
Evaluating Methods for Isolating Total RNA and
Predicting the Success of Sequencing Phylogenetically
Diverse Plant Transcriptomes
Marc T. J. Johnson1*., Eric J. Carpenter2., Zhijian Tian3., Richard Bruskiewich4¤, Jason N. Burris5,

Charlotte T. Carrigan6, Mark W. Chase7, Neil D. Clarke8, Sarah Covshoff9, Claude W. dePamphilis10,

Patrick P. Edger11, Falicia Goh8, Sean Graham12, Stephan Greiner13, Julian M. Hibberd9, Ingrid Jordon-

Thaden14,19, Toni M. Kutchan15, James Leebens-Mack6, Michael Melkonian16, Nicholas Miles14,19,

Henrietta Myburg17, Jordan Patterson2, J. Chris Pires11, Paula Ralph10, Megan Rolf15, Rowan F. Sage18,

Douglas Soltis14, Pamela Soltis19, Dennis Stevenson20, C. Neal Stewart Jr.5, Barbara Surek16,

Christina J. M. Thomsen1, Juan Carlos Villarreal21, Xiaolei Wu3, Yong Zhang3, Michael K. Deyholos2,

Gane Ka-Shu Wong2,3,22*

1 Department of Biology, University of Toronto at Mississauga, Mississauga, Ontario, Canada, 2 Department of Biological Sciences, University of Alberta, Edmonton,

Alberta, Canada, 3 BGI-Shenzhen, Bei Shan Industrial Zone, Yantian District, Shenzhen, China, 4 International Rice Research Institute, Metro Manila, Philippines,

5 Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee, United States of America, 6 Department of Plant Biology, University of Georgia, Athens,

Georgia, United States of America, 7 Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, United Kingdom, 8 Genome Institute of Singapore, Singapore,

Singapore, 9 Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom, 10 Department of Biology and Intercollege Graduate Program in Plant

Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America, 11 Division of Biological Sciences,

University of Missouri, Columbia, Missouri, United States of America, 12 Department of Botany and UBC Botanical Garden, University of British Columbia, Vancouver,

British Columbia, Canada, 13 Max Planck Institute for Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, Potsdam-Golm, Germany, 14 Department of

Biology, University of Florida, Gainesville, Florida, United States of America, 15 Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America,

16 Department of Botany, Cologne Biocenter, University of Cologne, Cologne, Germany, 17 Department of Plant Biology, North Carolina State University, Raleigh, North

Carolina, United States of America, 18 Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada, 19 Florida Museum of Natural

History, University of Florida, Gainesville, Florida, United States of America, 20 New York Botanical Garden, Bronx, New York, United States of America, 21 Department of

Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, United States of America, 22 Department of Medicine, University of Alberta, Edmonton,

Alberta, Canada

Abstract

Next-generation sequencing plays a central role in the characterization and quantification of transcriptomes. Although
numerous metrics are purported to quantify the quality of RNA, there have been no large-scale empirical evaluations of the
major determinants of sequencing success. We used a combination of existing and newly developed methods to isolate
total RNA from 1115 samples from 695 plant species in 324 families, which represents .900 million years of phylogenetic
diversity from green algae through flowering plants, including many plants of economic importance. We then sequenced
629 of these samples on Illumina GAIIx and HiSeq platforms and performed a large comparative analysis to identify
predictors of RNA quality and the diversity of putative genes (scaffolds) expressed within samples. Tissue types (e.g., leaf vs.
flower) varied in RNA quality, sequencing depth and the number of scaffolds. Tissue age also influenced RNA quality but not
the number of scaffolds $1000 bp. Overall, 36% of the variation in the number of scaffolds was explained by metrics of RNA
integrity (RIN score), RNA purity (OD 260/230), sequencing platform (GAIIx vs HiSeq) and the amount of total RNA used for
sequencing. However, our results show that the most commonly used measures of RNA quality (e.g., RIN) are weak
predictors of the number of scaffolds because Illumina sequencing is robust to variation in RNA quality. These results
provide novel insight into the methods that are most important in isolating high quality RNA for sequencing and
assembling plant transcriptomes. The methods and recommendations provided here could increase the efficiency and
decrease the cost of RNA sequencing for individual labs and genome centers.
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Introduction

Next-generation sequencing (NGS) has rapidly transformed the

life sciences as it is now possible to sequence entire genomes and

virtually all expressed genes in a fast and cost-effective manner [1–

6]. In the case of plant biology, this has made it possible to

accelerate fundamental and applied research on how genes

interact to form genetic networks [7], the identity of enzymes

involved in the biosynthesis of medicinally important primary and

secondary metabolites [8], and responses of plants to biotic and

abiotic environmental stress [9]. Moreover, NGS is producing

massive data sets to answer questions relating to phylogenomic

analyses of plant evolution and diversification [10], which is

important for extending fundamental results from model organ-

isms to other plant groups, including many that are economically

important. Although these exciting developments are quickly

changing research across the life sciences, they also present

biologists with numerous logistical challenges [6,11]. Here we

describe the development and evaluation of some of the methods

and initial results from the One Thousand Plants Consortium

(1KP; www.onekp.com), which seeks to provide state-of-the-art

molecular tools for hundreds of non-model plant species by

sequencing transcriptomes across the diversity of green plants and

use these transcriptomes to answer some of the most pressing

problems in plant biology [12].

Sequencing plant transcriptomes by NGS is complicated by

many factors. The first challenge is to isolate RNA of sufficient

quality (i.e., non-degraded RNA, free of impurities) and yield.

RNases are particularly problematic in this regard because they

rapidly degrade RNA and are widespread in nature and

laboratories [13]. A further complication is the myriad primary

and secondary plant metabolites (e.g., phenolics, polysaccharides)

that vary dramatically within and between species [14–17], and

can interfere with RNA isolation [18]. A second challenge relates

to identifying metrics of RNA quality that predict sequencing

success [19], quantified here as the number of long scaffolds

($1000 bp) assembled from Illumina sequence reads, which

provides an estimate of the number of full-length transcripts in a

sample. Most genomic sequencing facilities attempt to simulta-

neously maximize multiple metrics of RNA quality [20], but we

are not aware of any large-scale tests that empirically evaluate how

these measures affect RNA sequencing (RNA-seq) and down-

stream assembly of short sequence reads into putatively expressed

genes. Finally, the rapidly changing methods associated with

sequencing platforms and chemistry will likely have large, but as of

yet, unquantified effects on sequencing success [21,22]. Successful

application of NGS technologies to biological problems requires

that we understand the impacts of these issues [6].

1KP is seeking to address these problems by sequencing

transcriptomes from more than 1000 plant species. The project

involves an unprecedented interdisciplinary collaboration of over

one hundred researchers from around the world. The overall goal

of the project is to create genomic resources for one thousand

plant species sampled from across the plant kingdom, including

plant species of importance in medicine, agriculture, forestry and

conservation. The vast majority of these species are non-model

organisms with little to no existing molecular tools. Thus, these

data will constitute a cornucopia of genetic information to be used

for the biotechnological engineering of crops, development of

biofuels, genetic and biochemical characterization of medicinally

important plants, and a comprehensive phylogenetic understand-

ing of how plant life has evolved during the past 1 billion years (see

www.onekp.com). To achieve 1KP’s goals we have overcome

biological, logistical and technological impediments that had

hitherto not been attempted on such a scale.

In this paper, we develop and evaluate methods for isolating

high-quality total RNA from non-model plants, which can then be

used to sequence the diversity of genes expressed within any plant

tissue using next-generation sequencing methods. It was necessary

for the 1KP project to develop methods that could be employed

for the wide phylogenetic diversity of plant species found in nature,

from green algae to angiosperms, which diverged .900 mya [23].

To achieve this objective we developed and/or implemented 18

distinct protocols to isolate total RNA from samples; our results

and experience showed that no one protocol was suitable for all

tissues and species. Using these protocols we sought to answer

three questions: 1) what is the success rate of a commonly

employed commercial kit for the extraction of total RNA from

plants, and which alternative extraction protocols increase the

success of isolating RNA; 2) are different plant tissues associated

with differences in the quality of total RNA and the size of

assembled transcriptomes; and 3) what measures of RNA quality

provide the best predictor of the size of assembled transcriptomes

into scaffolds?

Materials and Methods

Plant Samples and Tissues
We isolated total RNA from 1115 samples from 695 plant

species representing 324 families collected from the field, botanical

gardens, greenhouses, growth chambers and axenic cultures. No

specific permits were required for the collection of samples as the

minority of samples collected directly from the field were taken

from public land. None of these samples represent endangered or

protected species. Samples included non-vascular plants such as

algae, hornworts and mosses, and vascular plants including

lycopods, ferns, gymnosperms and angiosperms. We isolated total

RNA from tissues categorized into one of eight tissue types,

including: i) leaf (489 samples), ii) flower (4), iii) fruit (10), iv) buds

(leaf or flower) (15), v) shoot/stem (7), vi) below-ground (12; 10

roots, 2 bulbs), vii) mixed tissues (two or more of tissues i–vi) (276)

and viii) algal cells (274). Care was taken to properly differentiate

and categorize tissue types, but some samples inevitably had

overlapping cell types with other tissue types and we therefore view

differences among tissues as conservative patterns. For a subset of

71 species, we also tested the effects of tissue age on RNA quality

and sequencing success by comparing ‘‘young’’ freshly expanding

leaves and ‘‘mature’’ fully expanded but non-senescing leaves

collected from tissue that was pooled from at least two healthy

plants grown together in the greenhouse. For these samples we

used approximately 0.1–0.5 g of tissue from young leaves and

roughly 26 as much (up to 1 g) for old leaves; more tissue was

required from mature leaves to achieve equivalent concentrations
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as young leaves (see Results). The complete data set, including the

list of all samples, tissues and data, is provided in Table S1.

Protocols for Isolating Total RNA
No single protocol was optimal for isolating total RNA from all

tissues and species. We therefore used 18 distinct protocols to

isolate total RNA from samples, where the method used for

specific species and tissues was shaped by the experience of

individual researchers. Protocols involved commercially available

kits (e.g., Qiagen’s RNeasy Plant Minikit), non-commercial RNA

extraction lab protocols (e.g., CTAB, acid phenol) and hybrid

methods that combined components of both commercial kits and

lab protocols. The detailed protocols used for all isolations are

available online in Appendix S1.

For all isolations, tissues were collected and flash frozen in liquid

nitrogen as soon after collection as possible. In most cases, flash

freezing was performed immediately, although in some field

collections there was a short delay before freezing, which might

account for cases of severe degradation. Slightly less than half of

the samples (493) were sent as frozen tissue on dry ice to BGI-

Shenzhen (hereafter ‘BGI’), China, for RNA isolation. The

remaining samples were isolated by individual labs and sent to

BGI as either frozen RNA extracts on dry ice or as dehydrated

total RNAs shipped using Genvault’s GenTegra RNA kit

(IntegenX, Pleasanton, CA, USA). A comparison of a subset of

our samples (N = 168) allowed us to compare effects of shipping

liquid RNA versus Genvault dehydrated RNA (see Results).

In answering our first research question relating to the success

rates of Qiagen’s RNeasy Plant Minikit and alternative

protocols, we deemed samples acceptable for sequencing if they

met the following criteria: total RNA concentration $150 ng/ml

(eluted in 60 ml of RNase free water; note this elution volume

only applies to samples shown in Table S2), total RNA mass

$20 mg, r26S/18S $1, RIN $8, OD 260/280$1.9 and OD

260/230$1.5. We did relax these rigid criteria for samples not

shown in Table S2 by sequencing samples of lower quality. By

including lower quality samples that did not meet the criteria

identified above, this also allowed us to provide a stronger and

more comprehensive test of how RNA quality correlated with

sequencing success.

Measures of RNA Quality and Yield
To ensure consistency in measurement of RNA quality, all

measurements were performed at BGI. This was especially

important because measures of RNA quality outside BGI often

deviated substantially from measurements taken at BGI on the

same samples, suggesting that methodological differences and

degradation during shipping can be important sources of variation

in measures of RNA quality. RNA purity was determined by

assaying 1 ml of total RNA extract on a NanoDrop 1000 or

NanoDrop 8000 spectrophotometer (Thermo Scientific, Wilming-

ton, DE, USA). We measured the optical density (OD) ratio

between 260 nm and 280 nm from 526 samples, where pure RNA

eluted in H20 (pH 7.0–8.5) or TE (pH 8.0) is expected to exhibit a

ratio of 2.0–2.1; deviations below 2 indicate acidic pH or

contamination by proteins, phenol and other impurities [13-

Appendix 8,24]. We also measured OD 260 nm/230 nm from

406 samples, where pure RNA gives a ratio close to 2. Deviations

of OD 260/230 below 2 indicate contamination by polysaccha-

rides, phenol, TRIzol or low pH, which absorb light around

230 nm [18,24,25].

The concentration, integrity and yield of total RNA were

determined by assaying 1 ml of diluted total RNA using

Agilent’s 2100 Bioanalyzer with the Plant RNA Nano or Pico

chip assay in accordance with the manufacturer’s instructions

(Agilent Technologies, Santa Clara, CA, USA). The Bioanalyzer

uses electrophoretic technology on a chip to separate RNA

fragments by size, which are read by laser induced fluorescence

and translated into gel-like bands and peaks (electropherograms)

showing the distribution and relative amounts of RNA of

different sizes (Figure 1). Concentration (ng/ml) of RNA was

determined by comparing the sample with a standard. We

measured RNA integrity using two metrics: the ratio of the

large (26S) to small (18S) ribosomal RNA subunits (26S/18S)

and the RNA integrity number (RIN) [20]. In non-degraded

RNA, the quantity of 26S RNA should be 1.6–26 that of 18S,

whereas degradation of 26S occurs faster than 18S and thus

deviations below the expected ratio are used as a measure of

RNA degradation [20]. The use of r26S/18S has been criticized

as it might not reflect degradation of other types of RNA such

as mRNA [20,26]–the focus of transcriptome sequencing. RIN

has been proposed as an alternative where its calculation is

based on a regression model that estimates the integrity of the

entire RNA profile, including r26S/18S and the presence and

absence of other electropherogram peaks, some of which

correspond to mRNA [20]. RIN was originally developed to

evaluate the integrity of RNA extracted from mammalian

tissues, but plants exhibit greater heterogeneity in ribosomal

subunits than animal tissues due to the presence of plastid

ribosomes. We therefore selected the plant RNA test program

option available in version B.02.07 of the Bioanalyzer software

[27], which accounts for the greater heterogeneity of RNA

expected from plants.

Library Construction and Sequencing Methodology
Our study sought to isolate and sequence mRNA from all cells

using Illumina’s GAIIx and HiSeq sequencing platforms. Our

standard procedure was to isolate polyA RNA from 20 mg of total

RNA treated by DNaseI (NEB, Ipswich, MA, USA) using

Dynabeads mRNA purification kit (Life Technologies, Grand

Island, NY, USA). We used up to 50 mg when the use of a lower

mass (typically 20 mg) was insufficient for successful library

construction, which we assessed by running final PCR products

on an agarose gel; the library construction was considered to have

failed when there was no visible band. We used less than 20 mg of

total RNA when isolation of an important sample yielded low

RNA mass but library construction was successful. Purified polyA

RNA was fragmented in a fragmentation buffer (Life Technolo-

gies, Grand Island, NY) at 70uC for 90 seconds to 200–300 nt

fragment sizes. The first cDNA strand was synthesized with

random hexamer primers using the SuperScript II reverse

transcription kit (Life Technologies, Grand Island, NY). The

second-strand synthesis was performed by incubation with RNase

H (Life Technologies, Grand Island, NY) and DNA polymerase

(Enzymatics, Beverly, MA, USA). Short double-stranded cDNA

fragments were purified using one of two methods. Our standard

procedure was to use the QIAquick PCR purification kit (Qiagen,

Valencia, CA, USA), whereas for samples with low RNA mass we

used Agencourt AMPure beads (Beckman Coulter, Beverly, MA).

Both methods were followed by end-repair with Klenow

polymerase, T4 DNA polymerase and T4 polynucleotide kinase

(Enzymatics, Beverly, MA, USA). A single 39 adenosine (A base)

was added to the double-stranded cDNA using Klenow (39 to 59

exo-) (Enzymatics, Beverly, MA, USA) and dATP (GE Healthcare,

Buckinghamshire, UK). The Illumina PE Adapter oligo mix was

ligated onto the A base on repaired double-stranded cDNA ends

and DNA fragments of a selected size were gel-purified to make

sure the insert size was 200 bp (610% deviation). Thereafter,

Plant RNA Isolation and Transcriptome Sequencing
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libraries were amplified by 15 cycles of PCR with Phusion DNA

polymerase (NEB, Ipswich, MA, USA) and ‘‘indexed’’ paired-end

PCR primers; the prepared libraries were 322 bp long. The

amplified libraries were denatured with sodium hydroxide and

diluted to 2.5 pM in hybridization buffer for loading onto a lane of

an Illumina GAIIx or HiSeq flowcell. Read length on the GAIIx

platform was typically adjusted to 73–75 bp (mean = 74 bp), but

four samples were read at 100 bp. Read length on the HiSeq

platform was predominately 90 bp with a small number of

sequences with 84–87 bp. All samples were sequenced as paired-

end reads, and up to eleven samples were multiplexed into a single

lane of the Illumina flow cell.

Prior to assembly of sequences into scaffolds we filtered

sequence reads based on four criteria. First, all samples were

indexed with unique 6–7 bp sequences and we retained reads with

0 or 1 bp sequence mismatch (.99.5% of reads). Second, we

Figure 1. Example of the qualitative and quantitative results from Agilent’s Bioanalyzer 2100. In panels (A) and (B) we show peaks
produced from electropherograms (top left) that depict the size distribution of RNA fragments, the corresponding gel-like image of RNA fragments
(top right), and metrics of RNA concentration and integrity (r26S/18S and RIN). We show two representative samples with (A) high-quality RNA in
terms of high yield and minimal degradation (r26S/18S $1, RIN $8), and (B) low-quality RNA in terms of modest yield and high degradation (r26S/18S
,1, RIN ,5). Absence of clear peaks at 26S and 18S and an abundance of short fragments clustering on the left of the electropherogram in panel (B)
are the hallmarks of severe RNA degradation. In electropherograms, ribosomal 26S (large) and 18S (small) subunits are shown in green and pink,
respectively. Concentrations of 26S and 18S were calculated by taking the area above the green and pink straight lines at the base of the 26S and 18S
peaks, respectively.
doi:10.1371/journal.pone.0050226.g001
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checked for the adapter sequences in the paired sequence reads

and rejected pairs with more than 15 bp of continuous adapter

sequence, allowing a maximum of three mismatches; this resulted

in rejection of ca. 3% of reads. Third, we removed all sequence

read pairs where either read had .5% uncalled bases (N’s)

(,0.5% of reads). Similarly, we removed sequence read pairs

when either read had more than 20 bp with Phred-type Q-

score,10 (3.5% of reads). Together these four criteria ensured

that contaminant sequences were eliminated from our data and

only the highest quality reads were used in assemblies.

We extracted several response variables for analyses from the

sequencing results to depict sequencing depth. Specifically, we

used total number of bases sequenced, which is the number of

bases that exceeded the Phred quality 20 threshold (hereafter

‘‘Q20 bases’’, a measure of the quality/reliability of sequenced

base calls) and the total number of sequence reads.

Transcriptome Assembly
Transcriptomes were assembled using SOAPdenovo [20,25,26],

which is designed to rapidly assemble large genomes sequenced on

short-read sequencing platforms such as Illumina (Figure 2). When

1KP began in early 2009, this was the best option available. Over

the last year, other assemblers (e.g., Trinity, Oases, TransABySS)

[6,27,28] have been introduced that are specifically designed for

assembling transcriptomes, where coverage varies from gene to

gene because of differences in expression and alternative splicing.

We have repeated the assemblies using a new software

SOAPdenovo-trans (http://soap.genomics.org.cn/SOAPdenovo-

Trans.html) that is faster than Trinity and recovers more full-

length transcripts from the same data set, based on a comparison

to the annotated genomes for rice and mouse (unpublished results).

We find that the number of large ($1000 bp) scaffolds from our

original assemblies and the newer assemblies are highly correlated

(r Pearson = 0.77, P,0.001, N = 626), indicating that the original

assemblies capture a large amount of the variation explained by

higher yielding newer assemblies. We therefore decided to base

our analyses on the older assemblies, since they more honestly

reflect the basis on which project decisions were made and

SOAPdenovo-trans has not yet been formally published, although

it is available to the public (see above). Moreover, a comparison of

large scaffolds ($1000 bp) from our SOAPdenovo assemblies to

GenBank’s non-redundant protein sequence database (nr) using

the BLASTx sequence translation tool containing all vascular

plants and algae showed that our assemblies reliably assembled

known proteins; on average 88% 61% (95% CI; median = 95%)

of scaffolds matched a known protein with high confidence

(E,10210).

Our assembly methods followed Li et al. [21]. In brief,

SOAPdenovo uses the de Bruijn graph method to represent all

reads, with a K-mer designated as a node and (K21) base overlaps

between two K-mers as an edge. We used a single K-mer length of

29 for all assemblies because preliminary analyses and other

published studies have shown that a single K-mer of length 25–31

can recover a large number of transcripts with variable expression

levels [11]. Although adjusting K-mer length or using multiple K-

mers can optimize the assembly of individual transcriptomes

[28,29], we used a single K-mer in this study to facilitate

comparisons of transcriptome results across all samples based on a

standard and consistent method of assembly. The alternative of

optimizing samples by K-mer length could increase total number

of transcripts identified, but it would have the undesirable effect of

confounding our results with differences in methods of assembly;

this ad hoc approach was impractical given the number of

samples. Some tips and low-coverage K-mers in the graph were

removed to eliminate branches and reduce problems induced by

sequencing errors. The de Bruijn graph was then converted into a

contig graph by turning the series of linearly connected K-mers

into precontig nodes using the merging option for the similarity of

sequences (–M) equal to 2. Dijkstra’s algorithm detected bubbles,

which were then merged into a single path if sequences of

branches were sufficiently similar. By this approach, nearly

identical sequences could be assembled into consensus ‘‘contig’’

sequences, where every base was defined in an uninterrupted

linear sequence. Contigs were then connected by paired-end reads

joined by a known distance to form a scaffolding graph (Figure 2).

Edges in this graph were connections between contigs, and the

edge length was estimated from the insert size (200 bp) of the

paired reads. We retained all scaffolds $100 bp where $95% of

bases were defined (Figure 2).

From each assembled transcriptome the response variable was

the number of scaffolds $1000 bp, which ideally represents an

estimate of the number of full length transcripts in a sample. There

are potential pitfalls with defining genetic diversity of transcrip-

tomes in this way. For example, if we focus on the number of

scaffolds of all lengths as our response variable, then some genes

will be represented by many small scaffolds. We clearly see this in

our samples because the number of scaffolds $100 bp frequently

Figure 2. Schematic representation of the method used to assemble Illumina reads into contigs, and contigs into scaffolds. All reads
were initially assembled into contigs using the de Bruijn graph method without using information about paired-end reads (shown by blue dashed
lines). A contig’s sequence was resolved at every base. Contigs were then assembled into longer scaffolds by connecting contigs that contained
paired-end reads assembled into separate contigs. Assembling scaffolds in this way allowed us to create longer sequences of known length, but
sometimes there were gaps of unknown sequence. These gaps were constrained to represent ,5% of total sequence length.
doi:10.1371/journal.pone.0050226.g002
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exceeds 100,000, which is much larger than conventional

estimates of the number of genes expressed in plant tissues [30–

34]. By contrast, if we only count scaffolds that meet a large

threshold cutoff, then we increase the probability of each scaffold

representing a unique full-length transcript, but potentially miss

legitimate smaller genes.

We determined the optimal threshold size of scaffolds by

evaluating a range of cutoffs. We performed separate analyses on

scaffold assemblies with minimum cutoffs set to 500 bp (i.e., all

scaffolds were $500 bp), 600 bp, 700 bp, 800 bp, 900 bp and

1000 bp. The strength of Pearson product moment correlations (r)

between data sets that varied in the threshold size of scaffolds

ranged between 1.00 (1000 bp vs. 900 bp) and 0.78 (1000 bp vs.

700 bp), with P,0.001 for all correlations (Table S3). In other

words, a transcriptome data set with a minimum cutoff of 500 bp

or 1000 bp contains largely overlapping information about the

estimated number of genes expressed in a sample’s transcriptome.

We focus here on the number of ‘‘large’’ scaffolds ($1000 bp, with

at least 950 resolved bp) in our results for three reasons: 1) there is

a high correlation between the number of large scaffolds

($1000 bp) and the number of scaffolds assembled using smaller

size cutoffs (i.e., 500 bp, 600 bp, 700 bp, 800 bp and 900 bp)

(Table S3); 2) large scaffolds explained the greatest variation in

most statistical models presented in the results; and 3) large

scaffolds exhibited a higher proportion of high confidence matches

to known proteins in BLASTx than smaller thresholds (data not

shown).

Statistical Analyses
Effects of tissue type. We tested the effect of tissue type on

RNA quality, RNA yield, sequencing depth (i.e., number of base

pairs sequenced, number of Q20 bases and number of sequence

reads), and number of long scaffolds assembled using Proc Mixed

in SAS 9.1 (SAS Institute, Cary, NC, USA). We first used a

likelihood ratio test (LRT) to determine whether an unequal

variance model (i.e., estimating variance separately for each tissue

type) provided a better fit for our data than a standard model that

assumes homogeneity of variance. We then assessed whether our

data met assumptions of normality, and we transformed data

accordingly using either log or square root transformations.

Pairwise differences between least-squares mean values of tissue

types were compared using the Tukey-Kramer adjustment for

multiple comparisons implemented using the ADJ option in SAS.

Mean values were subsequently back-transformed to their original

units for illustrative purposes.

It is widely believed that harvesting the youngest tissue results in

higher RNA quality and yield [35, p. 116]. To test this

conventional wisdom, we systematically harvested young freshly

expanding tissue and fully expanded mature tissue (but not ‘‘old’’

or senescing) from a phylogenetically diverse subset of 71 species as

described above (Table S1). The statistical model included tissue

age as the main effect with species included as a blocking factor.

Predicting the size of assembled transcriptomes. We

attempted to understand the factors that provide the best

predictors of the size of the assembled transcriptome, measured

as the number of large scaffolds ($1000 bp). We included four

types of variables in the analyses explained below: 1) tissue type, 2)

measures of RNA quality and yield, 3) factors associated with

sequencing methodology, and 4) a covariate for sequencing depth

(number of bases). Measures of RNA quality and yield included

RNA concentration (ng/ml), total RNA yield or mass (mg), r26S/

18S, RIN, OD 260/280 and OD 260/230. Sequencing method-

ology refers to factors that were under experimenter control; this

included the mass of total RNA sequenced (mg) and the sequencing

platform (Illumina GAIIx vs. HiSeq), which was also correlated

with the length of sequence reads (GAIIx: 74 bp/100 bp, HiSeq:

90 bp).

We achieved on average 2 Gb of data across all samples (with

an enforced minimum of 1 Gb and a practical maximum of 4 Gb).

Nevertheless, there was variation in the number of bases

sequenced (i.e., sequencing depth) and we included this variable

as a covariate in analyses.

We performed two sets of analyses because OD ratios were

measured for a smaller number of samples than the other

variables. In the first analysis, we included all nine variables

described above, and we used maximum likelihood to compare the

explanatory power of all possible linear combination of factors

(511 possible models). The best model was identified according to

the lowest Akaike information criterion (AIC) value; AIC measures

the explanatory power of the model weighted by the number of

parameters included, where lower AIC corresponds to greater

explanatory power. As per convention, nested models with AIC

values that differed by .2 (DAIC) were viewed as significantly

different, whereas nested models with DAIC ,2 were seen as

statistically equivalent [36]. Because AIC values are sensitive to

variation in sample size, only samples for which we had data on all

variables were included in the analysis; the total size of this

‘‘balanced’’ data set was 184 samples. However, all data were used

in the calculation of the variation explained by each factor (partial

r2) because this statistic is less sensitive to variation in sample size.

The second analysis used the larger balanced data set of 512

samples, which lacked the OD ratios but contained all other

variables. This data set considered all possible combinations of

seven explanatory variables (127 models in total) and selected the

best model according to the methods described above.

We focused our results on analyses that used scaffolds

$1000 bp but we also performed analyses on smaller threshold

cutoffs. Comparing results of the best-fitting models produced

qualitatively identical results for all data sets with respect to the

direction and statistical significance of explanatory variables. The

only exception to this was that tissue type became a significant

predictor of the number of scaffolds when the minimum threshold

scaffold size was set to 600 bp, but this result was only found for

the large data set without OD ratios.

Results

Likelihood of Isolating High-quality RNA
When presented with a previously unstudied plant tissue, most

researchers first attempt RNA isolation using one of several

commercially available plant RNA isolation kits. To provide

researchers with a priori guidance on the likelihood of success we

asked: What is the success rate of a commonly employed

commercial kit in extracting high-quality RNA for NGS (see

Appendix S1)? For each of 81 samples that represented a wide

phylogenetic diversity of plants we isolated total RNA from fresh

leaf material using Qiagen’s RNeasy Plant Minikit (Appendix S1,

Protocol 1; Table S2); 46% of these samples met our criteria for

yield and quality of total RNA (see Methods). We attempted an

additional extraction using RNeasy’s alternative protocol (Appen-

dix S1, Protocol 2) on 37 of the samples that failed using Protocol

1; 32% (12) of these samples met our criteria for RNA quality and

mass. Thus, using a commonly used commercial extraction kit

(Protocol 1) and its prescribed alternative modification (Protocol

2), we isolated total RNA from 66% of samples that met our

criteria for sequencing. However, certain taxa never yielded high-

quality RNA using commercial kits, and therefore 16 alternative
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protocols were developed and/or implemented for the remaining

samples (see Appendix S1).

Effects of Tissue Type on RNA Quality and Assembled
Transcriptome Size

Yield and quality of total RNA isolated from samples varied

substantially among plant tissue types. The mass of extracted RNA

varied among tissues by more than 350% (P = 0.007), with flowers,

buds and tissue mixtures yielding the most RNA and fruits

producing the least (Figure 3A, Table 1, Table S4, S5). Measures

of RNA quality, including r26S/18S, RIN (Figure 3B), and OD

260/280, also significantly varied among plant tissues (Table 1).

With the exception of a fairly strong correlation between r26S/

18S and RIN (r = 0.64, P,0.001), descriptors of RNA quality were

not highly correlated with one another. For example, although the

mass of RNA isolated from flowers was 3.56 greater than RNA

mass from fruits (P = 0.03), average RIN was 37% lower in flowers

than in fruits, although not significantly (P = 0.21). Means and

statistical comparisons among all tissues are available online

(Table S4, S5).

Across all sequenced samples, our assembly of transcriptomes

recovered a large number of putative transcripts, with a mean of

15,512 scaffolds $500 bp (6192 [stderr], N = 629 samples) in

length, 7444 scaffolds $800 bp (6124 [stderr], N = 629) and 4997

scaffolds $1000 bp (699 [stderr], N = 629). As described in the

methods, 88% (61%, 95% CI) of long scaffolds ($1000 bp)

matched a known protein in the GenBank nr protein database for

algae and plants with high confidence (,E210). All measures of

sequencing depth and transcriptome size varied significantly

among plant tissues (Table 1). Number of bases sequenced,

number of bases sequenced with high-quality (‘‘Q20 bases’’), and

number of sequence reads were consistently lowest in green algal

cells (hereafter just ‘‘algae’’ or ‘‘algal cells’’) and highest in floral,

fruit and bud tissues (Figure 3C, 3D, Table S6). There was weaker

but still significant variation among plant tissues for number of

large scaffolds ($1000 bp) (Table 1, Figure 3D). Again, algal cells

yielded the lowest number of scaffolds, whereas flowers, fruits and

buds returned the highest numbers of scaffolds. However, these

last contrasts were never significant in a posteriori pairwise

comparisons that corrected for multiple tests (Table S7).

Unexpectedly, age of tissue (i.e., young freshly expanding vs.

mature fully expanded but non-senescing tissue) had only a weak

effect on RNA quality and no clear effect on sequencing results

(Table 1). Although younger leaves gave higher yields of RNA (see

Methods), the only effect of tissue age on RNA quality was seen for

RIN (F1,41 = 48.91, P,0.001), which was 13% higher in young

tissues (mean = 6.93, SE = 0.08) than in mature tissues

(mean = 6.14, SE = 0.07). There was no clear effect of tissue age

on any metric of transcriptome size including the number of large

scaffolds (Table 1). The only exception to this result was seen when

we reduced the minimum threshold size cutoff of scaffold

assemblies to 500 bp, at which point young tissue produced

7.5% more scaffolds than older tissue (F1,31 = 7.1, P = 0.01).

Figure 3. Variation among tissue types in RNA quality and transcriptome size. We observed differences among tissue types for (A) total
RNA mass (mg) isolated, (B) RIN, (C) sequencing depth and (D) number of scaffolds. For each tissue, we show the mean +1 SE and sample size at the
base of columns. A posteriori pairwise contrasts among means corrected for multiple comparisons are shown in Supplemental Tables 3 and 5.
doi:10.1371/journal.pone.0050226.g003
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Predicting Size of Assembled Transcriptomes
RNA quality and covariates associated with sequencing

methodology both predicted the number of large scaffolds

assembled from individual samples. For the data set that included

OD ratios, we compared all 511 possible linear models (Table S8)

using maximum likelihood statistics (see Methods). The best-fitting

model (AIC = 3187) contained seven explanatory variables that

accounted for 36% of the total variation in the number of scaffolds

(Table 2, Table S8). This best-fitting model included tissue type,

r26S/18S, RIN, OD 260/280, OD 260/230, as well as

sequencing platform (GAIIx vs. HiSeq) and the mass of total

RNA used in library construction; a model that also included RNA

concentration fit almost equally well. Among variables relating to

tissue type and RNA quality, only RIN and OD 260/230 were

significant predictors of the number of large scaffolds (Table 2).

Both RIN and OD 260/230 were positively correlated with the

number of large scaffolds, and together they accounted for 8.9% of

the total variation (Figure 4, Table 2). Variables associated with

sequencing methodology accounted for most of the variation in the

number of large scaffolds. Specifically, there were significantly

fewer scaffolds from transcriptomes sequenced on the HiSeq

platform compared to sequences generated from the GAIIx

platform; this one factor accounted for 22% of the total variation

in the number of large scaffolds (Figure 4, Table 2). This result was

unexpected because the HiSeq platform had a nominally longer

read length (90 bp) than the GAIIx platform (74 bp). There was

also a weak yet significant negative relationship between mass of

total RNA used to construct libraries for sequencing and number

of scaffolds (Table 2).

We also used a larger data set (see Methods) that lacked OD

ratios to predict the number of large scaffolds. Among all possible

linear models (Table S9), the model with the highest information

content included the same variables (tissue type, r26S/18S, RIN,

sequencing platform and the amount of RNA sequenced;

AIC = 9174) as the best-fitting model described above (minus the

OD ratios). This model accounted for less total variation (14.5%)

Table 1. Effects of tissue type and age on metrics of RNA quality and sequencing.

Tissue type Tissue age

ndf2, ddf3 F4 P5 ndf, ddf F P

RNA quality

RNA mass1 7,24 3.77 0.007 1,40 1.36 0.25

r26S/18S 7,1071 10.06 ,0.001 1,41 4.56 0.33

RIN 7,1061 5.14 ,0.001 1,41 48.91 ,0.0001

OD 260/280 6,503 3.16 0.005 1,40 0.58 0.45

OD 260/230 6,383 1.30 0.26 – – –

Sequencing

Bases 7,576 7.95 ,0.001 1,31 2.63 0.12

Q20 bases 7,576 13.23 ,0.001 1,31 2.66 0.11

Reads 7,576 10.98 ,0.001 1,31 2.54 0.12

Scaffolds 7,574 2.33 0.024 1,31 0.87 0.36

Significant effects (P,0.05) are shown in bold.
1Measured as mg of total RNA isolated from a given tissue.
2Numerator degrees of freedom (ndf) of F-statistic.
3Denominator degrees of freedom (ddf) of F-statistic. ddf are low for RNA mass because an unequal variance model was used to account for heteroscedasticity in
residuals among tissues.
4F-statistic from analysis of variance (ANOVA).
5P-value of F-statistic given ndf and ddf.
doi:10.1371/journal.pone.0050226.t001

Table 2. Statistical significance of explanatory variables in the
best-fitting models for the data set with OD ratios and
without OD ratios.

Variable df1 F P r2

OD ratios included

Tissue type 2,174 0.23 0.791 0.002

Sequencing platform 1,174 59.27 ,0.001 0.219

r26S/18S 1,174 0.90 0.344 0.003

RIN2 1,174 9.38 0.003 0.035

RNA seq3 1,174 8.11 0.005 0.030

OD 260/280 1,174 3.46 0.065 0.013

OD 260/230 1,174 14.69 ,0.001 0.054

OD ratios excluded

Tissue type 7,499 0.28 0.96 0.003

Sequencing platform 2,499 30.35 ,0.001 0.104

r26S/18S 1,499 1.00 0.318 0.002

RIN 1,499 8.08 0.005 0.014

RNA seq 1,499 12.77 ,0.001 0.022

The best-fitting models were determined by comparing AIC values among
models that considered all possible combinations of explanatory variables.
Statistical significance was determined using an ANOVA model with type III
sums-of-squares (SS). Variables with P,0.05 are shown in bold. Partial r2 values
(coefficient of determination) were determined by dividing SS values of each
factor by total SS.
1Numerator (first number) and denominator (second number) degrees of
freedom (df) for F-test.
2RNA integrity number (RIN).
3Mass of total RNA sequenced.
Other abbreviations as per Table 1.
doi:10.1371/journal.pone.0050226.t002
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in the number of large scaffolds than the previous model (Table 1).

As with the smaller data set, RIN, sequencing platform and total

amount of RNA sequenced were significant predictors of the

number of large scaffolds, and directionality of correlations was

identical to those described above (Figure 4). In this larger data set,

number of bases sequenced was also positively correlated with

number of scaffolds (P,0.001, r2 = 0.02), but including the

number of bases in the model led to a weaker overall fit of the

data (DAIC = 15.9) compared to models that excluded this

covariate.

Finally, we evaluated the optimal method of shipping RNA

using a subset of samples (see Methods). Samples were either sent

as frozen RNA extract on dry ice (N = 100) or as dehydrated total

RNA (N = 68) using Genvault’s GenTegra RNA kit (IntegenX,

Pleasanton, CA). Genvault samples had 17% more scaffolds on

average (56756265 scaffolds) than samples sent as frozen extracts

(48426211 scaffolds) (F1,167 = 6.29, P = 0.013), and this effect

explained 3.6% of the total variation in the number of scaffolds

among samples.

Discussion

Three results from our study have important implications for

the isolation, sequencing and assembly of phylogenetically diverse

plant transcriptomes. First, we identified specific tissues and

metrics of RNA quality that provide significant predictors of the

number of large scaffolds, but these variables explained relatively

little total variation in the data. Second, components of sequencing

methodology (e.g., sequencing platform) had a larger impact on

the number of scaffolds than metrics of RNA quality. Third,

Illumina sequencing and assembly of scaffolds were fairly robust to

variation in RNA quality. Based on these results, we recommend

researchers and genomic facilities optimize RNA quality and

sequencing methodology as much as possible, but still sequence

samples of low to moderate quality as these samples can yield large

transcriptomes sequenced by Illumina.

Effects of Tissue Type on RNA Quality and Transcriptome
Sequencing

As expected, quality of RNA and size of transcriptomes varied

among tissue types [30], but not always in ways that were

consistent with conventional wisdom. Some tissues such as flowers

and roots resulted in a high yield and quality of total RNA,

whereas the most commonly harvested tissue (leaves) resulted in

relatively modest to low RNA yields and quality (Figure 3, Table

S4). Although many of these results show strong statistical support,

we caution that they should be viewed tentatively given the low

sample sizes and limited phylogenetic coverage of some tissues.

Figure 4. Factors that significantly predicted the number of large scaffolds. Among our measures of RNA quality, (A) RNA integrity number
(RIN) and (B) OD 260/230 ratio were the strongest predictors of the number of scaffolds $1000 bp. (C) Sequencing platform also had a strong effect
on number of large scaffolds (P,0.001, Table 2; numbers at the base of bars show sample size), and (D) mass of RNA sequenced had a weak but
detectable effect (see Table 2). Note, for most samples we used 20, 30 or 40 mg of total RNA for sequencing, but a few samples used intermediate or
lower amounts.
doi:10.1371/journal.pone.0050226.g004
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Despite the large differences in RNA quality and sequencing

depth, we observed little variation in the number of scaffolds

among tissues (Figure 3D). Leaves did contain fewer scaffolds than

other tissues, but no tissues were significantly different from one

another in pairwise comparisons that adjusted for type-I error

(Table S7). Perhaps the most surprising result was the lack of a

large difference in RNA quality between young and mature leaves

(Table 1). Many researchers report difficulties in extracting nucleic

acids from older tissues [35, p. 116], and our result showing that

young tissue has higher RNA integrity and yield compared to

mature tissue partially supports this view. Despite this fact, our

results also show that if RNA can be extracted, most measures of

RNA quality are comparable between young and mature tissues,

and the number of large scaffolds is statistically equivalent.

Predicting Size of Transcriptomes
Our results identify specific metrics of RNA quality that predict

the size of assembled transcriptomes. Specifically, measures of

RNA integrity (RIN) and purity (OD 260/230) predicted the

number of large scaffolds assembled from samples. Since RIN

quantifies RNA degradation [20], our results imply that degraded

RNA prevents assembly of large scaffolds from sequenced

transcriptomes. Similarly, our results indicate that impurities in

RNA samples interfere with cDNA synthesis from mRNA because

OD 260/230 ratios below 2 indicate the presence of contaminants

(e.g., salts and organic compounds). This result is expected given

studies that show impurities, including ubiquitous plant secondary

metabolites, can inhibit reverse transcriptase [37,38].

Although we identify significant predictors of transcriptome

sequence/assembly quality, it is noteworthy that these predictors

account for less than 10% of the total variation in the number of

large scaffolds. There are two principal explanations for this weak

predictive value. First, transcriptomes are by their very nature

complex mixtures of many types of RNA that dynamically change

in space and time [30,32], and we specifically targeted mRNA,

which comprises only 1–5% of the total RNA in a cell [13]. As

such, all metrics of total RNA quality are bound to be coarse

depictions of quality and quantity of mRNA. Second, sequencing

and assembling transcriptomes is associated with many steps in

which noise and bias can be introduced to obscure an otherwise

clear effect of RNA quality [39]. Therefore, our results suggest that

maximizing RIN and OD 260/230 will increase success of

transcriptome sequencing to a point (Figure 4A, 4B), but it is still

possible to sequence and assemble transcriptomes with suboptimal

levels of these and other measures of RNA quality.

The most counter-intuitive result was the relationship between

sequencing platform and number of large scaffolds. Contrary to

our expectation, Illumina’s HiSeq platform, which produced

predominantly 90 bp reads, resulted in 34% fewer large scaffolds

than samples sequenced on Illumina’s GAIIx platform, which

produced 74 bp reads. This result is surprising because the HiSeq

platform was designed to increase sequencing depth and produce

longer high-quality reads that should facilitate the assembly of

longer scaffolds and larger transcriptomes. Why then do we find

the opposite to be true in our large and phylogenetically diverse

data set? One possibility is that the sequencing chemistries of the

HiSeq and GAIIx platforms are biased in their ability to sequence

GC-rich templates, which could lead to systematic biases when

sequencing inherently GC-rich mRNA. This does not seem to

explain our result because a comparison of HiSeq and GAIIx

platforms finds no clear bias in %GC content of scaffolds (Figure

S1). A second possible explanation is that samples sequenced on

the HiSeq platform represent a phylogenetically biased subset of

species with a lower diversity of expressed genes, such as algae

[40,41]. This is also an unlikely answer. For example, algae were

disproportionately represented on the HiSeq platform (18% of

HiSeq samples were algae vs. 7% of GAIIx samples), but numbers

of large scaffolds sequenced from algae and non-algae were

statistically equivalent (P = 0.17) when we restrict our analysis to

just HiSeq samples.

A third possible explanation relates to differences in the true

quality of sequenced bases on the two platforms. Sequence quality

is quantified as Q-scores, where higher Q indicates lower

sequencing error. Unfortunately, no direct comparison of Q-

scores can be made between samples sequenced on the GAIIx and

HiSeq platforms because the software used to estimate Q-scores

on the GAIIx platform systematically underestimates Q-scores and

thus over-estimates error rates [22], whereas recent versions of the

software used for the HiSeq platform quantify error rates of

sequenced base pairs more accurately [22]. Hence the number of

high quality bases that are useful for transcriptome assembly is

higher than indicated for the GAIIx platform, even when we

compare the two platforms by a simple Q20 threshold, because

they do not define Q values in an equivalent sense.

Practical Advice for Sequencing Plant Transcriptomes
Given the results of this study and the collective experience of the

many collaborators involved in 1KP, we are able to provide plant

researchers with practical recommendations for maximizing success

of isolating high-quality total RNA from plants for NGS (also see

Appendix S1). First, flash-freezing fresh tissue immediately upon

collection ensures the highest quality RNA with the least

degradation [26]. Second, using flower, bud or young root tissues

can facilitate the isolation of high-quality total RNA [35, p. 116].

Third, smaller amounts of young tissue generally yield as much

RNA as larger amounts of mature tissue. Fourth, use of

commercially available kits and easily implemented hybrid proto-

cols are the most efficient method for successfully isolating total

RNA for NGS when working with new types of tissue or previously

unstudied species. If these extractions do not provide the desired

result we recommend choosing the isolation protocol in Appendix

S1 used for the taxa most closely related to the focal organism of the

experimenter (see Table S1). Fifth, working in an RNase-free

environment is essential for successful isolation and preservation of

total RNA. Sambrook and Russell [13] provided excellent advice on

how to avoid RNase contamination, and we emphasize here that

various chemicals can be added to solutions (e.g., DEPC-treated

water) as well as to working surfaces and equipment (e.g., RNase

Zap, Ambion, Austin, TX) to inactivate RNase enzymes.

Our experience in sequencing and assembling over six hundred

transcriptomes also allows us to make conclusions and recom-

mendations that promote implementation of NGS for the study of

transcriptomes. Optimizing RNA integrity (RIN) and purity (OD

260/230) will improve size of assembled transcriptomes. However,

we show that NGS is robust to variation in RNA quality, and

therefore researchers and genome facilities should consider

sequencing samples that show significant deviation from optimal

levels of RIN scores, OD 260/230 ratios and certain other metrics

of RNA quality. Implementing this recommendation could save

researchers and sequencing facilities considerable time and money

presently allocated for optimizing samples. Also, shipping dehy-

drated RNA to genome centers, instead of frozen extract, can

further increase sequencing success.

Conclusions
NGS is a powerful method for studying plant transcriptomes,

and it is now possible to sequence virtually all expressed genes in a

given tissue. Our study developed and evaluated many protocols

Plant RNA Isolation and Transcriptome Sequencing

PLOS ONE | www.plosone.org 10 November 2012 | Volume 7 | Issue 11 | e50226



that can facilitate the isolation of total RNA from most green

plants. We have also identified several factors that affect the

sequencing and assembly of transcriptomes. As a whole, these

results provide a resource to increase success and efficiency of

NGS to tackle the next generation of questions in plant biology.

Supporting Information

Figure S1 A comparison of the frequency of scaffolds
according to variation in % GC content between samples
sequenced on HiSeq versus GA II platforms. Distributions

are broadly overlapping. The long right-tail from the HiSeq

samples is caused by a disproportionate number of algae samples

sequenced on that platform. These algae exhibited especially rich

GC transcripts, which is consistent with the results of published

whole genome sequences of green algae [40,41].

(PDF)

Table S1 Raw data used to analyze RNA quality,
sequencing depth and number of scaffolds. For each sample

we provide the species and family name, the tissue collected (Y-

young, expanding tissue; M-mature, fully expanded but non-

senescing tissue), the contributor of the sample, and the RNA

isolation method (numbers correspond to Supplementary Proto-

cols). Metrics of RNA quality and yield include the mass of total

RNA isolated, RNA concentration, the ratio of the large RNA

ribosomal subunit to the small RNA ribosomal subunit (r28S/18S),

the RNA Integrity Number (RIN), OD 260/280, and OD 260/230.

Sequencing data includes the sequencing platform, read length

(averaged between the paired-ends), mass of total RNA sequenced,

number of reads, number of bases, number of bases that surpassed

the Q20 threshold and the number of scaffolds (c) greater than

100 bp (c100), greater than 200 bp (c200), and so on and so forth.

We also include the number of scaffolds that fall within bins (b) of

different sizes, ranging from b100 (i.e., the number of scaffolds 100–

199 bp long) to b1000 (number of scaffolds greater 1000).

(XLS)

Table S2 The success/failure of RNA isolations using
Qiagen’s RNeasy Plant Minikit (see Appendix S1,
Protocol 1) and alternative hybrid protocol (see Appen-
dix S1, Protocol 2). Successful isolations were those that met the

stringent criteria of two isolations of the same tissue resulting in a

concentration of .150 ng/mL, a total mass of 20 mg RNA, OD

260/280.1.9, OD 260/230.1.5, r26S/18S .1 and RIN .8. A

‘1’ denotes that the sample met these criteria and ‘0’ indicates that

the sample did not meet these criteria; ‘2’ indicates the method

was not attempted for the sample. In most cases, if a sample failed

with the RNeasy kit (Appendix S1, Protocol 1) we attempted the

alternative Qiagen recommended protocol (Appendix S1, Protocol

2). Family names are according to APG III (2009). Except when

noted, we used freshly expanding leaves for all isolations.

(PDF)

Table S3 Correlations in the number of scaffolds with
different minimum threshold size cutoffs used during
assemblies. For example, the column labeled 500 bp contains

all scaffolds that are 500 bp or larger. Pearson product moment

correlation coefficients (r) are shown in the upper triangular

matrix, and P-values are shown in the lower triangular matrix.

(PDF)

Table S4 Least-squares means of descriptors of RNA
quality among different plant tissues types. The least-

squares mean 61 SE and sample size are provided for each tissue type.

(PDF)

Table S5 P-values for a posteriori pairwise contrasts of
RNA quality among tissue types. P-values are adjusted for

multiple comparisons within each variable using the Tukey-

Kramer correction method. P-values ,0.05 are bolded.

(PDF)

Table S6 Least-squares means of descriptors of se-
quencing success among plant tissue types. The least-

squares mean 61 SE and sample size are provided for each tissue

type.

(PDF)

Table S7 P-values for a posteriori pairwise contrasts of
various sequencing metrics among different tissue
types. P-values are adjusted for multiple comparisons within

each variable using the Tukey-Kramer correction method. P-

values ,0.05 are bolded.

(PDF)

Table S8 The statistical fit of all possible combinations
of explanatory factors in the data set that included OD
ratios. Fit of models was statistically compared using maximum

likelihood statistics according to the Akaike information criterion

(AIC). Models are arranged in the order of best-fitting models

(lowest AIC) to poorer fitting models (higher AIC). Inclusion or

absence of explanatory variables from models is shown by 1 and 0,

respectively.

(PDF)

Table S9 The statistical fit of all possible linear
combinations of factors in the large data set that
excluded OD ratios. The fit of models was statistically

compared using maximum likelihood statistics according to the

Akaike information criterion (AIC). Models are arranged in the

order of best-fitting models (lowest AIC) to poorer fitting models

(higher AIC). Inclusion or absence of explanatory variables from

models is shown by 1 and 0, respectively.

(PDF)

Appendix S1 Eighteen protocols used to isolate total
RNA from plant tissue included in this study.

(PDF)
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ZT RB JNB CTC MWC NDC SC CWD SWD PPE FG S. Graham S.

Greiner JMH IJT TMK JLM MM NM HM JP JCP PR MR RFS D.

Stevenson PS D. Soltis CNS BS CJMT JCV XW YZ MKD GKSW.

Wrote the paper: MTJJ EJC ZT XW YZ MKD GKSW.
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