1 stoichiometry produced the most stable complex with stabilization energy of 150 and
165 kcal/mol (for hydroxyphenyl ring and chromanone ring orientations of naringenin
respectively) c.f. 280 kcal/mol for the 1:2 stoichiometry. The 2:1 stoichiometry was not
stabilized due to steric hinderance. Further MD simulations of the most stable complex,
i.e., 1:1 stoichiometry, demonstrated conformation change of the chromanone ring orien-
tation to the more stable hydroxyphenyl ring orientation with little or no mobility of the
hydroxyphenyl ring orientation at the end of the simulation run. These data confirm the
docking results obtained above.

With the same modeling package regarding structure optimization, docking algo-
rithm and MD simulations mentioned previously, Thaiene et al. predicted the stability
of Aluminium-chloride-phathalocyanine (AlCIPc) inclusion complex with βCD and its
derivative hydroxypropyl-βCD [43]. In general, the 1:1 stoichiometry produced more
stable complexes in both AlCIPc-βCD and AlCIPc-hydroxypropyl βCD c.f. stoichiometries
1:2 and 2:1. More specifically, there was no significant difference between stabilization
energies of both complexes in 1:1 stoichiometric ratio especially in aqueous medium (−1064
to −1047 kcal/mol and −959 to −944 kcal/mol). Hydroxypropyl βCD was selected for the
experimental study.
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Table 3. Applications of molecular dynamic simulations coupled with docking techniques for modeling drug payload in different lipid and polymeric nanocarriers and their outcomes.

Intended
Formulation Carrier/Carriers Drug/Drugs Technique Predictive Dry-Lab Values Validating Wet-Lab

Values

Correlation and
Correlation
Coefficient

Reference

PN

PM

Chitosan
Na alginate

PLL
NIPAAm-co-
PEGPLGA

Curcumin

All-Atom MD
simulation and

docking (AutoDock
Vina software)

∆G (kcal/mol)

−4.3
−3.3
−3.2
−2.9
−2.3

- - [32]

PN Chitin
Chitosan Curcumin

MD simulation
(MMFF in

Schrodinger
Macromodel

software for pure
components
OPLS FF in

Desmond software
for carrier-drug
complex) and
docking (rigid

docking in glide
software)

∆G (kcal/mol)

−2.61
−3.31

HB count

3
6

%EE

Up to 97.6%

Up to 98.4%

- [33]

PN

PLL
PEA
PAS
PAA

PEG-bis-amine
PVA2

Chitosan
Gelatin

Amphotericin B

Energy minimization
of all built 2D

structures (MMFF94
in ChemBioUltra

software) and
docking (AutoDock

Vina software)

∆G (kcal/mol)

−3.1
−2.6
−3.4
−2.2
−1.7
−1.8
−3.3
−6.2

%EE and %DL in
gelatin PN

78% and 2.42%
respectively

- [34]

PN

HPMC
Eudragit

EC
PVA1
PVP

Pluronics

Fluticasone

All-Atom MD
simulation in

Amber14 software
package and docking
(LGA) in AutoDock

Vina software)

∆G (kcal/mol)

−35.22 for HPMC−25.17 for Eudragit

%EE

>90% for both
polymers

- [35]
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Table 3. Cont.

Intended
Formulation Carrier/Carriers Drug/Drugs Technique Predictive Dry-Lab Values Validating Wet-Lab

Values

Correlation and
Correlation
Coefficient

Reference

NanoMIPs
Poly itaconic

acidPoly methacrylic
acid Polyacrylamide

E-coli endotoxin

Energy minimization
and docking

screening (Tripos FF
and LEAPFROG

algorithm in SYBYL
7.0 software)

∆G (kcal/mol)

−52.24−41.43−39.87

Affinity by SPR

99.566.435.6
- [36]

PM
PEG-Tyrosine

derived
polyarylates-PEG

Curcumin
Paclitaxel

Vitamin D3

All-Atom MD
simulation (MMFF
in MOE software)

and docking (LGA in
AutoDock 4

software)

∆G (kcal/mol)
−7.19
−4.36
−10.3

%DL *

29%
12%
36%

Linear
R2

0.93
[37]

PN Chitin
Rifampicin

Ethionamide
Methacycline

MD simulation
(CHARMM FF in

discovery studio 4.0
software) and

docking (AutoDock
Vina software) and

interaction
visualization

(PYMOL software)

∆G (kcal/mol)
−8.1
−7.3
−5.1

%DL

8.9%
5.6%
3.5%

Exponential/logarithmic
R2

0.85
[38]

PN Chitin
Curcumin
Docetaxel

5-fluorouracil

MD simulation
(CHARMM FF in

discovery studio 4.0
software) and

docking (AutoDock
Vina software) and

interaction
visualization

(PYMOL software)

∆G (kcal/mol)

−6.9
−6.5
−5.4

%DL

3
2
1

Exponential/logarithmic
R2

0.93
[39]
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Table 3. Cont.

Intended
Formulation Carrier/Carriers Drug/Drugs Technique Predictive Dry-Lab Values Validating Wet-Lab

Values

Correlation and
Correlation
Coefficient

Reference

PN PLGA Nine thiazoline
derivatives

Hybrid QM/MM
(ONIOM2 method in
Gaussian 03 software
using DFT and UFF)

∆G (kcal/mol)

D1: −8.1582
D2: −8.5694
D3: −9.0987
D4: −8.7034
D5 −8.0216
D6: −8.4022
D7: −9.4753
D8: −8.5970
D9: −8.2077

- - [40]

PM PLA-PEG

Doxorubicin
Cabazitaxel

Beta-lapachone
Drinabant

SAR
RA

MD simulation
(Monte-Carlo
method in MS
software) and

docking (metropolis
Monte-Carlo surface

docking in
adsorption locator of

MS software)

∆G (kcal/mol)

−29
−47
−40

From −109 to −115
−57
−100

%DL

1
5

2.2
10
2.7
7

Linear
R2

0.82
[30]

PN Gelatin

Acyclovir
Amphotericin B

Cryptolepine
Doxorubicin

5-fluorouracil
Isoniazid

Resveratrol
Curcumin
Paclitaxel

Indomethacin

MD simulation
(CGenFF in
GROMACS

software) and
docking (AScore

scoring function in
ArgusLab software)

∆G (kcal/mol)

−3.94
144.4
−3.81
58.29
−4.19
−4.16
−3.74
−2.59
173.5
−1.99

DL (mg
drug/100 mg

gelatin)

8.74
1.16

2
2.1

25.07
22

1.96
3.5
0.52
1.91

Exponential
R2

0.95
[44]
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Table 3. Cont.

Intended
Formulation Carrier/Carriers Drug/Drugs Technique Predictive Dry-Lab Values Validating Wet-Lab

Values

Correlation and
Correlation
Coefficient

Reference

SLN

PN

Tripalmitin
PLGA

Twenty-one
literature gathered

drug

All-Atom MD
simulation (CGenFF

in GROMACS
software) and

docking (ArgusLab
and AutoDock Vina)

∆G (kcal/mol)

DL

Curcumin
loading = 0.75 and
0.97 mg in 100 mg

tripalmitin and
PLGA respectively

Exponential
R2 = 0.87 and 0.9 in

SLN and PN
respectively.

% bias in
loading = 12 and

2.03 in SLN and PN
respectively

[45]

SLN Tripalmitin Ten literature
gathered drugs

All-Atom MD
simulation (CGenFF

in GROMACS
software) and

docking (triangle
matcher placement
and ASE SF in MOE

software)

∆G (kcal/mol)

DL

Curcumin
loading = 0.81 mg in
100 mg tripalmitin

Exponential
R2

0.86

% bias in
loading = 7.71

[46]

PN PLGA
Twenty-one

literature gathered
drugs

MD simulation (UFF
in Gaussview5
software) and

docking (LGA in
AutoDock Vina

software)

∆G (kcal/mol) DL

Linear
R2

0.36
R

0.6

[47]

* Refers to estimated approximate values extrapolated from references’ graphs.MD: Molecular Dynamics; PN: Polymeric nanoparticles; PM: Polymeric micelles; SLN: Solid lipid nanoparticles; NanoMIPs:
Molecularly imprinted polymer nanoparticles; %EE: Entrapment efficiency percentage; DL: Drug loading; HPMC: Hydroxypropylmethylcellulose; EC: Ethylcellulose; PAS: Polyaminostyrene; PAA: Polyal-
lylamine; PEA: Polyethyleneamine; PLL: Poly-L-lysine; NIPAAM-co-PEG: N-isopropylacrylamide-co-polyethyleneglycol; PVA1:Polyvinyl alcohol; PEG: Polyethyleneglycol; PVA2: Polyvinyl amine; PVP:
Polyvinylpyrrolidone; PLA-PEG: Polylactic acid-polyethylene glycol copolymer; PLGA: Polylactic acid-glycolic acid; MD: Molecular dynamics; FF: Forcefield; MS: Materials studio software; LGA: Lamarckian
Genetic Algorithm; QM/MM: quantum mechanics/molecular mechanics; DFT: density functional theory; (%) DL: Drug loading (percentage) %EE: Entrapment efficiency percentage; HB: Hydrogen bond.
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The ability of a closely related polymer to PLGA, PLA, to interact with another
group of drugs was demonstrated in the aforementioned report by Meunire et al. [30].
Being unsatisfied with the results of SP/FH modelling utilizing the solubility parameters
described earlier (Table 2), the authors remodeled the same six investigated API using a
full Monte Carlo algorithm. This time, they found a strong linear correlation (R2 = 0.82)
between the obtained ∆G data and the experimental drug loading (Table 3).

Another example of multidrug modelling was introduced by Hathout et al. [44] using
gelatin as a principle matrix. Ten API were docked on the gelatin matrix simulated by
MD, and the obtained ∆G data were correlated with the experimental masses of the loaded
drugs. This model was highly fitting associated with an R2 approaching 1 (Table 3).

On a larger dataset comprising a lipid carrier, Metwally and Hathout modelled the
loading of twenty-one API in tripalmitin and PLGA 50:50 based nanocarriers simulated
by MD [45]. Ten drugs were assigned for the PLGA system and eleven for tripalmitin.
Obvious correlations between docking ∆G data of the tripalmitin and PLGA loaded drugs
and their corresponding reported drug loading were obtained (Table 3). Furthermore,
the authors validated the predictability of the constructed models using a model drug,
curcumin. The calculated percentage bias between the actual and the predicted loading
values were 12% and 2.03% for tripalmitin SLN and PLGA nanoparticles, respectively.

A similar study was reported by the same authors using the same group of drugs in
the tripalmitin based system but with a different docking protocol [46]. The new protocol
applied ASE scoring function implemented in Molecular Operating Environment (MOE)
software. This score is quietly different from the Ascore implemented in ArgusLab as
it considers the distances between the ligand atom-carrier atom pairs in the form of a
Gaussian function [46]. Accordingly, a comparable R2 for the constructed ∆G-loading
correlation (0.86) was found with lower bias percentage (7.71%). This data furnished
evidence for the effect of different docking protocols (scoring functions equations) on the
accuracy of modelling nanocarriers.

Different simulation protocols also strongly affect the success of modelling. A system-
atic study of twenty-one approved drugs was carried out by Sizochenko, and Leszczyn-
ski, [47] using again PLGA 50:50 as a carrier and AutoDock Vina for docking. A correlation
of R2 = 0.36 (R = 0.6) was obtained between the literature gathered drug loading data
and the resulted ∆G data. Compared to the correlation coefficient value in Metwally and
Hathout report (0.9) [45] where the same carrier type and docking algorithm but different
simulation force field were used- this recorded value was much lower. A force field (FF)
is what defines the fundamental physics of the simulated system, i.e., determining the
default values for physical interactions, bond lengths, partial charges and any force acting
on/between atoms [48]. So, the quality of the FF will affect the accuracy and reliability of
the simulated systems [28]. These approaches were summarized in Figure 3.
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3.2. Visualizing Interactions

In addition to the screening and the carriers-selection tasks, simulations and docking
are further used to gain insights into the mechanism by which binding processes occur.
More specifically, the typical atomic/molecular level interactions between the drug and
the carrier can be visualized and analyzed given the microscopic potential of these tech-
niques [49]. From the following examples, it will be demonstrated how ∆G was related to
different interactions in several studies, and how this relationship may contribute to the
interpretation of unexpected loading cases of some compounds in different carriers.

In an important study, Brunacci et al. [50] conducted MD simulation to visualize
possible interactions of dexamethasone in two polymers, PLGA 50:50 and oligobutylmor-
pholinediol (OBMD). They found that the amide group in OBMD acts as a hydrogen donor
that supports the other hydrogen acceptor groups. Accordingly, a single OBMD unit
was able to form three HB with a single dexamethasone molecule. In contrast, a PLGA
unit that contains only hydrogen acceptors accompanied by its ester groups forms two
HB with dexamethasone. Subsequent molecular docking analysis showed better ∆G of
dexamethasone with OBMD compared to PLGA (Table 4). The experimental validation
results, represented by EE and DL, ascertained the superiority of OBMD over PLGA to
form dexamethasone-loaded polymeric nanoparticles (Table 4).
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Table 4. Cases of binding site analysis in simulated lipid and polymeric nanocarriers and their observations.

Intended
Formulation Carrier/Carriers Drug/Drugs Technique Predictive Dry-Lab

Values (kcl/mol)
Validating Wet-Lab

Values
Drug(s)-Carrier(S)

Binding Interactions Reference

PN PLGA
OBMD Dexamethasone

MD (AMBER FF in
Ascalaph designer

software) and
docking(AutoDock Vina)

and interaction
visualization (AutoDock

visualizer tool)

∆G

−2.8 to −4.3

−3.8 to −5.1

%DL

Up to 2
Up to 50

2 HB
3 HB [50]

SLN
LPHN
LDHN

Compritol
Compritol-Eudragit
Compritol-PAMAM

G4

Vancomycin

MD simulation (UFF in
MS software) and

docking (adsorption tool
in MS software) and

interaction visualization
(Biovia discovery studio

visualizer)

-

%DL

3.6
1.1
5.1

Hydrophobic
interactions

Nearly no
interactions

Multiple HB

[51]

PM
PEG-Tyrosine

derived
polyarylates-PEG

Curcumin
Paclitaxel

Vitamin D3

All-Atom MD simulation
(MMFF in MOE

software) and docking
(LGA in AutoDock 4

software) and interaction
visualization (AutoDock

visualizer tool)

∆G

−7.19
−4.36
−10.3

%DL

29%
12%
36%

2 HB, 4 π-π
interactions

1 HB, 2 π-π
interactions

1 HB, 0 π-π
interactions

[37]

LDHN: Lipid-dendrimer hybrid nanoparticles; PN: Polymeric nanoparticles; SLN: Solid lipid nanoparticles; LPHN: Lipid-polymer hybrid nanoparticles; OBMD: Oligobutylmorpholinediol; PEG: Polyethyleneg-
lycol; PAMAM G4: 4th generation polyamidoamine dendrimer; %DL: Drug loading percentage; LGA: Lamarckian genetic algorithm; HB: Hydrogen bond; MD: Molecular dynamics; MS: Materials studio; FF:
Force field.
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Also, Sonawane et al. [51] offered an excellent explanation of vancomycin loading
pattern in compritol SLN, compritol-Eudragit RS 100 hybrid nanoparticles (LPHN) and
compritol-PAMAM hybrid nanoparticles (LDHN). Simulations suggested that the only
possible interaction between vancomycin and compritol was the weak hydrophobic inter-
action of vancomycin isopropyl moiety with compritol carbon chain backbone. In contrast,
the highly branched PAMAM dendrimer was able to accommodate vancomycin molecules
in its void spaces and back foldings. Analysis of the dendrimer-drug complex revealed
that each dendrimer molecule was able to bind four vancomycin molecules by means
of multiple HB (multivalent binding capacity). In the Eudragit core, vancomycin was
not/barely able to form interactions despite the presence of active groups (alkyl groups
and hydrogen acceptors (C=O)) in the Eudragit structure. In fact, the alkyl and hydrogen
acceptor moieties of Eudragit were not practically available for interaction due to the steric
hindrance effect (aligned chains/architecture of polymer with minimum void space c.f.
dendrimer) especially with a bulky molecule like vancomycin. These findings were in line
with the experimental results (Table 4).

Apart from physical interactions, other structural contributions like bulkiness, flexibil-
ity/rigidity and even isomerism of API can share in the final computation of ∆G. Costache
et al.’s [37] previous perfect ranking (Table 3) was due to not only the binding interactions
but also the drug bulkiness and flexibility. The size and flexibility of the three model
drugs controlled their orientation and hence the inside tight binding in the nanocarrier
core. Paclitaxel was theoretically able to form eighteen HB and many π-π interactions,
but most of them were of intramolecular type due to its large size. This lead to a more
rigid conformation of paclitaxel that mainly allowed of surface binding and therefore
lower DL. The small rather flexible vitamin D3 then showed the best ∆G and DL (Table 4).
Accordingly, it is evident that physical interactions solely are not sufficient to understand
the binding affinity in nanosystems.

With more complex structural features, the affinity prediction job of binding energies
becomes more difficult or even disabled, and counterintuitive experimental loading results
can be observed. This can be clearly seen with Sánchez et al. [52] during the study of
morphine and tramadol loading in PAMAM dendrimer. The experimental results showed
a higher encapsulation proportion for morphine c.f. tramadol, while ∆G results exhibited
more negative values for tramadol c.f. morphine (Table 5). This discrepancy was due to the
possible drug-drug interactions of the racemic tramadol molecules. Based on this fact, an
enantiomeric pair of tramadol can block the entranceway to the dendrimer cavity leading
to the escape of molecules to the surrounding media despite the higher affinity of tramadol
towards the dendrimer system as shown by ∆G values (Table 5).

A similar issue was encountered by Costache et al. [37] upon studying camptothecin
docking on the PEG-tyrosine derived polyryltes-PEG carrier. The experimental results
showed that camptothecin (small polycyclic and highly rigid drug) owned the lowest
drug loading (Table 5) among the other three drugs (curcumin, paclitaxel and vitamin
D3) (Table 4). Interestingly, camptothecin scored high ∆G (−9.27 kcal/mol) comparable to
that of vitamin D3. Visualizing the atomic-level interactions revealed that for all docking
replicates, camptothecin was preferably aligned in a specific spot of the carrier. About 70%
of camptothecin hits accumulated in that “hot spot” with the remaining flew away the
search space leading to false high scores. Translating this fact experimentally, nanoparticles
would accommodate only few molecules of the drug and leak the rest to the surrounding
media. The authors end with recommendations of searching and scoring refinement
algorithms that consider not only the thermodynamic binding of molecules but also the
kinetic view of binding [37].
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Table 5. Cases of contradictory wet lab-dry lab results explained only by binding site analysis.

Intended Formulation Carrier/Carriers Drug/Drugs Technique Predictive Dry-Lab Values Validating Wet-Lab Values Reference

Dendrimers PAMAM G5 Morphine
Tramadol

MD simulation (CHARMM FF
in NAMD software) and

docking (LGA in AutoDock 4
software)

∆G

−0.97 to −11.79
−1.04 to −20.48

DL (moles drug/1mole
dendrimer)

114
86

[52]

PM PEG-Tyrosine derived
polyarylates-PEG Camptothecin

All-Atom MD simulation
(MMFF in MOE software) and
docking (LGA in AutoDock 4

software) and interaction
visualization (AutoDock

visualizer tool)

∆G

−9.27

%DL

Up to 3%
[37]

Polybee nanoarchitecture

Lipobee nanoarchitecture

PEG cetyl ether stabilized
by either PS-PAA or lecithin Melittin (bee venom peptide)

MD simulation (Tripos FF in
SYBYL-X 2.0 software) and

docking (induced fit, triangle
matcher placement and London

dG SF in MOE 2013 software)

1st ∆G

+ve values
−ve values

2nd ∆G

−6.17 to −9.8−4.88 to −6.7

MTT assay (IC50)

40 and 80 nM
70 and 100 nM

[53]

PN Chitin
Chitosan Insulin

MD (MMFF in Schrodinger
Macromodel software for pure

components and Optimized
Potentials

for Liquid Simulations (OPLS)
FF in Desmond software for
drug-carrier complex) and

docking (SPF) and (FFT)
algorithms in Hex software

∆G

−438.46
−420.69

%EE
80–83.97

86.4–89.13
[33]

PM: Polymeric micells; PN: Polymeric nanoparticles; PAMAM G5: 5th generation Polyamidoamine dendrimer; PEG: Polyethyleneglycol; PS-PAA: polystyrene-polyacrylic acid; LGA: Lamarckian genetic
algorithm; %EE: Entrapment efficiency; (%) DL: Drug loading (percentage); MD: Molecular dynamics; FF: Force field; SPF: Spherical polar fourier; FFT: Fast fourier transform.
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Furthermore, melittin, a bee venom peptide, scored a higher ∆G upon docking on the
simulated lecithin system c.f. a polymeric system (Table 5) [53]. However, the biophysical
approach for drug loading measurement indicated lower drug loading in the case of
lecithin c.f. the polymer. Upon visualizing molecular details of these interactions, the
authors found that melittin interacts with the carriers by only certain residues critical for
binding. Thus, there was an unnecessary overestimation of the contribution of bulkiness
and flexibility of melittin molecules which lead to false better results with lecithin. These
residues paralleled well with the polymer chain forming many interactions, but were
loose with far intermolecular distances and only a few interactions in the case of lecithin.
For further confirmation of these findings, the authors re-docked that specific residue of
melittin sequence on lecithin and polymer systems. The obtained ∆G data flipped this time
and matched the actual loading results (Table 5).

Dhanasekaran et al. [33] further went from modeling peptides to modeling the bulkiest,
most complex pharmaceutical API, proteins. In their study, they applied MD simulation
and docking calculations to predict insulin loading in both chitin and chitosan nanoparticles.
They used HEX software for this purpose. Experimental loading results declared that
chitosan was a better carrier for insulin c.f. chitin. Unfortunately, docking results failed
to predict this finding. The obtained ∆G data was in contrast to the experimental loading
results (Table 5). It seems that even the specialized protein docking servers were unable to
account for the complexity of protein-polymer systems. A solution like that proposed by
Misra et al. [53] may help.

Between success and failure stories of simulations and docking, the key strength and
weaknesses at the same time of these techniques lie in their versatility. In docking, this
can be best understood from the multiple engines available for conformations sampling
(searching algorithms) and poses ranking (scoring functions) [54–58]. Similarly, diverse
collection of force fields in the molecular simulation are also available besides different
levels of resolution [28,46,59,60]. It is not so easy to predict the exact simulation-docking
protocol suitable for a proposed situation, and many trials are sometimes needed for such
a choice leading to high consumption of computational power and long timescales.

4. Artificial Intelligence and Machine Learning

Artificial intelligence (AI) is another field of problem solving used for complex mul-
tivariable data. The term originates from the fact it is a kind of simulation of human
brain intelligence in machines that are programmed to think and act like humans. One
great advance in this field is machine learning (ML), both supervised and unsupervised.
Focusing on the first type, supervised ML is an area in AI which has the ability to learn
and model the relationship between a set of independent variables and an outcome (re-
sponse) [45]. The net result is a feature mapping equation that can predict outcomes for
new observations [61–64]. In the world of drugs and carriers, supervised ML model inputs
(independent variables) could be molecular descriptors and/or formulation parameters.
Molecular descriptors are cheminformatics-based comprehensive numbers that abstract
hundreds of structural characteristics of a compound [65]. It is ranging from simple bulk
1D features (molecular weight, polarizability, partition coefficient, etc) to the 2D features
(number of atoms and bonds) and 3D features (pharmacophoric points and molecular
fingerprints) [66].Generally, ML models are less computationally expensive compared
to the combined MD and docking approach. In this context, ML techniques can provide
results that are either complementary-to or comparable-with the MD and docking approach
(Figure 4).
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Hathout and Metwally experienced this concept in their previous work [45,46]. The
authors represented the previously obtained ∆G by molecular descriptors of API and
relate them using two supervised ML algorithms, an artificial neural network (ANN)
algorithm [45] and a gaussian process (GP) algorithm [46]. Model inputs were the molecular
weight, xlogP, topological polar surface area and fragment complexity of the literature
gathered API, whereas model output was set as the obtained binding energies. This led
to robust (Table 6) and fast estimation of ∆G without the need to encounter software
limitations and high CPU computations cost during simulations and docking studies. Each
descriptor was assessed for its significance to the differences in ∆G data. Subsequent
loading prediction of API in the corresponding nanoparticles was encouraging (Table 3).
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Table 6. Different applications of machine learning techniques for modelling lipid and polymeric nanocarriers.

Intended Formulation Carrier/Carriers Drug/Drugs Technique Predictive Dry-Lab Values Validating Wet-Lab
Values Correlation Reference

SLN

PN

Tripalmitin
PLGA

Twenty one literature
gathered drug

Molecular descriptors
calculation (Bioclipse
software) and ANN

model (jmp software)

Inputs

Mwt, xLogP, TPSA and fragment
complexity

Output
∆G

% bias

Up to 15% (3.66–14.9%)

R2 of the model:

0.999
0.999

[45]

SLN Tripalmitin Ten literature gathered
drugs

Molecular descriptors
calculation (Bioclipse

software) and Gaussian
process model (jmp

software)

Inputs

Mwt, xLogP, TPSA and fragment
complexity

Output
∆G

% bias

3.35%

Correlation between
actual and predicted

outputs:

All the points were in
close proximity to the

450 line

[46]

PN PLGA Twenty one literature
gathered drugs

Molecular descriptors
and M5P QSPR model

Inputs

logP, SiRMS-lip, SiRMS-EO and
CCM

Output
DL

-
R2 between actual and

predicted outputs
>0.9

[47]

PN PLGA 50:50 Twenty two literature
gathered drug

Molecular descriptors
(DRAGON, MOE and

VolSurf+ programs) and
MLR model

(STATISTICA software)

Initial No. of descriptors
1504
201
128

Selected descriptors (inputs)
Mor29u, GATS5m, C-019, T(N . . .

O) and MATS2m

E_Strain, Reactive, SMR_VSA4,
MINDO_HF and SMR_VSA7

LgS10, WO6, DD4 and DRACAC

Output
Log DL

R2 of the model

0.889
0.826

0.818 for DRAGON,
MOE anf VolSurf+

respectively

[67]
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Table 6. Cont.

Intended Formulation Carrier/Carriers Drug/Drugs Technique Predictive Dry-Lab Values Validating Wet-Lab
Values Correlation Reference

Liposomes Different phospholipids Sixty literature gathered
drug

Molecular descriptors
(MOE software) and
kNN or SVR model

(ChemBench software)

Inputs
Hybrid of 185 1D-2D molecular

descriptors, and eleven
experimental conditions

Output
D/L mole ratio

-

R2 between actual and
predicted outputs

0.758
0.789

R2
0 between actual and
predicted outputs

0.732
0.734

R2
0 between actual and
predicted outputs
(without outliers)

0.919
0.883

[68]

PLGA: Polylactic acid-co-glycolic acid; SLN: Solid lipid nanoparticles; PN: Polymeric nanoparticles; ANN: Artificial neural network; MLR: Multiple linear regression; kNN: k-nearest neighbor; SVR: Support
vector regression; QSPR: Quantitative structure-property relationship; Mwt: Molecular weight; TPSA: Topological polar surface area;Log P: Partition coefficient; CCM: Continuous chirality measure; DL: Drug
loading.
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Also, Sizochenko, and Leszczynski [47] used molecular descriptors of their API as
inputs in another supervised ML model against experimental DL as output. Briefly, they
reflected API Van der Waals interaction potential by hydrophobicity (log P), miscibility and
hydrogen bonds by lipophilicity (SIRMS-lip), electrostatic interactions by electronegativity
(SIRMS-EO) and finally, they added a chirality representative of the studied compounds
(Continuous Chirality Measure or CCM) as half of the used dataset were chiral drugs.
They referred to the modeling algorithm as M5P. This algorithm combines a classification
technique and a linear regression function at the nodes. This time, an excellent correlation
between predicted and observed DL was obtained with R2 of >0.9 (Table 6). A Pearson
evaluation of the effect of all descriptors on drug payload showed correlations of R > 0.9
indicating their great significance.

Actually, direct prediction of drug payload in nanoparticles from molecular descriptors
of API is not a brand new idea. It was previously reported by Das et al. [67] on a dataset of
twenty-two compounds using three different sets of molecular descriptors generated from
three different software packages (Table 6). DRAGON descriptors were combination of
1D, 2D and 3D classes, while MOE generated 2D and 3D descriptors, and 2D descriptors
only from VolSurf+. Each descriptors set was fitted in multiple linear regression model
against the logarithmic form of the maximum attainable DL. After several permutations to
exclude inter-correlations, each descriptors set was reduced to few non-correlated variables
of primary significance on nanoparticles payload (Table 6). The success of the generated
models was marked by R2 of >0.8 especially with the most inclusive set, DRAGON set
(Table 6). This suggests that as more data from API becomes available, machine learning
would become more powerful in the loading prediction job. Experimental validation was
carried out using two drugs (silibin and andrographolide) and the observations correlated
well with in silico predictive mass loading inside PLGA 50:50 nanoparticles.

Combining computed descriptors with experimental conditions, Cern et al. [68] de-
veloped two ML models to assess drug candidates that are able to achieve high remote
(trans-membrane) loading in liposomes. A total of sixty drugs in three hundred sixty-six
loading experiments were used to assemble a hybrid features model. Thus, molecular
descriptors were combined with the experimental conditions for the entry in the dataset.
Model output was set as the drug to lipid ratio (D/L) which is representative of the loading
efficiency percentage. Determination coefficient (R2) and determination coefficient of the
regression line forced to come through the origin (R2

0) tested the predictive power of
the model and retained a good fit between the predicted and observed target properties
(Table 6).

Overall, these results are encouraging regarding payload prediction. Also, configuring
the most important descriptors may be a mirror image to the possible interaction mecha-
nism responsible for affinity during MD simulations and docking calculations [69–74].

5. Conclusions

In this review, an overview of the evolution of in silico formulation design technology
in the investigation and prediction of drug payload in lipid and polymeric nanocarriers
was presented. As illustrated, this technology is close to becoming routine add-ins for for-
mulation scientists even for non-informatics specialists. They represent the next industrial
revolution and deserve many other reviews to describe. Going from simple thermodynamic
models to the 3D MD-docking approaches and AI-oriented algorithms, the extent to which
a specific technique can guide the process of drug loading and formulation development
have been explored. The researcher applying the idea has the welling to choose the most
favorite/suitable technique from the above discussed ones or even merge between them.
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Abbreviations

(%)DL drug loading (percentage)
(%)EE entrapment efficiency (percentage)
AI artificial intelligence
AlCIPc Aluminium-chloride-phathalocyanine
Amber FF assisted model building with energy refinement force field
ANN artificial neural network
API active pharmaceutical ingredient
CCM continuous chirality measure
CD cyclodextrin
CED cohesive energy density
CGen FF CHARMM general force field
CHARMM FF chemistry at Harvard macromolecular mechanics force field
DDS drug delivery system
DFT density function theory
EC ethylcellulose
Emix mixing energy
FF force field
FFT fast fourier transform algorithm
FH Flory-Huggins theory
GCM group contribution method
GP Gaussian process
HB hydrogen bond
HPMC hydroxypropylmethyl cellulose
HSPiP Hansen solubility parameter in practice
KNN k-nearest neighbor
LDHN lipid-dendrimer hybrid nanoparticles
LGA Lamarckian genetic algorithm
LPHN lipid-polymer hybrid nanoparticles
MD molecular dynamics
ML machine learning
MLR multiple linear regression
MMFF Merck molecular force field
MOE molecular operating environment
MS materials studio
Mwt molecular weight
NanoMIPs molecularly imprinted polymeric nanopartices
NIPAAm N-isopropylacrylamide
OBMD oligobutylmorpholinediol
ONIOM our N-layered integrated molecular orbital+molecular mechanics
OPLS FF optimized potentials for liquid simulations force field
PAA Polyallylamine
PAMAM polyamidoamine
PAS Polyaminostyrene
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PCFF polymer consistent force filed
PCL polycaprolactone
PDLA poly-D-lactic acid
PEA Polyethyleneamine
PEG polyethylene glycol
PEO polyethylene oxide
PGA polyglycolic acid
PLGA polylactic-co-glycolic acid
PLL poly-L-lysine
PLLA poly-L-lactic acid
PM polymeric micelles
PN polymeric nanoparticles
PS-PAA polystyrene-polyacrylic acid
PVA1 polyvinyl alcohol
PVA2 polyvinyl amine
QM/MM quantum mechanics/molecular mechanics
QSPR quantitative structure-property relationship
R/R2 correlation/determination coefficients
SF scoring function
SLN solid lipid nanoparticles
SP/δ solubility parameter
SPF spherical polar fourier algorithm
SPR surface plasmon resonance
SVR support vector regression
TPSA topological polar surface area
UFF universal force field
XH Flory-Huggins interaction parameter
xLog P partition coefficient
∆δ difference in solubility parameters (drug and carrier)
∆G binding energy
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