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Abstract

Adult attention deficit/hyperactivity disorder (ADHD), schizophrenia (SCHZ), and bipo-

lar disorder (BP) have common symptoms and differences, and the underlying neural

mechanisms are still unclear. This article will thoroughly discuss the differences between

ADHD, BP, and SCHZ (31 healthy control and 31 ADHD; 34 healthy control and

34 BP; 42 healthy control and 42 SCHZ) relative to healthy subjects in combination

with three atlases (et al., the Brainnetome atlas, the Dosenbach atlas, the Power atlas)

and seven entropies (et al., approximate entropy (ApEn), sample entropy (SaEn), permu-

tation entropy (PeEn), fuzzy entropy (FuEn), differential entropy (DiffEn), range entropy

(RaEn), and dispersion entropy (DispEn)), as well as the prominent significant brain

regions, in the hope of giving information that is more suitable for analyzing different

diseases' entropy. First, the reliability (et al., intraclass correlation coefficient [ICC]) of

seven kinds of entropy is calculated and analyzed by using the MSC dataset (10 subjects

and 100 sessions in total) and simulation data; then, seven types of entropy and multi-

scale entropy expanded based on seven kinds of entropy are used to explore the differ-

ences and brain regions of ADHD, BP, and SCHZ relative to healthy subjects; and

finally, by verifying the classification performance of the seven information entropies on

ADHD, BP, and SCHZ, the effectiveness of the seven entropy methods is evaluated

through these three methods. The core brain regions that affect the classification are

given, and DiffEn performed best on ADHD, SaEn for BP, and RaEn for SCHZ.

K E YWORD S

(multiscale)entropies, ADHD/BP/SCHZ, different atlases, resting-state fMRI, test–retest
reliability

1 | INTRODUCTION

The human brain is a complex system characterized by large-scale dis-

tributed neural networks of inherently fluctuating signals, revealed by

accumulating functional magnetic resonance imaging (fMRI) studies

(Biswal et al., 2010; Deco et al., 2011; Gordon et al., 2017). Resting-

state fMRI (rs-fMRI) can reflect the spontaneous neural activity of the

human brain and can be used to study its intrinsic function. In the past
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decades, resting-state functional connectivity (rsFC) has been increas-

ingly used in mapping the intrinsic functional networks of the human

brain, with a focus on the inherently fluctuating signals and their inter-

actions between different brain regions (Biswal et al., 1995; Fox &

Greicius, 2010; Greicius et al., 2003, 2009). There are numerous com-

plexity methods of rs-fMRI brain signals, such as the Lyapunov expo-

nent, correlation dimension, Lempel-Ziv complexity, Hurst exponent,

and entropy (Ali et al., 2018; Guan et al., 2020, 2022; Ju et al., 2019;

Lin et al., 2022; Smith et al., 2013; Yakovleva et al., 2020). Among

these methods, due to its simple algorithm, the small amount of data

required, and the strong anti-noise ability in calculation, entropy is

one of the most widely used complexity methods for evaluating the

dynamic characteristics of brain signals. In physiological signal analy-

sis, entropy methods have been widely used, including approximate

entropy (ApEn; Yentes et al., 2012), sample entropy (SaEn; Richman

et al., 2004), fuzzy entropy (FuEn; Chen et al., 2007), and permutation

entropy (PeEn; Bandt & Pompe, 2002). SaEn, as proposed by Richman

and Moorman (2000), is an improved version of Pincus's ApEn and

aims to overcome the limitations of ApEn and reduce statistical bias.

FuEn is an improvement over the ApEn and SaEn algorithms. PeEn,

another widely used entropy measure, is a novel method developed

by Bandt to characterize the complexity of time series (Bandt &

Pompe, 2002). PeEn is suitable for capturing the complex dynamics

and rich time structure embedded in biological systems.

Besides, there are some scholars have also proposed new entropy

methods, such as Range entropy (RaEn; Omidvarnia et al., 2018), Dis-

persion entropy (DispEn; Rostaghi & Azami, 2016), and Differential

entropy (DiffEn; Duan et al., 2013). RaEn is a proposed modification

to ApEn and SaEn, which are highly sensitive to signal amplitude

changes and less affected by variation in the magnitude of signals.

DispEn originates from SaEn and PeEn, which can detect the noise

bandwidth and simultaneous frequency and amplitude change. It does

not lead to undefined results in short signals, is less sensitive to noise,

and is considerably faster than SaEn. DiffEn is used to measure the

complexity of a continuous random variable, is the entropy of a con-

tinuous random variable, and is also related to minimum description

length. However, relatively few studies have employed these entro-

pies simultaneously approach for fMRI (Lin et al., 2019; Sokunbi

et al., 2011, 2013, 2014, 2015). Specifically, Sokunbi et al. (2011) con-

ducted multiple fMRI signal studies using different entropy measures.

Using ApEn to study individual differences in cognitive performance

in an elderly population, the results showed that higher regional signal

entropy was associated with better cognitive performance. SaEn was

used to study the complexity of fMRI signals in the brain of schizo-

phrenia (SCHZ) patients. It was found that the complexity of the sig-

nals from these patients was higher than that of HC at the global and

local levels (Sokunbi et al., 2014). They also used SaEn to analyze the

patients' fMRI signals from attention-deficit/hyperactivity disorder

(ADHD). They found that the entropy values of the fMRI signal from

the whole brain of these patients were lower than those of the con-

trols (Sokunbi et al., 2013). The analysis of the complexity of fMRI sig-

nals from 41 HC adults (41 males, 19–85 years old) showed that brain

entropy (BEN) values at the global and local levels were negatively

correlated with age (Sokunbi et al., 2015). Lin et al. (2019) used SaEn

to explore changes in the entropy of fMRI signals from the brains of

patients with depression. Compared with HC, patients with depres-

sion showed reduced entropy in the medial orbitofrontal cortex and

cingulate cortex but increased brain signal complexity in the motor

cortex. These studies showed that entropy measures could analyze

the temporal changes in fMRI signals and locate the relevant brain

space. Studies on fMRI showed that the change in entropy value can

act as a biomarker for disease states and can also be used to study the

internal mechanism of the HC human brain.

Furthermore, a few studies have systematically analyzed the

test–retest reliability of these entropy methods applied to fMRI sig-

nals to determine the entropy method that most reliably reflects the

complexity of biological systems (Liu et al., 2020; Niu et al., 2020). For

example, Niu and colleagues (Niu et al., 2020) investigated the distri-

bution and test–retest reliability of four entropy measures in three

independent data sets. They showed that analyzing fMRI signals with

entropy showed strong tissue sensitivity, with PeEn and FuEn supe-

rior to ApEn and SaEn at all three levels. ApEn and SaEn are two of

the most commonly used measures in contemporary science among

the signal mentioned above entropy measures. SaEn stems from ApEn

after addressing some limitations, including inconsistency and strong

dependency on the input signal length. However, both measures still

suffer from sensitivity to signal amplitude changes. Although PeEn is

conceptually simple and computationally fast, the method does not

consider the mean value of amplitudes and the differences between

amplitude values (Rostaghi & Azami, 2016). Liu et al. (2020) examined

the Human Connectome Project data (https://www.

humanconnectome.org and have been described extensively in the lit-

erature; Van Essen et al., 2013) of 998 healthy young adults (age

range: 22–35 years). They demonstrated the crucial influence of test–

retest reliability on detecting individual differences in entropy-based

studies with fingerprint identification (Finn et al., 2015) applied to

whole-cortex entropy profiles. In addition, Zhang and colleagues

(Zhang et al., 2021) used multiscale sample entropy of rs-fMRI from

15 SCHZ, 49 BP, and 49 HC to assess differences in rs-fMRI signal

complexity. Niu et al. (2020) compared the test–retest reliability of

ApEn, SaEn, FuEn, and PeEn, results showed that the highest test–

retest reliability was achieved with PeEn and FuEn were superior to

ApEn and SaEn at all three levels, that is, based on voxels, brain

regions, and functional networks. However, brain rs-fMRI signals are

very susceptible to noise during the acquisition process, so anti-noise

performance of entropy is important (Niu et al., 2019). DiffEn, DispEn,

and RaEn are not currently used in rs-fMRI, so whether DiffEn, Dis-

pEn, and RaEn are likely to have better anti-noise performance is a

new topic that warrants exploration.

Based on three different atlases, this article will focus on finding a

reliable and effective entropy method to reveal differences in func-

tional connectivity between ADHD, BP, and SCHZ. So, the distribu-

tion and test–retest performance of the seven entropy methods

(ApEn, SaEn, PeEn, FuEn, DiffEn, DispEn, and RaEn) in this aim were

also compared. The similarities and differences between ADHD, BP,

and SCHZ as revealed by entropy methods, are also explored.
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Additionally, multiscale entropy expanded based on the seven kinds

of entropy is used to analyze the differences and brain regions of

ADHD, BP, and SCHZ relative to healthy subjects. The entropy

methods that are most effective in these tasks will be determined

using classification analysis.

2 | MATERIALS AND METHODS

2.1 | Resting-state fMRI data

The MSC datasets used in this study were obtained from the Open-

fMRI's data repository (https://openfmri.org) with the project name

“The Midnight Scan Club (MSC) dataset.” It consists of 10 healthy,

right-handed, young adult subjects (5 females; age: 24–34; Gordon

et al., 2017). The MRI data were acquired on a Siemens TRIO 3T MRI

scanner. The imaging was conducted on 10 subsequent days, each

beginning at midnight. A summary only is provided because details of

the MSC study have been provided in previous literature (Gordon

et al., 2017) and online (https://openneuro.org/datasets/ds000224)

here. The rs-fMRI data was collected using a gradient-echo planar

image (EPI) sequence (TR = 2.2 s, TE = 27 ms, flip angle = 90�,

36 slices, and 4 mm isotropic voxels). Within each session of 10 subse-

quent days, 30 min of rs-fMRI data were collected, in which subjects

visually fixated on a white crosshair presented against a black back-

ground. One subject (MSC08) was excluded due to falling asleep dur-

ing the scan, in line with previous literature (Gordon et al., 2017).

Therefore, the rs-fMRI data of 9 subjects with 10 sessions were ana-

lyzed in this study.

The Consortium for Neuropsychiatric Phenomics dataset used in this

study was obtained from the OpenfMRI database with the accession

number ds000030 (https://www.openfmri.org/dataset/ds000030/).

All participants gave written informed consent during the UCLA Con-

sortium for Neuropsychiatric Phenomics (CNP) LA5c Study data col-

lection. The CNP published a dataset (Poldrack et al., 2016) with

neuroimaging and phenotypic information for 272 participants. The

subject population consists of HC (130 subjects), as well as partici-

pants with diagnoses of adult ADHD (43 subjects), BP (49 subjects),

and SCHZ (50 subjects). The sample of subjects contains 155 men and

117 women, with ages between 21 and 50 years (mean: 33.23;

median: 31.0). Each subject completed at least 8 years of formal edu-

cation and have either English or Spanish as a primary language. Sub-

jects were recruited by community advertisement and outreach to

local clinics and online portals. The consortium excluded patients with

diagnoses in at least two different patient groups. Furthermore, the

following exclusion criteria were used: left-handedness, pregnancy,

history of head injury with loss of consciousness, or other contraindi-

cations to scanning. Neuroimaging data were acquired on a 3T Sie-

mens Trio scanner. Functional MRI data were collected with a T2*-

weighted EPI sequence with slice thickness = 4 mm, 34 slices,

TR = 2 s, TE = 30 ms, flip angle = 90�, matrix = 64 � 64,

FOV = 192 mm. A T1-weighted high-resolution anatomical scan was

collected with the following parameter: slice thickness = 1 mm,

176 slices, TR = 1.9 s, TE = 2.26 ms, matrix = 256 � 256,

FOV = 250 mm.

In the current study, we included healthy subjects and subjects with

ADHD, BP, and SCHZ. We removed those with large head motions for

subjects with ADHD, BP, SCHZ, and HC. In addition, the age and gender

of each disease group and the corresponding control group are required

to be similar. Then, framewise displacement was calculated, and subjects

were excluded if their maximum translation or rotation framewise dis-

placement was greater than 2 mm. We then manually chose age and

gender-matched HC subjects. As a result, 31 HC and 31 ADHD; 34 HC

and 34 BP; 42 HC and 42 SCHZ remained for the current study.

2.2 | Data preprocessing

For each subject and each session, those two rs-fMRI datasets were pre-

processed by using SPM12 (Ashburner, 2012) and DPABI (Yan

et al., 2016), with the following steps: (1) discarding the first 10 volumes

for the equilibrium of magnetization; (2) slice timing correction to account

for temporal shifts during data acquisition; (3) motion contaminated vol-

umes were then identified by frame-by-frame displacement [FD,

described in Power et al. (2011)], calculated as the sum of absolute values

of the differentials of the three translational motion parameters (including

one filtered parameter) and three rotational motion parameters. Frames

with FD >0.2 mm were flagged as motion-contaminated; (4) regressing

out nuisance variables including the Friston-24 head motion time-series

(Friston et al., 1996) as well as the average time-series of white matter,

cerebrospinal fluid, and global signal (Fox & Raichle, 2007); (5) normalizing

functional images into the standard Montreal Neurological Institute space

by using the EPI atlas with the resampled voxel size of 3 mm; (6) smooth-

ing by using a 6mm full width at half maximum (FWHM) Gaussian ker-

nel; (7) band-pass filtering (0.009–0.08Hz); and (8) Scrubbing settings:

FD type refer Power, FD threshold for bad time is 0.2mm, and scrub-

bing time points before and after bad time is one and two, respec-

tively. The scrubbing method was a linear interpolation, and Linear

interpolation refers to a method that uses a straight line connecting

two known quantities to determine an unknown value between the

two known quantities. The interpolation function in MATLAB2016b is

“interp1.m.” The analytical pipeline is illustrated in Figure 1.

2.3 | Entropy calculation

To compare the test–retest reliability of entropy methods, we applied

entropy to investigate the complexity of rs-fMRI signals. Entropy is

the rate of new information generation, which measures the probabil-

ity of generating a new pattern in the signal. The greater the probabil-

ity of generating a new pattern, the greater the signal complexity. This

value was calculated with the following formula:

H¼�
Xn
i¼1

pi logpi ð1Þ

In the formula, pi represents the probability of the i-th discrete state.
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Here, seven entropy methods were applied as complexity estima-

tors of rs-fMRI signals:

2.3.1 | Approximate entropy

ApEn (Sokunbi et al., 2015) is roughly equivalent to the mean value of

the logarithmic conditional probability of the new state appearing when

the dimension changes. It has a certain value in measuring the complexity

of the time-series. Its calculation formula can be expressed as follows.

Step 1: Given a time series with N data points

x 1ð Þ, x 2ð Þ, � � �, x Nð Þf g, and a priori determination of two unknown

parameters, m and r. The parameter m determines the length of the

sequences to be compared, and its selection can be estimated by cal-

culating the false nearest neighbor. The second parameter, r, is the

tolerance threshold for accepting similar patterns between two seg-

ments and has been recommended to be within 0.1–0.2 times the

standard deviation of the data.

Step 2: By reconstructing the original data, subsequences can be

obtained with N�mþ1 data points X 1ð Þ, X 2ð Þ, …, X N�mþ1ð Þf g,
where X ið Þ¼ x 1ð Þ, x 2ð Þ, …, x iþm�1ð Þf g.

Step 3: Calculate the distance dm ¼ X ið Þ, X jð Þ½ �, the distance dm is

determined by the maximum difference between the corresponding

position elements in the two vectors. This includes the distance i¼ j.

Step4: Then count thenumber of vectors that satisfy the following con-

ditions, and find the ratio between themand the total number of statistics:

Cm
i rð Þ¼num dm ¼ X ið Þ, X jð Þ½ �< r½ �

N�mþ1
ð2Þ

This process is called the atlas matching process of X ið Þ, Cm
i rð Þ repre-

sents the probability of matching between any X jð Þ and the atlas.

Step 5: Define the average similarity rate when the number of

subsequences is m:

Φm rð Þ¼

PN�mþ1

i¼1
log Cm

i rð Þ� �
N�mþ1

ð3Þ

Step 6: According to the above 1–5, calculate the average similar-

ity rate Φmþ1 rð Þ when the number of divided subsequences is mþ1.

Step 7: Get approximate entropy:

ApEn¼Φm rð Þ�Φmþ1 rð Þ: ð4Þ

2.3.2 | Sample entropy

SaEn (Richman & Moorman, 2000) is an improvement relative to the

ApEn algorithm in that SaEn calculates the logarithm of the sum and

aims to reduce the ApEn's error to is more closely consistent with the

known random part. Its calculation formula can be expressed as

follows.

F IGURE 1 The flowchart of the complexity of spontaneous brain activity by using multi-type entropies. The raw rs-fMRI images of the MSC
dataset and UCLA dataset underwent preprocessing and time-series extraction and then were used to compute entropy values using seven
entropy methods. The entropy analysis was conducted based on whole-brain gray matter voxels. Test–retest reliability was finally examined using
the intraclass correlation coefficient (ICC). Besides, altered complexity of spontaneous brain activity and classification results were explored
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Step 1: Given a time series with N data points

x 1ð Þ, x 2ð Þ, …, x Nð Þf g, and a priori determination of two unknown

parameters, m and r. The parameter m determines the length of the

sequences to be compared, and its selection can be estimated by cal-

culating the false nearest neighbor. The second parameter, r, is the

tolerance threshold for accepting similar patterns between two seg-

ments and has been recommended to be within 0.1–0.2 times the

standard deviation of the data.

Step 2: By reconstructing the original data, subsequences can be

obtained with N�mþ1 data points X 1ð Þ, X 2ð Þ, …, X N�mþ1ð Þf g,
where X ið Þ¼ x 1ð Þ, x 2ð Þ, …, x iþm�1ð Þf g.

Step 3: Calculate the distance dm ¼ X ið Þ, X jð Þ½ �, the distance dm is

determined by the maximum difference between the corresponding

position elements in the two vectors. This includes the distance i≠ j.

Step 4: Then count the number of vectors that satisfy the follow-

ing conditions, and find the ratio between them and the total number

of statistics:

Bm
i rð Þ¼num dm ¼ X ið Þ, X jð Þ½ �< r½ �

N�m
ð5Þ

This process is called the atlas matching process of X ið Þ, Bm
i rð Þ repre-

sents the probability of matching between any X jð Þ and the atlas.

Step 5: Define the average similarity rate when the number of

subsequences is m:

Φm rð Þ¼

PN�mþ1

i¼1
log Bm

i rð Þ� �
N�mþ1

ð6Þ

Step 6: According to the above 1–5, calculate the average similar-

ity rate Φmþ1 rð Þ when the number of divided subsequences is mþ1.

Step 7: Get approximate entropy:

SaEn¼� ln
Φmþ1 rð Þ
Φm rð Þ : ð7Þ

2.3.3 | Fuzzy entropy

FuEn (Chen et al., 2007) adds a fuzzy function to the comparison of

continuous point vectors and generalizes these vectors to reduce the

impact of measurement drift. Its calculation formula can be expressed

as follows.

Step 1: Given a time series with N data points

x 1ð Þ, x 2ð Þ, …, x Nð Þf g, and a priori determination of two unknown

parameters, m and r. The parameter m determines the length of the

sequences to be compared, and its selection can be estimated by cal-

culating the false nearest neighbor. The second parameter, r, is the

tolerance threshold for accepting similar patterns between two seg-

ments and has been recommended to be within 0.1–0.2 times the

standard deviation of the data.

Step 2: By reconstructing the original data, subsequences can be

obtained with N�mþ1 data points X 1ð Þ, X 2ð Þ, …, X N�mþ1ð Þf g,

where X ið Þ¼ x 1ð Þ, x 2ð Þ, …, x iþm�1ð Þf g� 1
m

Pm�1

k¼1
x iþkð Þ.

Step 3. Calculate the distance dm ¼ X ið Þ, X jð Þ½ �, the distance dm is

determined by the maximum difference between the corresponding

position elements in the two vectors. This includes the distance i≠ j.

Step 4: The fuzzy membership function:

Am
ik rð Þ¼ exp � dmik rð Þ

r

� �n� �
ð8Þ

This process is called the atlas matching process of X ið Þ, Bm
i rð Þ repre-

sents the probability of matching between any X jð Þ and the atlas.

Step 5: Define the average similarity rate when the number of

subsequences is m:

Φm
i rð Þ¼

PN�mþ1

j¼1,i≠ j
Am
ik rð Þ

N�m
ð9Þ

Step 6: According to the above 1–5, calculate the average similar-

ity rate Φmþ1 rð Þ when the number of divided subsequences is mþ1.

Step 7: Get fuzzy entropy:

FuEn¼ lnΦmþ1 rð Þ� lnΦm rð Þ: ð10Þ

2.3.4 | Permutation entropy

PeEn (Bandt & Pompe, 2002) uses the shape of neighboring points to

evaluate complexity based on permutation patterns, and it has good

computing performance for analyses of any real-world data. Its calcu-

lation formula can be expressed as follows.

Step 1: Given a time series with N data points x 1ð Þ, x 2ð Þ, …, x Nð Þf g,
and a priori determination of two unknown parameters, m and L. The

parameter m determines the length of the sequences to be compared,

and its selection can be estimated by calculating the false nearest

neighbor. The second parameter, L, is the delay time.

Step 2: By reconstructing the original data, subsequences can be

obtained with N�mþ1 data points X 1ð Þ, X 2ð Þ, …, X N�mþ1ð Þf g,
where X ið Þ¼ x 1ð Þ, x Lð Þ, …, x m�1ð ÞLð Þf g.

Step 3: Then do an increasing sort internally for each X ið Þ, that is
x iþ j1�1ð ÞLð Þ≤ x iþ j2�1ð ÞLð Þ≤ � � �≤ x iþ jm�1ð ÞLð Þ. If two values are

equal, sort them according to the subscript i of ji. In this case, an X ið Þ is
mapped to, which is exactly one of m! permutations. That is, every m

dimensional subsequence X ið Þ is mapped to one of m! permutations.

Step 4: Through the above Step 1–Step 3, the continuous m

dimensional subspace is represented by such a sequence of symbols,

where the number of these symbols is m!. Denote the probability dis-

tribution of all symbols in terms of P1,P2,…,PK , where K ≤m!.

Step 5: Get permutation entropy:
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PeEn¼�
XK
j¼1

Pj lnPj: ð11Þ

2.3.5 | Dispersion entropy

DispEn is calculated by first conducting permutations based on the

original time series (Rostaghi & Azami, 2016). DispEn can detect the

noise bandwidth and simultaneous frequency and amplitude change.

Also, it originates from SaEn and PeEn. Its calculation formula can be

expressed as follows.

Step 1: Given a time series with N data points

x 1ð Þ, x 2ð Þ, …, x Nð Þf g, and a priori determination of two unknown

parameters, m and c. The parameter m determines the length of the

sequences to be compared, and its selection can be estimated by cal-

culating the false nearest neighbor. The second parameter, c, is the

number of classes that can be members of the time series. We first

employ the normal cumulative distribution function to map

x 1ð Þ, x 2ð Þ, …, x Nð Þf g into y 1ð Þ, y 2ð Þ, …, y Nð Þf g from 0 to 1. and a priori

determination of two unknown parameters, m and L. The parameter m

determines the length of the sequences to be compared, and its selec-

tion can be estimated by calculating the false nearest neighbor. The

second parameter, L, is the delay time.

Step 2: We use a linear algorithm to assign each y kð Þ to an integer

from 1 to c. To do so, for each member of the mapped signal, we use

zck ¼ round cy kð Þþ0:5ð Þ, where zck shows the kth member of the classi-

fied time series and rounding involves increasing or decreasing a num-

ber to the next digit.

Step 3: Each embedding vector zm,c
k with embedding dimension m

and time delay L is created according to

zm,c
k ¼ zck , z

c
kþL, …, z

c
kþ m�1ð ÞL

n o
,k¼1,2,…,N� m�1ð ÞL. Each time series

zm,c
k is mapped to a dispersion pattern ρv0v1…vm�1, where zck ¼ v0,

zckþL ¼ v1,…,zckþ m�1ð ÞL ¼ vm�1. The number of possible dispersion pat-

terns that can be assigned to each time series zm,c
k is equal to cm, since

the signal has m members and each member can be one of the integers

from 1 to c.

Step 4: For each of cm potential dispersion patterns, relative fre-

quency is obtained as follows:

p ρv0v1…vm�1ð Þ¼num kjk ≤N� m�1ð ÞL, zm,c
k hasytpeρv0v1…vm�1

� �
N� m�1ð ÞL ð12Þ

Step 5: Get dispersion entropy:

DispEn¼�
Xcm
π¼1

p ρv0v1…vm�1ð Þ lnp ρv0v1…vm�1ð Þ ð13Þ

2.3.6 | Differential entropy

DiffEn is equivalent to the logarithm energy spectrum in a specific fre-

quency band and was employed to construct features in the

frequency bands mentioned above (Duan et al., 2013). Its calculation

formula can be expressed as

p Xð Þ¼�
ð
X
f xð Þ log f xð Þð Þdx, ð14Þ

where X is a random variable, f xð Þ is the probability density function

of X. For the time series X obeying the Gauss distribution N 0, σ2
� 	

, its

DiffEncan be defined as,

DiffEn¼�
ð∞
�∞

1ffiffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp � x2

2σ2

� �
log

1ffiffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp � x2

2σ2

� �� �
dx

¼1
2
log 2πeσ2

� 	
ð15Þ

where σ2 denotes the DiffEnof the corresponding rs-fMRI signal

variance.

2.3.7 | Range entropy

RaEn is a proposed modification to ApEn and SaEn, and the idea here

is to estimate the (logarithmic) likelihood that runs of patterns that are

close remain close following incremental comparisons (Omidvarnia

et al., 2018). Its calculation formula can be expressed as follows.

Step 1: Given a time series with N data points

x 1ð Þ, x 2ð Þ, …, x Nð Þf g, and a priori determination of two unknown

parameters, m and r. The parameter m determines the length of the

sequences to be compared, and its selection can be estimated by cal-

culating the false nearest neighbor. The second parameter, r, is the

tolerance threshold for accepting similar patterns between two seg-

ments and has been recommended to be within 0.1–0.2 times the

standard deviation of the data.

Step 2: By reconstructing the original data, subsequences can be

obtained with N�mþ1 data points X 1ð Þ, X 2ð Þ, …, X N�mþ1ð Þf g,
where X ið Þ¼ x 1ð Þ, x 2ð Þ, …, x iþm�1ð Þf g.

Step 3: Calculate the distance dm ¼ X ið Þ, X jð Þ½ �, as follows

dm ¼ maxkjX iþkð Þ�X jþkð Þj�minkjX iþkð Þ�X jþkð Þj
maxkjX iþkð Þ�X jþkð ÞjþminkjX iþkð Þ�X jþkð Þj ,k¼0,1,…,m�1

ð16Þ

In the spacial case of two-dimensional reconstructed phase space

(m¼2), dm ¼ max x ið Þ�x jð Þð Þ, x iþ1ð Þ�x jþ1ð Þð Þð Þ�min x ið Þ�x jð Þð Þ, x iþ1ð Þ�x jþ1ð Þð Þð Þ
max x ið Þ�x jð Þð Þ, x iþ1ð Þ�x jþ1ð Þð Þð Þþmin x ið Þ�x jð Þð Þ, x iþ1ð Þ�x jþ1ð Þð Þð Þ.

Step 4. Then count the number of vectors that satisfy the follow-

ing conditions, and find the ratio between them and the total number

of statistics:

Bm
i rð Þ¼num dm ¼ X ið Þ, X jð Þ½ �< r½ �

N�m
ð17Þ

This process is called the atlas matching process of X ið Þ, Bm
i rð Þ repre-

sents the probability of matching between any X jð Þ and the atlas.
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Step 5: Define the average similarity rate when the number of

subsequences is m:

Φm rð Þ¼

PN�mþ1

i¼1
log Bm

i rð Þ� �
N�mþ1

ð18Þ

Step 6: According to the above 1–5, calculate the average similar-

ity rate Φmþ1 rð Þ when the number of divided subsequences is mþ1.

Step 7: Get approximate entropy:

RaEn¼� ln
Φmþ1 rð Þ
Φm rð Þ : ð19Þ

2.4 | Parameter selection

This study uses three fMRI datasets to compare the test–retest per-

formance of the seven entropy methods. ApEn, SaEn, RaEn, and

FuEn need to set three parameters: N, m, and r. N is the number of

time points, m specifies the dimension of the phase space, and r is the

similarity tolerance. Many studies have discussed the setting of these

parameters (Schultz et al., 2008; Tocado et al., 2009). The parameter

m is taken as 2, and the similarity tolerance r is taken as 0.25 times

the standard deviation of the original data. The PeEn algorithm also

involves the setting of three parameters: N, pm, and τ, where N is the

time-series, pm is the embedding dimension, and τ is the delay time.

The pm value setting is based on the following considerations: when

pm<3, the process is meaningless because there are too few permu-

tations and combinations; the larger the pm is, the more the algorithm

time complexity will increase as larger m corresponds to more permu-

tations. Bandt and Pompe suggested that pm should be 3–7 (Bandt &

Pompe, 2002); Li et al. (2014), to ensure sensitivity to the transient

characteristics of the system, suggested that the pm should be a small

value to reduce the time complexity of the algorithm. In this study, pm

was set as 4. For the time delay in the sorting and symbolization pro-

cess, the value used in this study was 1. In this setting, more informa-

tion can be captured in brain signals. The DispEn involves the setting

of 4 parameters: pm, nc, ma, and τ, where pm is the embedding dimen-

sion, τ is the delay time, nc is the number of classes which usually

equal to a number between 3 and 9, and ma is the mapping approach,

chosen from “LM” (linear mapping), “NCDF” (normal cumulative distribu-

tion function), “TANSIG” (tangent sigmoid), “LOGSIG” (logarithm sigmoid),

and “SORT” (sorting method; Azami & Escudero, 2018). There are fewer

number parameters in DiffEn: range, and level, where the range is assumed

to be a rectangle and the level is the depth in the tree with a default is 0.

2.5 | Multiscale entropy calculations

The multiscale entropy analysis was introduced to estimate the

entropy on multiple time scales. The multiscale entropy calculation

can be summarized as follows.

Step 1: a coarse-grained time series according to a range of scale

factors was constructed;

Step 2: the entropy of each coarse-grained time series was

quantified;

Step 3: the multiscale entropy profile was examined using a range

of scales.

The length of each coarse-grained time series was equal to the

length of the original time series divided by the scale factor. For scale

1, the time series was simply the original time series. So, in this article,

all seven entropy methods mentioned in this article are extended to

multi-scale entropy, and the results of those seven multi-scale entro-

pies are further analyzed.

2.6 | Test–retest reliability

The test–retest reliability evaluates the statistical stability of the index

at different measurement times (Spitzer, 1992). It comprehensively

considers the changes within the individual and among different indi-

viduals, reflecting the stability and consistency of the index across

time (Rongsawad et al., 2019). Test–retest reliability is essential in var-

ious fields, including sociology, behavior, physics, biology, and medi-

cine (Chambers, 1985). Due to the interference of various factors in

the actual measurement, it is critical to choose a reliable index. The

intraclass correlation coefficient (ICC) is a commonly used reliability

coefficient index to measure test–retest reliability (Spitzer, 1992). The

ICC of intrinsic functional networks was computed as shown below.

ICC¼ BMS�EMS
BMSþ m�1ð ÞEMS

ð20Þ

Equation (20) estimates the correlation of the subject signal intensities

between sessions, modeled by a two-way ANOVA, with random sub-

ject effects and fixed session effects (Shrout & Fleiss, 1979). The BMS

is the between-subject mean square, the EMS is the within-subject

error mean square, and m is the number of repeated sessions. Further-

more, the ICC values of brain entropies (BENs) were compared with

and without band-pass filtering to evaluate the influence of filtering

on the test–retest reliability of entropy values. In this study, ICC

values were usually divided into five common intervals: 0 < ICC≤0.25

indicated poor reliability; 0.25< ICC≤0.4 indicated low reliability;

0.4 < ICC≤0.6 indicated fair reliability; 0.6 < ICC≤0.75 showed that

reliability was good; and 0.75< ICC≤ 1.0 meant that reliability was

excellent, close to perfect. We usually expect a fair to almost perfect

reliability index (ICC>0.4).

2.7 | Classification analysis

To classify subjects into HC and patients using ROI-based BENs, a lin-

ear support vector machines (SVM) approach was implemented

(Dosenbach et al., 2010). SVMs have supervised learning models

which can be used for classification tasks (Cortes & Vapnik, 1995).

100 GUAN ET AL.



Given labeled training data with n features, the algorithm outputs an

optimal hyperplane that can separate the classes with a maximal mar-

gin. Subjects were separated into stratified training (90%) and test

(10%) subsets for each HC and disease dataset. The same training and

test subsets were used across all atlases so that results could be

directly compared with one another. The hyperparameter tuning of

penalty parameter C was conducted using nested cross-validation in

which both the inner and outer folds were randomly split into five

stratified groups. A single best model and the hyperparameter C cor-

responding to it were identified. This nested grid search cross-

validation was repeated 100 times to generate 100 different values

for C. The final model was created by averaging the hyperparameter C

obtained across 100 iterations of the more acceptable grid search.

This final model was evaluated on the test subset, and the corre-

sponding accuracy, the area under the receiver operating characteris-

tics curve, and feature importance are reported. This was repeated

using the same 10 permutations of randomized training and testing

splits to distribute overall performance metrics for BEN classification.

2.8 | Node definition

Considering that different atlases will affect the analysis results, three

atlases are used in this paper, namely the Brainnetome atlas (Fan

et al., 2016), the Dosenbach atlas (Dosenbach et al., 2010), and the

Power atlas (Power et al., 2011), shown in Figure 2. By comparing the

differences between different atlases and finding no significant differ-

ence, the results obtained in this paper can be said to be atlas

independent.

3 | RESULTS

3.1 | Reliability comparison of different BENs

In this part, we use rs-fMRI data with 10 sessions from the MSC data-

set to explore the reliability of different BENs, in Figures 3 and 4.

Additionally, we simulated and generated three distributed random

sequences, calculated their entropy, and then explored the reliability

of the different entropies, in Figure 5.

In Step 1, extracted ROIs within DMN in the Dosenbach atlas

(Dosenbach et al., 2010) and calculated the BENs of the extracted rs-

fMRI data using the seven entropy methods mentioned above. Each

session of rs-fMRI was calculated to obtain session BENs of nine sub-

jects in total.

In Step 2, we calculated the ICC of the repeated sessions with the

data obtained from Step 1.

In Step 3, we select k¼ 3, 6, 10½ � (k means how many rs-fMRI ses-

sions were used) to test BEN's reproducing reliability, and Figure 3

shows the distribution of ICC values.

In Figure 4, we also performed a two-sample t-test on different

entropy methods when k¼10 to see whether there is a significant

difference between methods. This proves that the ICC values vary

when calculated by different entropy methods. The results displayed

on the three templates are consistent; that is, the reliability of DiffEn

was better than those of the other entropy methods, regardless of the

template used. From Figure 3, DiffEn is more stable when the number

of sessions increases and has the highest average ICC value. Based on

Figure 4, the two-sample t-test showed a significant difference among

entropy methods. Furthermore, the performance is consistent with no

significant difference during these three atlases, namely the Brainne-

tome atlas (Fan et al., 2016), the Dosenbach atlas (Dosenbach

et al., 2010), and the Power atlas (Power et al., 2011).

From theoretical knowledge, if multiple time series meet the

same probability density distribution, although the entropy values

calculated using different methods may be different, the entropy

values calculated using the same method should be the same. If the

same entropy were calculated repeatedly for time-series possessing

different probability density distributions, the obtained entropy

values would be different. Moreover, to further test the difference

between entropy methods, we calculate seven types of entropy on

three simulation time-series with different types of distribution: Nor-

mal, Rayleigh, and Weibull distribution time series using MATLAB

(2016b) software. The size of each simulation time series is

160 � 100, where 160 and 100 represent the number of regions

and length of the time series, respectively, and the results are shown

in Figure 5. In this part, since the time series of 160 brain regions are

generated using the same probability density distribution function,

the entropy of the 160 brain regions is the same. From Figure 5, no

matter what kind of distribution the simulated time series have, Dif-

fEn demonstrates relatively minor fluctuations. Therefore, since the

results above show the reliability of BENs and present the differ-

ences between each entropy method, it makes sense to illustrate

which entropy method is the most reliable and valid in extracting

brain features.

3.2 | Altered complexity of spontaneous brain
activity

In this part, we classified ADHD, BP, and SCHZ using BEN obtained

from the seven entropy methods mentioned above. Before the classi-

fication task, we first performed a two-sample t-test between HC and

patients on ROI levels. Figure 6 exhibits the results of the two-sample

t-test between HC and different diseases. Based on Figure 6,

Tables 1–3 show how many ROIs significantly differ between HC and

three diseases (ADHD, BP, and SCHZ). For ADHD, we find a differ-

ence between HC and ADHD, mainly in the DMN and sensorimotor

network. For BP, different regions between HC and BP include mainly

the DMN, sensorimotor, and frontoparietal networks. For SCHZ, the

different regions between HC and SCHZ are mainly sensorimotor and

cingulo-opercular. In addition, DiffEn is good at exploring the similari-

ties and differences between ADHD, BP, SCHZ, and HC. Likewise, by

comparing the differences between different atlases and finding no

significant difference, the results obtained in this article are atlas

independent.
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Specifically, from Table 1, based on the Dosenbach atlas, we

found that ApEn, DispEn, and PeEn are not suitable for studying the

difference between ADHD and HC because they could not identify

the altered regions between HC and ADHD. The other four entropies

may be more suitable for finding different brain regions (ADHD, HC).

Among them, DiffEn found the most different amount of brain regions

within a network (DMN: 8, sensorimotor:26, occipital:

10, frontoparietal: 8, cingulo-opercular: 18, and cerebellum: 12), fol-

lowed by FuEn (DMN: 5, sensorimotor: 18, occipital: 8, frontoparietal:

7, cingulo-opercular: 16, and cerebellum:9), RaEn (DMN: 6, sensorimo-

tor: 16, occipital: 7, frontoparietal: 6, cingulo-opercular: 15, and cere-

bellum: 5), and the least was SaEn (DMN: 4, sensorimotor:

14, occipital: 3, frontoparietal: 6, cingulo-opercular: 8, and cerebellum:

7). Based on the results of BEN, the sensorimotor network changed

F IGURE 2 Functional connectivity multivariate pattern analysis region (node) weights. (I) Parcellation scheme of the human brain in the
Brainnetome atlas (Fan et al., 2016). The MPM for each of the cortical subregions was created in standard MNI space visualized using ITK-SNAP
(www.itksnap.org); (II) the ROIs are color-coded according to the six identified functional networks (Dosenbach et al., 2010); (III) Power atlas
(Power et al., 2011): The figure was generated with BrainNet viewer (Csermely et al., 2013)
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greatly, and DMN, occipital, and cingulo-opercular changed more so

than the cerebellum.

From Table 2, based on the Dosenbach atlas, we found that

ApEn, DispEn, and PeEn cannot identify the altered regions between

HC and BP. DiffEn, FuEn, RaEn, and SaEn seem to find many different

brain regions (BP, HC). Among them, DiffEn found the highest number

of different brain regions (DMN: 11, sensorimotor: 18, occipital:

F IGURE 3 Comparison ICC for different BENs with three types
number sessions in DMN shown in Brainnetome atlas, Dosenbach
atlas, and Power atlas, k means how many sessions were used

F IGURE 4 Performance of a two-sample t-test on different
entropy methods when k¼10 (*p< .05, **p< .01, ***p< .001), k means
that how many sessions were used
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8, frontoparietal: 12, cingulo-opercular: 14, and cerebellum: 7), fol-

lowed by FuEn (DMN: 10, sensorimotor: 15, occipital: 5 frontoparietal:

11, cingulo-opercular: 13, and cerebellum: 10), and SaEn (DMN:

10, sensorimotor: 10, occipital: 3 frontoparietal: 9, cingulo-opercular:

10, and cerebellum: 4) and the least was RaEn (DMN: 6, sensorimotor:

9, occipital: 1 frontoparietal: 5, cingulo-opercular: 7, and cerebellum:

2). Based on the results of BEN, sensorimotor and DMN networks

changed significantly.

F IGURE 5 Entropy performance results of simulation time-series. First column: simulation time-series follows Normal distribution (random
[“Normal”,0,1,160,100]), Weibull distribution (random[“Weibull”,2,1,160,100]), and Rayleigh distribution (random[“Rayleigh”,2,160,100]); second
column: entropy values were calculated by using seven entropy methods; first row: when data follows Normal distribution, all the entropy
methods show a stable curve except SaEn; second row: when data follow Weibull distribution, all the entropy methods show a stable curve except
SaEn; third row: when data follows Rayleigh distribution, all the entropy methods show a stable curve except DispEn
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From Table 3, based on the Dosenbach atlas, we found that ApEn,

DiffEn, DispEn, and PeEn cannot identify the altered regions between

HC and SCHZ. SaEn, RaEn, and FuEn seem to find many different brain

regions (SCHZ, HC). Among them, SaEn found the highest number of

different brain regions (DMN: 12, sensorimotor: 23, occipital: 11, fron-

toparietal: 8, cingulo-opercular: 13, and cerebellum: 9), followed by

RaEn (DMN: 12, sensorimotor: 20, occipital: 15, frontoparietal: 5, cin-

gulo-opercular: 12, and cerebellum: 6), and the least was FuEn (DMN:

3, sensorimotor: 19, occipital: 14, frontoparietal: 2, cingulo-opercular:

11, and cerebellum: 10). Based on the results of DiffEn, sensorimotor

and DMN networks changed the most, with frontoparietal and cingulo-

opercular networks changing more than the occipital network.

F IGURE 6 Slice images of the brain regions with significant differences between HC and patient. The number of specific brain regions with
significant differences is shown in Tables 1–4
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Similar meaningful results are seen for each condition based on

the described above. These three disorders share brain regions that

show significant change compared to HC. Whole regions are changed,

and the sensorimotor network, in particular, changes noticeably in all

disorders. However, other regions do not show the same degrees of

change, specifically for ADHD where cingulo-opercular > (occipital

DMN, frontoparietal). For BP, cingulo-opercular > (occipital, DMN,

frontoparietal). For SCHZ (cingulo-opercular, DMN, occipital)

> frontoparietal. Furthermore, Figure 6 is slice images of the brain

regions with significant differences between HC and patient. It is

worth noting that a similar pattern is obtained on the Brainnetome

atlas and the Power atlas based on the Dosenbach atlas. That is to

say, the conclusion is not affected by the atlas.

3.3 | Multiscale entropy analysis

For each atlas, we extracted the average multiscale entropy to ROIs.

For each ROI, the differences in multiscale entropy values among the

three groups were compared using an independent samples t-test,

and p values are listed in Table 4. The average multiscale entropy

values in all ROIs over multiple time scales for the four groups

(ADHD, BP, SCHZ, and HC) are shown in Figure 7. Regardless of the

atlas used, the mean multiscale entropy values for the ADHD, BP, and

SCHZ were significantly lower than for the HCs (both p-value <.05).

More detailed results are presented in Table 4. Besides, it is also

found that the performance of different multiscale entropy algorithms

on different diseases is also different, such as DiffEn, RaEn, and SaEn

performed better in ADHD, SCHZ, and BP, respectively.

3.4 | Classification comparison of different BENs

When a two-sample t-test was done, we did a classification task

based on entropy values calculated using different ROI levels and the

whole brain based on three different atlases. The result is presented

in Tables 5 and 6. Table 5 shows the classification results at the

whole-brain level from the three atlases studies. From the ADHD clas-

sification results, it can be seen that DiffEn performs the best, where

DiffEn achieves an accuracy of 0.8548. Among the classification

results of BP, SaEn performs the best, where SaEn achieves an accu-

racy of 0.8824. For the classification results of SCHZ, RaEn performs

TABLE 1 Counting the ROIs which have a significant difference between HC and ADHD (num_of_diff_area refers to the number of ROIs
which significantly differ from HC and ADHD)

num_of_diff_area Default Sensorimotor Occipital Frontoparietal Cingulo-opercular Cerebellum

Dosenbach atlas ApEn 1 0 0 0 0 1 0

DiffEn 82 8 26 10 8 18 12

DispEn 0 0 0 0 0 0 0

FuEn 63 5 18 8 7 16 9

PeEn 0 0 0 0 0 0 0

RaEn 55 6 16 7 6 15 5

SaEn 42 4 14 3 6 8 7

num_of_diff_area Visual Ensorimotor
Dorsal
attention

Ventral
attention Limic Frontoparietal Default

Brainnetome

atlas

ApEn 0 0 0 0 0 0 0 0

DiffEn 184 29 33 30 22 16 22 32

DispEn 0 0 0 0 0 0 0 0

FuEn 165 27 32 27 22 12 21 24

PeEn 0 0 0 0 0 0 0 0

RaEn 107 23 29 25 19 10 20 21

SaEn 130 20 27 21 19 6 17 20

num_of_diff_area SMN AN CON DMN VN FPN SN SCN VAN DAN

Power atlas ApEn 3 1 0 1 0 0 0 0 0 0 1

DiffEn 98 18 9 7 11 13 8 9 11 5 7

DispEn 0 0 0 0 0 0 0 0 0 0 0

FuEn 77 15 7 6 8 15 7 3 6 4 6

PeEn 3 0 0 0 2 0 0 0 0 0 1

RaEn 71 15 7 7 7 9 6 5 7 4 4

SaEn 51 8 5 3 8 5 7 6 5 2 2
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the best, where RaEn achieves an accuracy of 0.8409. Refer to

Table 5 for details. Table 6 is based on the best results of a whole-

brain classification in Table 5.

The weights of the corresponding linear kernel SVM classifiers

are analyzed to explore the critical brain regions that affect ADHD,

BP, and SCHZ. Among them, DiffEn achieves an accuracy of 0.8548.

Among the classification results of BP, SaEn performs the best, where

SaEn achieves an accuracy of 0.8824. For the classification results of

SCHZ, RaEn performs the best, where RaEn achieves an accuracy of

0.8409. Please refer to Table 5 for details. Specifically, for ADHD, Dif-

fEn (accuracy = 0.8548) was used in this experiment as a means of

weight analysis.

The top 10 key features (brain regions) of the weight ranking of

DiffEn corresponding classifier were L_Lateral Occipital Cortex, supe-

rior division, R_Supramarginal Gyrus, anterior division, L_Cuneal Cor-

tex, L_Occipital Pole, R_Cuneal Cortex, L_Postcentral Gyrus, L_Cuneal

Cortex, R_Cingulate Gyrus, posterior division, L_Inferior Temporal

Gyrus, temporooccipital part, and L_Frontal Pole, respectively. For BP,

this experiment uses SaEn (accuracy = 0.8824) to analyze weights.

The top 10 key features (brain regions) of the weights of the classi-

fiers corresponding to SaEn are L_Middle Temporal Gyrus, posterior

division, R_Middle Frontal Gyrus, R_Middle Temporal Gyrus, posterior

division, R_Frontal Medial Cortex, L_Frontal Pole, R_Precentral Gyrus,

R_Temporal Fusiform Cortex, posterior division, R_Postcentral Gyrus,

L_Lateral Occipital Cortex, superior division, R_Lateral Occipital Cor-

tex, and inferior division. For SCHZ, this experiment uses RaEn (accu-

racy = 0.8409) as analysis weight. The top 10 key features (brain

areas) of the classifiers corresponding to RaEn are: L_Frontal Pole,

R_Superior Temporal Gyrus, posterior division, R_Angular Gyrus,

R_Frontal Pole, L_Frontal Pole, L_Frontal Pole, R_Supramarginal

Gyrus, posterior division, R_Supramarginal Gyrus, posterior division,

R_Frontal Orbital Cortex, and L_Frontal Pole. For details, refer to

Table 6.

4 | DISCUSSION

The similarities and differences between ADHD, BP, and SCHZ are

fascinating research topics, and entropy theory is a suitable method

for exploring the complexity of time series from a nonlinear perspec-

tive. So, is it possible to find a reliable and effective entropy method

to reveal the similarities and differences among ADHD, BP, and SCHZ.

This article calculated and analyzed the ICC of seven kinds of entropy

using the MSC dataset and simulation data; the results displayed on

TABLE 2 Counting the ROIs which have a significant difference between HC and BP (num_of_diff_area refers to the number of ROIs which
significantly differ from HC and BP)

num_of_diff_area Default Sensorimotor Occipital Frontoparietal Cingulo-opercular Cerebellum

Dosenbach atlas ApEn 0 0 0 0 0 0 0

DiffEn 70 11 18 8 12 14 7

DispEn 0 0 0 0 0 0 0

FuEn 64 10 15 5 11 13 10

PeEn 1 0 0 0 1 0 0

RaEn 30 6 9 1 5 7 2

SaEn 46 10 10 3 9 10 4

num_of_diff_area Visual Sensorimotor

Dorsal

attention

Ventral

attention Limic Frontoparietal Default

Brainnetome

atlas

ApEn 0 0 0 0 0 0 0 0

DiffEn 176 28 29 28 21 14 23 33

DispEn 0 0 0 0 0 0 0 0

FuEn 176 25 28 29 20 15 24 35

PeEn 0 0 0 0 0 0 0 0

RaEn 114 16 19 16 16 13 13 21

SaEn 122 24 20 17 18 6 13 24

num_of_diff_area SMN AN CON DMN VN FPN SN SCN VAN DAN

Power atlas ApEn 0 0 0 0 0 0 0 0 0 0 0

DiffEn 108 25 2 8 20 14 13 10 3 6 7

DispEn 0 0 0 0 0 0 0 0 0 0 0

FuEn 90 21 0 8 17 11 12 7 2 6 6

PeEn 0 0 0 0 0 0 0 0 0 0 0

RaEn 57 21 1 4 8 6 3 4 2 3 5

SaEn 87 20 1 9 21 8 7 8 6 2 5
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the three templates are consistent; that is, the reliability of DiffEn was

better than those of the other entropy methods. Then, we used seven

kinds of entropy and multiscale entropy expanded based on seven

kinds of entropy to explore the differences between brain regions.

We found a difference between HC and ADHD, BP, SCHZ, specifi-

cally, cingulo-opercular > (occipital DMN and frontoparietal) in ADHD,

cingulo-opercular > (occipital, DMN, and frontoparietal) in BP, (cin-

gulo-opercular, DMN, and occipital) > frontoparietal in SCHZ. Also,

the same regions are significantly changed between ADHD, BP, and

SCHZ focusing on “pre-SMA,” “dlPFC_2,” “vFC_3,” and “ant_i-
nsula_2.” Further, regardless of the atlas used, the mean multiscale

entropy values for the ADHD, BP, and SCHZ were significantly lower

than for the HCs. Besides, it is also found that different multiscale

entropy algorithms on different diseases are also different, such as

DiffEn, RaEn, and SaEn performed better in ADHD, SCHZ, and BP,

respectively. By verifying the classification performance of the seven

information entropies on ADHD, BP, and SCHZ, the effectiveness of

the seven entropy methods is evaluated, and the ADHD classification

results can be seen that DiffEn performs the best, where DiffEn

achieves an accuracy of the 0.8548. Among the classification results

of BP, SaEn performs the best, where SaEn achieves an accuracy of

0.8824. For the classification results of SCHZ, RaEn performs the

best, where RaEn achieves an accuracy of 0.8409. Besides, for details,

the top 10 key brain regions of the weight ranking of entropy corre-

sponding to SVM of each disease list in Table 6. The regions with the

most significant differences include the DMN, sensorimotor, and

visual networks. The patients have impaired DMN and changes in sen-

sorimotor and visual regions. Next, we will thoroughly discuss and cite

the research results of the existing public literature and then support

the accuracy of the results of this article.

4.1 | The entropy method comparison

The multiscale entropy is obtained only by scale expansion on the

single-scale entropy, and then the complexity of sequence or topology

can be studied from different scales (Costa et al., 2005; Ferraz &

Kihara, 2022; Marinazzo et al., 2020). The core of different multiscale

entropy is the single-scale entropy, so it is necessary to discuss the

difference in single-scale entropy. In physiological signal analysis,

ApEn and SaEn are two of the most commonly used measures. SaEn

is an improved version of ApEn and aims to overcome the limitations

of ApEn and reduce statistical bias (Richman & Moorman, 2000).

However, both measures still suffer from sensitivity to signal

TABLE 3 Counting the ROIs which have a significant difference between HC and SCHZ (num_of_diff_area refers to the number of ROIs
which significantly differ from HC and SCHZ)

num_of_diff_area Default Sensorimotor Occipital Frontoparietal Cingulo-opercular Cerebellum

Dosenbach atlas ApEn 0 0 0 0 0 0 0

DiffEn 0 0 0 0 0 0 0

DispEn 0 0 0 0 0 0 0

FuEn 59 3 19 14 2 11 10

PeEn 0 0 0 0 0 0 0

RaEn 70 12 20 15 5 12 6

SaEn 76 12 23 11 8 13 9

num_of_diff_area Visual Sensorimotor

Dorsal

attention

Ventral

attention Limic Frontoparietal Default

Brainnetome

atlas

ApEn 0 0 0 0 0 0 0 0

DiffEn 0 0 0 0 0 0 0 0

DispEn 1 1 0 0 0 0 0 0

FuEn 141 30 31 21 14 8 11 26

PeEn 0 0 0 0 0 0 0 0

RaEn 148 31 31 20 12 14 16 24

SaEn 154 29 33 26 17 5 18 26

num_of_diff_area SMN AN CON DMN VN FPN SN SCN VAN DAN

Power atlas ApEn 1 1 0 0 0 0 0 0 0 0 0

DiffEn 0 0 0 0 0 0 0 0 0 0 0

DispEn 0 0 0 0 0 0 0 0 0 0 0

FuEn 70 24 3 2 2 24 0 4 4 2 7

PeEn 0 0 0 0 0 0 0 0 0 0 0

RaEn 112 30 7 5 11 25 4 8 10 5 7

SaEn 117 30 7 5 14 26 8 8 8 3 8
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amplitude changes, so, Chen et al. (2007) proposed the FuEn, which is

an improvement over the ApEn and SaEn algorithms. As another

widely used entropy measure, PeEn is a novel method developed by

Bandt to characterize the complexity of time series (Bandt &

Pompe, 2002). Although PeEn is conceptually simple and computa-

tionally fast, PeEn does not consider the mean value of amplitudes

and the differences between amplitude values (Rostaghi &

Azami, 2016). RaEn (Omidvarnia et al., 2018) is a proposed modifica-

tion to ApEn and SaEn, which are highly sensitive to signal amplitude

changes and less affected by variation in the magnitude of signals.

DispEn (Rostaghi & Azami, 2016) originates from SaEn and PeEn,

which can detect the noise bandwidth and simultaneous frequency

and amplitude change. It does not lead to undefined results in short

signals, is less sensitive to noise, and is considerably faster than SaEn.

DiffEn (Duan et al., 2013) measures the complexity of a continuous

random variable, is the entropy of a continuous random variable, and

is also related to minimum description length. Besides, rs-fMRI signals

maybe include multi-type noises, complex nonlinear (Guan

et al., 2020), and fractal structures (Guan et al., 2022). Therefore, if

some entropy methods can be less sensitive to noise or highly sensi-

tive to signal amplitude changes and less affected by variation in the

magnitude of signals, then these entropy methods should be able to

show good performance. The results of the ICC of seven kinds of

entropy using the MSC dataset and simulation data displayed on the

three templates are consistent, and the reliability of DiffEn was better.

The core brain regions that affect the classification are given, and Dif-

fEn performed best on ADHD, SaEn for BP, and RaEn for SCHZ.

4.2 | The variation of the complexity

4.2.1 | ADHD and HC

Several studies have shown a downward trend in brain complexity in

visual brain regions in ADHD compared with HC (Akdeniz, 2017;

Sokunbi et al., 2013). A meta-analytical study suggests that ADHD-

related dysfunction is associated with multiple neuronal systems

involved in higher-order cognitive functions and sensorimotor pro-

cesses, including the visual system and the DMN (Cortese

et al., 2012). Cortese and colleagues found ADHD-related hyperacti-

vation in the visual network and the DMN (Cortese et al., 2012). Fur-

thermore, Sutcubasi and colleagues (Sutcubasi et al., 2020) found that

ADHD was associated with a connectivity disruption within the DMN

than HC. Sun and colleagues (Sun et al., 2020) found that regions of

the DMN and sensorimotor network were altered in ADHD compared

with HC by comparing local consistency in ADHD and HC. In addition,

F IGURE 7 Mean multiscale entropy values of gray matter (GM) in the ADHD, BP, SCHZ, and HC
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Santos and colleagues (dos Santos Siqueira et al., 2014) performed an

ADHD classification task using functional connectivity from rs-fMRI

in the ADHD-200 database. They found that brain regions in the

motor network and DMN contains the most predictive information.

Besides, the functional networks affected by ADHD reported in

the above studies are mainly concentrated in SMN, DMN, VN, and

FPN, which is the same as the results of this experiment. Xia et al.

(2014) analyzed 22 ADHD and 22 HC using a graph theory approach

for the best classification accuracy and the critical brain regions.

Specifically, they correlated functional brain network properties (such

as topology and node pairings) with clinical SCHZ. Visual network-

based analysis showed that ADHD had significantly lower local and

nodal efficiencies in the frontal and occipital regions. Measures of

degree centrality and between centrality showed a functional decline

in the right supramarginal gyrus. At the same time, the right supramar-

ginal gyrus showed a significant positive correlation with clinical scales

in the correlation analysis. Finally, they concluded that the atypical

topology of the visual network corresponds to typical ADHD

TABLE 5 Whole-brain level: Classification result

Dataset Indice\method ApEn DiffEn DispEn FuEn PeEn RaEn SaEn

Dosenbach atlas ADHD acc 0.5968 0.8065 0.2903 0.7097 0.5323 0.6774 0.7419

Sensitivity 0.5161 0.8065 0.2258 0.7742 0.4194 0.7419 0.7419

Specificity 0.6774 0.8065 0.3548 0.6452 0.6452 0.6129 0.7419

auc 0.5968 0.8065 0.2903 0.7097 0.5323 0.6774 0.7419

BP acc 0.3971 0.7647 0.3235 0.7941 0.4559 0.7353 0.8235

Sensitivity 0.3235 0.7941 0.3235 0.8824 0.3824 0.7353 0.7647

Specificity 0.4706 0.7353 0.3235 0.7059 0.5294 0.7353 0.8824

auc 0.3971 0.7647 0.3235 0.7941 0.4559 0.7353 0.8235

SCHZ acc 0.5682 0.6932 0.7159 0.7727 0.5682 0.6932 0.7159

Sensitivity 0.5909 0.7955 0.5682 0.8636 0.5682 0.7273 0.6818

Specificity 0.5455 0.5909 0.8636 0.6818 0.5682 0.6591 0.75

auc 0.5682 0.6932 0.7159 0.7727 0.5682 0.6932 0.7159

Brainnetome atlas ADHD acc 0.6613 0.8387 0.2258 0.8065 0.6613 0.7581 0.8065

Sensitivity 0.6452 0.8387 0.3226 0.9032 0.6129 0.7419 0.7097

Specificity 0.6774 0.8387 0.129 0.7097 0.7097 0.7742 0.9032

auc 0.6613 0.8387 0.2258 0.8065 0.6613 0.7581 0.8065

BP acc 0.25 0.8235 0.5882 0.7941 0.5588 0.8529 0.8529

Sensitivity 0.0294 0.7941 0.5294 0.8529 0.5 0.8529 0.8235

Specificity 0.4706 0.8529 0.6471 0.7353 0.6176 0.8529 0.8824

auc 0.25 0.8235 0.5882 0.7941 0.5588 0.8529 0.8529

SCHZ acc 0.5568 0.7841 0.5909 0.7955 0.0909 0.8068 0.8295

Sensitivity 0.4318 0.8182 0.5909 0.8636 0.0227 0.7727 0.8182

Specificity 0.6818 0.75 0.5909 0.7273 0.1591 0.8409 0.8409

auc 0.5568 0.7841 0.5909 0.7955 0.0909 0.8068 0.8295

Power atlas ADHD acc 0.5968 0.8548 0.5323 0.7097 0.6613 0.7258 0.8065

Sensitivity 0.8065 0.871 0.4516 0.9032 0.7742 0.7742 0.7742

Specificity 0.3871 0.8387 0.6129 0.5161 0.5484 0.6774 0.8387

auc 0.5968 0.8548 0.5323 0.7097 0.6613 0.7258 0.8065

BP acc 0.1176 0.75 0.4265 0.7206 0.1176 0.8088 0.8824

Sensitivity 0.1176 0.7647 0.3824 0.8235 0.2353 0.7941 0.8824

Specificity 0.1176 0.7353 0.4706 0.6176 0 0.8235 0.8824

auc 0.1176 0.75 0.4265 0.7206 0.1176 0.8088 0.8824

SCHZ acc 0.6023 0.75 0.5909 0.75 0.0568 0.7841 0.7386

Sensitivity 0.5682 0.7727 0.5227 0.8409 0.0455 0.7955 0.7273

Specificity 0.6364 0.7273 0.6591 0.6591 0.0682 0.7727 0.75

auc 0.6023 0.75 0.5909 0.75 0.0568 0.7841 0.7386

Note: Bold values represent the relative best classification result.

112 GUAN ET AL.



symptoms. Bollmann and colleagues (Poil et al., 2014) studied spatial

working memory in adults with ADHD. They found that the left lateral

occipital cortex, middle frontal gyrus, and supramarginal gyrus posi-

tively affected working memory load.

In contrast, the frontal pole, middle temporal gyrus, and occipital

pole cingulate gyrus negatively affected working memory load. Tang

et al. (2018) used multicenter data to analyze local and global differ-

ences between individuals with ADHD and typically developing.

They found that the ALFF, the fraction ALFF, and the ReHo in the

ADHD group were significantly higher in the medial orbital com-

pared with the typically developing group. There were abnormalities

in the frontal cortex, anterior cingulate cortex, postcentral gyrus,

thalamus, precuneus, and cerebellum. Meanwhile, from the perspec-

tive of brain development, brain network development was delayed

in the ADHD group, especially in the DMN. The cingulate gyrus is

involved in attentional processing and executive function (Makris

et al., 2005, 2007). Basay and colleagues (Herken et al., 2016) found

that ADHD may affect white matter development in the right poste-

rior cingulate, thereby altering the functional connectivity of white

matter in the right posterior cingulate. Zhang and colleagues (Herken

et al., 2016) used independent component analysis to compare the

functional connectivity of 88 ADHD, and 67 typically developing

subjects and found that compared with the typically developing

group, the functional connectivity of the right superior occipital

gyrus, left superior marginal gyrus, right superior parietal gyrus, and

left middle temporal gyrus decreased. In particular, in a study (dos

Santos Siqueira et al., 2014) that also used SVM linear checking to

classify ADHD and typically to develop, their results found that the

brain regions in the SMN, FPN, and DMN contained the most predic-

tive information. At the same time, several cerebellar and cortical

regions, including the left cerebellum, cerebellar vermis, bilateral

occipital cortex, left inferior temporal gyrus, left parietal cortex, right

dorsolateral prefrontal cortex, and left frontal pole also had high

classification weights.

TABLE 6 The top 10 with the most
prominent weight of SVM in
classification

Number ROI Weight

ADHD(DiffEn) 1 L_Lateral occipital cortex, superior division 0.237407

2 R_Supramarginal gyrus, anterior division 0.206129

3 L_Cuneal cortex 0.198669

4 L_Occipital pole 0.186768

5 R_Cuneal cortex 0.154033

6 L_Postcentral gyrus 0.15394

7 L_Cuneal cortex 0.149639

8 R_Cingulate gyrus, posterior division 0.149421

9 L_Inferior temporal gyrus, temporooccipital part 0.148217

10 L_Frontal pole 0.132105

BP(SaEn) 1 L_Middle temporal gyrus, posterior division 0.425164

2 R_Middle frontal gyrus 0.416916

3 R_Middle temporal gyrus, posterior division 0.407243

4 R_Frontal medial cortex 0.307743

5 L_Frontal pole 0.301287

6 R_Precentral gyrus 0.291573

7 R_Temporal fusiform cortex, posterior division 0.287722

8 R_Postcentral gyrus 0.285654

9 L_Lateral occipital cortex, superior division 0.281492

10 R_Lateral occipital cortex, inferior division 0.276616

SCHZ(FuEn) 1 L_Frontal pole 0.063935

2 R_Superior temporal gyrus, posterior division 0.062686

3 R_Angular gyrus 0.061987

4 R_Frontal pole 0.058682

5 L_Frontal pole 0.053862

6 L_Frontal pole 0.053552

7 R_Supramarginal gyrus, posterior division 0.047822

8 R_Supramarginal gyrus, posterior division 0.046088

9 R_Frontal orbital cortex 0.043933

10 L_Frontal pole 0.039719
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4.2.2 | BP and HC

Zhang et al. (2021) used multiscale sample entropy (MSE) of rs-fMRI

computed from SCHZ, BP, and HC groups to assess differences in rs-

fMRI signal complexity and found that patients (SCHZ, BP) group's

MSE value decreased. SCHZ and BP showed lower complexity than

HC in brain regions of the default mode, occipital, and cerebellar net-

works, such as precuneus, supraoccipital gyrus, and lingual gyrus cere-

bellum. SCHZ and BP showed higher complexity than HC in other

DMN regions, such as the cingulate, thalamus, hippocampus, middle

temporal gyrus, and middle frontal gyrus. From the literature (Syan

et al., 2018), it can be found that, compared with controls, BP has

rsFC in internal domains of the DMN such as the medial prefrontal

cortex, cingulate cortex, lateral prefrontal cortex, and amygdala rsFC

abnormalities. Further, rsFC changes between the amygdala, prefron-

tal cortex, and cingulate cortex may reflect the neural correlates of

subthreshold symptoms experienced during BP remission. Moreover,

the low connectivity of the DMN compared to HC may reflect the

psychiatric history of patients with BP. Li et al. (2017) studied the

rsFC in patients with BP and found decreased centralization of the

brain region responsible for sensory processing, the lingual gyrus.

To explore the resting-state network activity of BP in remission,

Bellani et al. (2020) used data from 15 BP and 27 HC subjects; within-

network analysis revealed decreased connectivity in visual, motor, and

cerebellar networks in patients with BP. Inter-network analysis

revealed that BP increased connectivity between the motor network

and the DMN, partially overlapping with the frontoparietal network. It

can be seen from the above research that the differences between BP

and HC are mainly concentrated in DMN, SMN, and VN, which is con-

sistent with the results of this experiment. Zeng et al. (2020) analyzed

BP and HC using cerebral blood flow perfusion imaging. They found

that gray matter cerebral blood flow in BP was higher in the right lat-

eral occipital cortex and middle temporal gyrus than in the HC lower.

Meanwhile, BP gray matter cerebral blood flow was higher in the

left lateral occipital cortex, which is thought to be associated with

poorer working memory, verbal memory, attention, and processing

speed. In an fMRI study of adolescent BP, Gao et al. (2014) used

ReHo to analyze 17 BP subjects (10–18 years) and 18 age-sex-

matched HC. It was found that the ReHo values in the middle frontal

gyrus, bilateral middle frontal gyrus, and middle temporal gyrus were

decreased in BP compared with the control group. The correlation

between the ReHo values of various brain regions and the severity of

depressive symptoms in BP showed that the clinical scale in BP had a

significant negative correlation with the mean ReHo values of the

right middle frontal gyrus. Wang et al. (2016) analyzed 37 BP subjects

and 37 HC using whole-brain functional connectivity. The results

showed that compared with the HC group, the BD group had a higher

DMN (i.e., bilateral medial prefrontal cortex, bilateral middle temporal

gyrus, left precuneus, and right posterior cingulate cortex), and right

supramarginal gyrus. The functional connectivity strength of the angu-

lar gyrus decreased, and the functional connectivity strength

increased in the bilateral temporal poles. Achalia et al. (2019) used

ReHo to analyze spontaneous brain activity in 20 BP subjects and

20 age-, sex-, and education-matched HC; results illustrate that com-

pared with the HC, ReHo in the BP group was significantly increased

in the right precuneus, right insula, right supramarginal gyrus, and right

precentral gyrus. Meanwhile, compared with the HC, the ReHo value

of the BP group was not significantly decreased.

4.2.3 | SCHZ and HC

Yu et al. (2013) explored patterns of rs-fMRI in SCHZ and their

healthy siblings. The results showed changes in rsFC in regions within

the DMN and the cerebellar network, such as the hippocampus,

medial prefrontal cortex, middle temporal gyrus, parietal gyrus, and

some cerebellar regions. Moreover, FCs between the cerebellum and

the prefrontal, middle temporal gyrus, thalamus, and middle temporal

pole showed high discrimination. A treatment-resistant SCHZ (Yentes

et al., 2012) found decreased fALFF in the medial prefrontal and orbi-

tofrontal cortices and DMNs in bilateral putamen with increased rsFC

in the left insula and bilateral dorsal prefrontal cortex. In SCHZ, ALFF

was reduced in the bilateral ventral frontal cortex (Lui et al., 2010).

SCHZ exhibits high connectivity between subcortical and auditory

networks (Lottman et al., 2019). It can be seen from the above studies

that the difference between SCHZ and HC is mainly concentrated

in DMN.

Meanwhile, this experiment also found significant differences in

SMN and VN. SCHZ is associated with dysfunction in visual percep-

tion, and the right lateral occipital cortex is a mid-level visual area crit-

ical for object recognition. Previous fMRI studies have reported

structural and functional abnormalities in the lateral occipital cortex of

SCHZ (Cant & Goodale, 2007). Li et al. (2020) investigated the spatio-

temporal interactions of the lateral occipital cortex with other brain

networks through functional connectivity. They found that the tem-

poral instability of lateral occipital cortical connections was increased

in both resting-state and task-switching situations, and in the resting

state, compared to controls, the patients' lateral occipital cortex inter-

acted with the FPN and thalamus effect increased. At the same time,

the interaction of the lateral occipital cortex with the DMN increased

during task switching. The study also found that temporal instability

of lateral occipital cortical connectivity was positively associated with

patients' switching costs during task performance and the severity of

hallucinations. These results suggest that reduced stability of lateral

occipital cortical connections may be an important factor in neurocog-

nitive dysfunction and symptom severity in SCHZ. The thalamus regu-

lates input from multiple brain regions, is considered a major relay

hub, and may play a specific role in SCHZ pathophysiology (Shenton

et al., 2001). Gifford and colleagues (Gifford et al., 2020) compared

flexibility in 55 SCHZ and 72 HC. The study found that nodes cover-

ing the left thalamus had significantly higher flexibility scores at the

node level.

The temporal plane, located posterior to the superior temporal

lobe, is a vital brain area associated with language and speech produc-

tion (Galaburda, 1978) and is also thought to be involved in the patho-

physiology of SCHZ (Shenton et al., 1992). Kwon et al. (1999) used
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magnetic resonance imaging to measure subtemporal gray matter in

16 SCHZ, and 16 HC matched for age, sex, handedness, and parental

economic status volume. The study found that gray matter volume in

the left temporal plane was significantly reduced (28.2%) in the SCHZ

group compared to the HC group. The left temporal plane was more

asymmetric than the right temporal plane in the SCHZ group in the

HC group. Found the opposite result, which is thought to be the basis

of language processing impairment and SCHZ-specific paranoia. Zhou

et al. (2010) analyzed the functional connectivity of 19 early-stage

SCHZ and 19 HC and found that the functional connectivity strength

increased in the left inferior temporal gyrus. An fMRI study using

meta-analysis (Taylor et al., 2012) found that the HC showed stronger

activation in the left occipital pole than the SCHZ group in terms of

affective experience.

5 | CONCLUSIONS

This article will thoroughly discuss the differences between ADHD, BP,

and SCHZ (31 healthy control and 31 ADHD; 34 healthy control and

34 BP; 42 healthy control and 42 SCHZ) relative to healthy subjects in

combination with three atlases (et al., the Brainnetome atlas, the Dosen-

bach atlas, Power atlas) and seven entropies (et al., ApEn, SaEn, PeEn,

FuEn, DiffEn, RaEn, and DispEn). We found a difference between HC

and ADHD, BP, and SCHZ, specifically, cingulo-opercular > (occipital

DMN and frontoparietal) in ADHD, cingulo-opercular > (occipital, DMN,

and frontoparietal) in BP, (cingulo-opercular, DMN, and occipital)

> frontoparietal in SCHZ. Regardless of the atlas used, the mean multi-

scale entropy values for the ADHD, BP, and SCHZ were significantly

lower than for the HCs. Furthermore, the performance of different mul-

tiscale entropy algorithms on different diseases is also different, such as

DiffEn, RaEn, and SaEn performed better in ADHD, SCHZ, and BP,

respectively. The ADHD classification results show that DiffEn performs

the best, where DiffEn achieves an accuracy of 0.8548. Among the clas-

sification results of BP, SaEn performs the best, where SaEn achieves an

accuracy of 0.8824. For the classification results of SCHZ, RaEn per-

forms the best, where RaEn achieves an accuracy of 0.8409. Besides,

the top 10 key brain regions of the weight ranking of entropy corre-

sponding to SVM of each disease were also obtained.

5.1 | Limitations

Although this article considers the performance of seven different

entropies on ADHD, BP, and SCHZ and then extends these to multi-

scale and three different atlases, this article's amount of rs-fMRI data

is not large enough, which is also the main disadvantage. The next

project will explore this topic by collecting multiple sites’ rs-fMRI data.

Besides, three parameters (N is the number of time points, m specifies

the dimension of the phase space, and r is the similarity tolerance)

selection for each entropy method is limited. Although already some

journals have discussed the setting of these parameters (Azami &

Escudero, 2018; Bandt & Pompe, 2002; Li et al., 2014; Schultz

et al., 2008; Tocado et al., 2009), how to get a more suitable parame-

ter was still not sure. So, based on our previous works (Guan

et al., 2020, 2022), the nonlinear complexity of rs-fMRI will further

explore the more suitable parameters.
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