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Microscaled proteogenomic methods
for precision oncology
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Cancer proteogenomics promises new insights into cancer biology and treatment efficacy by

integrating genomics, transcriptomics and protein profiling including modifications by mass

spectrometry (MS). A critical limitation is sample input requirements that exceed many

sources of clinically important material. Here we report a proteogenomics approach for core

biopsies using tissue-sparing specimen processing and microscaled proteomics. As a

demonstration, we analyze core needle biopsies from ERBB2 positive breast cancers before

and 48–72 h after initiating neoadjuvant trastuzumab-based chemotherapy. We show greater

suppression of ERBB2 protein and both ERBB2 and mTOR target phosphosite levels in cases

associated with pathological complete response, and identify potential causes of treatment

resistance including the absence of ERBB2 amplification, insufficient ERBB2 activity for

therapeutic sensitivity despite ERBB2 amplification, and candidate resistance mechanisms

including androgen receptor signaling, mucin overexpression and an inactive immune

microenvironment. The clinical utility and discovery potential of proteogenomics at biopsy-

scale warrants further investigation.
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Cancer proteogenomics integrates data from cancer geno-
mics and transcriptomics with cancer proteomics to pro-
vide deeper insights into cancer biology and therapeutic

vulnerabilities. Both by improving the functional annotation of
genomic aberrations and through insights into pathway activa-
tion, this multi-dimensional approach to the characterization of
human tumors shows promise for application to precision
oncology1–7

Here we address tissue requirements for proteogenomics,
which restricts translational research opportunities and applic-
ability to cancer diagnostics. For example, the Clinical Proteomic
Tumor Analysis Consortium (CPTAC) requires at least 100 mg of
tumor tissue, which typically yields quantitative information on
>10,000 proteins and >30,000 phosphosites per sample8. For
clinical diagnostics a single snap-frozen tumor-rich core needle
biopsy (∼ < 20 mg) must provide sufficient DNA, RNA and
protein for deep-scale proteogenomic profiling. To reduce these
tissue requirements, we now describe methods to generate high-
quality DNA, RNA and protein for deep-scale DNA and RNA
sequencing and proteome and phosphoproteome analysis from
a single 14 G core needle biopsy (Biopsy Trifecta Extraction,
(BioTExt)) and a microscaled liquid chromatography-mass
spectrometry (LC-MS/MS)-based proteome and phosphopro-
teome analysis pipeline (MiProt) that requires only 25 μg peptide
per sample. As technical proof-of-principal, we apply these
methods to a pilot study designed to test the feasibility of pro-
teogenomic profiling before and 48–72 h after initiating
chemotherapy. We choose trastuzumab-based treatment for
ERBB2+ breast cancer as an example of an oncogenic kinase-
driven tumor where proteogenomic analyses and pharmacody-
namic studies should provide significant insights into variability
in treatment outcomes9,10.

Results
Biopsy Trifecta Extraction protocol. To microscale specimen
processing an optimal cutting temperature (OCT)-embedded core
biopsy is serially sectioned with alternating 50um sections
transferred into 3 different 1.5 ml tubes (Fig. 1a). A total of six
sections were transferred into each tube. To assess sample quality,
5 μm sections were taken before the first and after every sixth
50 μm section for H&E staining. 50% average tumor content was
required for further analysis. The first tube was used to extract
denatured protein and DNA, the second for RNA isolation, and
the third for native protein and DNA. The denatured protein was
subsequently used for proteomic and phosphoproteomic analyses
described herein, and the DNA and RNA was used for genomic
analyses. The native protein analyses will be described elsewhere.

Development and evaluation of a microscaled proteomics
protocol. To initially assess analytes generated by BioTExt, OCT-
embedded core-needle biopsies were collected from two basal-like
breast cancer patient-derived xenograft (PDX) models (WHIM2,
WHIM14) and two luminal models (WHIM18 and WHIM20)11.
The biopsy yields ranged from 2.5–14 μg DNA, 0.9–2.3 μg RNA
and 280–430 μg of protein. Extraction yields for nucleic acids are
provided in Supplementary Fig. 1A. Because needle sizes vary
(14–22 gauge), a low minimum of 25 μg of input peptide/sample
was set as the target for proteomics using a tandem mass-tagging
(TMT) peptide labeling approach12 (Fig. 1b). Since the mass tags
are isobaric, signals from the same peptides in each sample stack
at the MS1 level, improving overall sensitivity for identification
and quantification, a key advantage at this input scale. Multi-
plexing also increases sample analysis throughput by 10-fold
relative to label-free approaches. Successful microscaling required

several modifications to the bulk-optimized CPTAC workflow8 to
allow low input profiling. This overall method is referred to as
Microscaled Proteomics (MiProt).

The PDX material was used to determine if the proteomic
coverage for core-needle biopsies is comparable to those
obtained using a workflow optimized for bulk tumors (the
Clinical Proteomics Tumor Analysis Consortium (CPTAC)
workflow)8,11 (Fig. 2a). Two needle-biopsy cores were collected
from each PDX model. The cored xenograft tumors were then
surgically removed for bulk material analysis. The cores were
OCT-embedded, flash frozen and subjected to BioTExt followed
by MiProt. The remaining bulk tumors were flash frozen,
cryopulverized and analyzed using the original CPTAC work-
flow8,13. Totals of 300 μg of peptides per sample were analyzed
with the original CPTAC workflow and 25 μg of peptides per
sample with the MiProt workflow using a randomized experi-
mental layout (Supplementary Data 1). Protein and phosphosite
expression is reported as the log ratio of each sample’s TMT
intensity to the intensity of an internal common reference
included in each plex. Both workflows identified more than
10,000 proteins, of which >7500 were identified as human.
Extensive overlap was observed between the populations of
proteins identified by the two approaches (Fig. 2b, Supplementary
Data 2A). MiProt identified >25,000 phosphosites from each core,
and these sites show substantial overlap with those identified by
bulk CPTAC workflows (Fig. 2c, Supplementary Data 2B,
Supplementary Fig. 2A). The identification of over 25,000
phosphosites by the MiProt method is of particular note as this
is less than a two-fold reduction in quantified sites relative to the
CPTAC bulk workflow8 despite using 12-fold less tumor material
per sample. While prior studies have reported relatively high
numbers of proteins (~4500) from small amounts of tissue
material14, the very large number of phosphosites we obtain using
just 25 μg of peptide/sample has not been described previously.
There was a high correlation of TMT ratios between replicates of
bulk tumors and between replicates of cores across all 4 PDX
models for both the proteomics and phosphoproteomics data
(Fig. 2d, Supplementary Fig. 2B). In addition to a high degree of
overlap in protein and phosphosite identities, expression was also
highly correlated (Pearson correlation, R > 0.65) between cores
and bulk for individual PDX models, as can be visualized by the
close juxtaposition of core and bulk samples from the same PDX
model upon unsupervised hierarchical clustering (Supplementary
Fig. 2C).

Expression profiles of key basal and luminal markers show a
comparable trend overall between bulk and core samples (Fig. 2e)
at the levels of both the proteome and phosphoproteome for all
PDX models except for WHIM20, where phosphorylated EGFR,
phosphorylated PGR and ESR1 protein show reduced expression
in cores relative to bulk, suggesting that there may be some
heterogeneity in this particular PDX model11. By contrast,
ERBB2, a breast cancer marker that should not be highly
expressed in these clinically ERBB2- (no ERBB2 amplification)
cases showed more uniform expression across the different PDX
models. Overall, cores provided proteomics data that yielded
results consistent with those obtained from global expression
profiles from bulk tissue.

To address whether differentially regulated pathways and
phosphosite-driven signaling in luminal vs. basal subtypes were
captured by the microscaled workflow, pathway-level and kinase-
centric analyses were applied to the bulk and core sample data.
Single-sample gene-set enrichment analysis (ssGSEA) was applied
to proteomics data, and post-translational modifications set
enrichment analysis (PTM-SEA) to the phosphoproteomic
data15,16. The luminal-basal differences captured by bulk tissue
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analysis were highly correlated with differences detected using
cores for both protein and phosphosite expression (Fig. 2f,
Supplementary Data 2C, D). Of note, the data recapitulates
previously observed luminal-basal differences and provided a

quality metric for the proteomics dataset both for cores and bulk
tissue2,6. The same conclusion was reached in bulk vs. core
comparisons performed on the normalized TMT protein
ratios for individual PDX models (Supplementary Fig. 2D).
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Fig. 1 The Biopsy Trifecta EXTraction based proteogenomics workflow. a In the Biopsy Trifecta EXTraction (BioTEXT) protocol, patient derived OCT-
embedded core needlebiopsies are sectioned, followed up by extraction of DNA, RNA and proteins for deep-scale proteogenomics characterization and by
immunohistochemistry-based imaging. b The Microscaled Proteomics (MiProt) workflow allows deep-scale proteomics and phosphoproteomics
characterization with 25 μg of peptides per core-needle biopsy. MiProt uses a common reference that could be used for comparison across all samples
within a single-TMT10/11 plex and across several TMT10/11 plexes spanning several core biopsies.
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Fig. 2 Evaluation of the BioText and MiProt workflow on preclinical PDX models. a Non-adjacent, core needle biopsies were collected from 2 basal and 2
luminal PDX models followed by surgical removal of tumors. Proteomic and phosphoproteomic characterization of cores was performed using the MiProt
workflow, and the bulk tissue was characterized using the CPTAC workflow described in Mertins et al8. b Venn-diagram shows the number of overlap
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Despite identifying ~40% fewer phosphorylation sites, most of the
differential Luminal-Basal kinase signatures identified in the bulk
tissue were captured by MiProt (Fig. 2f, right).

Microscaled proteogenomic analyses applied to clinical cores.
The PDX-based preliminary data encouraged the application of
these methods to a pilot proteogenomics breast cancer study
(Discovery protocol 1 (DP1); NCT01850628). The aim of DP1
was to investigate the feasibility of proteogenomic profiling in
core biopsies from patients with locally advanced ERBB2+ breast
cancer. Patients were treated at the physicians’ discretion, typi-
cally with trastuzumab in combination with pertuzumab and
chemotherapy. The protocol was designed to study acute treat-
ment perturbations by accruing samples before and 48 to 72 h
after treatment (referred to pre-treatment and on-treatment,
respectively, throughout the text).

As shown in the REMARK (Reporting Recommendations for
Tumor Marker Studies)17 diagram (Supplementary Fig. 3), core
biopsy samples were available from 19 patients. Proteogenomic
analysis could be conducted on samples from 14 patients as five
cases showed tumor content <50%. Analyte yield varied across
different cores, but the lower-range yields of DNA, RNA and
protein (0.4 μg, 0.2 μg and 45 μg, respectively) were sufficient to
demonstrate the suitability of the optimized extraction protocol
for clinical biopsy specimens (Supplementary Fig. 1B). Protein,
and RNA when available, were also analyzed for on-treatment
cores from 10 patients, with analysis of duplicate pre- and on-
treatment cores achieved in four of the patients, and of triplicate
cores in one patient (Fig. 3a). In total, 35 cores were analyzed.
Tumor and germline whole-exome sequencing was performed
using DNA from a single baseline core for all 14 patients. DNA
isolated from cores using BioTExt yielded target coverage
comparable to that from genomic DNA isolated from blood
(generated using standard organic extraction techniques) (Sup-
plementary Fig. 4A). RNA sequencing was successful for 30 cores
corresponding to 11 of the 14 patients, and MiProt analysis was
successful in all 35 available cores.

On average, we obtained copy number information on >27,000
genes, measured mRNA transcripts for >19,000 genes, and
quantified >10,000 proteins and >17,000 phosphosites from each
sample, with a large overlap of gene identification across different
datasets (Fig. 3b, c, Supplementary Data 3, 4). The coverage depth
was similar to that obtained in previous large-scale breast cancer
proteogenomics efforts with the exception of the phosphopro-
teome coverage, which achieved about half of the number of sites
previously reported for tumor bulk-level characterization2,18. For
13 out of the 14 cases, ERBB2 amplification was confirmed by
exome sequencing along with amplifications and mutations in a
range of genes previously implicated by the TCGA and ICGC
breast cancer studies (Supplementary Fig. 4B)19,20. We also
observed a similar overall pattern of structural variation
(Supplementary Fig. 4C), including amplifications of chromo-
somes 1, 8 and 2020. The median gene-wise Spearman correlation
between mRNA and protein across patient cores (n= 11)
was 0.38, consistent with previous bulk-focused proteogenomics
studies (Supplementary Fig. 4D)1,2,4,18. In addition, co-expression
networks derived from MiProt protein expression better pre-
dicted KEGG pathway function than those derived from mRNA
expression for a similar proportion of pathways as previously
reported for the published CPTAC breast cancer cohort21

(Supplementary Fig. 5A). An assessment of BioTExt sample
processing reproducibility was afforded by duplicate and pre- and
on-treatment cores from the same patient. Unsupervised
hierarchical clustering based on 500 most-variable genes resulted

in all duplicate cores clustering together at the level of mRNA,
protein and phosphosite expression with the exception of samples
from case BCN1365, where pre- and on-treatment profiles did
not cluster together at the level of phosphosite expression
(Supplementary Fig. 5B).

Proteogenomic analysis of the ERBB2 locus. A pathological
Complete Response (pCR) occurred in 9/14 cases (64%), and 5
patients had residual cancer at surgery (non-pCR). To probe the
possibility that some of the non-pCR cases were due to mis-
assignment of ERBB2 status, proteogenomic analysis of the region
of chromosome 17q spanning the ERBB2 locus and adjacent
genes was performed (Fig. 3d). Most obviously, exome sequen-
cing of BCN1326 did not show amplification of ERBB2 or other
nearby genes (Fig. 3d, upper panel) and exhibited markedly lower
levels of ERBB2 RNA (Fig. 3d, middle panel) and protein
expression (Fig. 3d, lower panel) than pCR cases, suggesting a
false positive (False ERBB2+). Expression levels from genes
immediately flanking ERBB2 (STARD3, PGAP3 and GRB7,
highlighted in red in Fig. 3d) were also lower than in pCR cases
functionally confirming a lack of amplification-driven gene dys-
regulation. BCN1331 and BCN1335 may represent a more subtle
form of false positivity. While these samples showed a gain of
ERBB2 copy number, ERBB2 protein levels remained low, similar
to BCN1326. BCN1335 showed greater absolute amplification of
TOP2A than of ERBB2 (see black arrow Fig. 3d upper panel), and
the TOP2A protein was markedly over-expressed compared to all
other cases (Fig. 3d lower panel, of note the RNA analysis failed
in this sample). This suggests that TOP2A was a potential alter-
native driver. Levels of STARD3, PGAP3 and GRB7 both for
RNA (BCN1331) and protein (BCN1331 and BCN1335) were
also low in BCN1331 and BCN1335. Cases with ERBB2 gene copy
gain without focal overexpression are referred to as pseudo
ERBB2 positive (pseudo ERBB2+). When comparing BCN1326,
BCN1331 and BCN1335 as a group with the nine true ERBB2+
pCR cases, both the arithmetic mean for STARD3, ERBB2 and
GRB7 protein log TMT ratios and the protein log ratios of each
gene separately were significantly lower (two-sample T-test;
arithmetic mean: p= 0.0114, STARD3: p= 0.0255, ERBB2: p=
0.0073, GRB7: p= 0.0399; n= 3 false and pseudo ERBB2+ non-
pCR cases, n= 9 true ERBB2+ pCR cases). Protein levels of
ERBB2 dimerization partners ERBB3 and ERBB4, as well as
phospho-ERBB3, were also significantly under-expressed (two-
sample T-test; ERBB3 protein: p= 0.0097, ERBB3 phosphopro-
tein: p= 0.0318, ERBB4 protein: p= 0.0131; n= 3 false ERBB2+
non-pCR cases, n= 9 true ERBB2+ pCR cases) (Fig. 3e). In
contrast, protein and phosphoprotein levels of EGFR, the
remaining dimerization partner of ERBB2, does not appear to be
correlated with ERBB2 levels and was high in the non-pCR
samples, suggesting that EGFR homodimers could play a driver
role in signaling when ERBB2 is low22,23. A central immuno-
histochemistry analysis indicated that ERBB2 was 1+ in
BCN1326 and 2+ in BCN1335 and BCN1331, while all the pCR
cases were assigned 3+ staining (Supplementary Fig. 6A). Sup-
porting the quantitative potential of microscaled proteomics, the
samples with an IHC score of 3+ in the central analysis showed
significantly higher levels of ERBB2 expression than tumors
scored 1+ or 2+ (Wilcoxon two-sample rank sum test with n= 5
for IHC 1+ or 2+ and n= 15 for IHC 3+, p= 0.00013).
Parallel reaction monitoring (PRM) was also deployed as an
orthogonal label-free protein quantification method on the same
samples with an excellent correlation (Spearman Rho= 0.92, p=
0, n= 32) between the TMT and PRM-based MS approaches
(Supplementary Fig. 6B-D).
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Phosphoproteomic analysis of acute on-treatment samples.
To test the feasibility of proteogenomics for the study of treat-
ment perturbations, pre- and on-treatment core biopsies for nine
patients with pCR and three patients without pCR were studied.
Differential treatment-induced changes were not observed at the
RNA level (Fig. 4a), and, while the ERBB2 protein levels showed
significant reduction in pCR cases (paired Wilcoxon signed
rank test, p= 0.031, n= 7 for pCR cases), the two-sample rank

Wilcoxon rank sum p-value for the comparison of this reduction
between pCR (n= 7) and non-pCR (n= 3) cases was not sig-
nificant (p= 0.067). However, greater downregulation of ERBB2
phosphoprotein (mean of all ERBB2 phosphosites) levels after
48–72 h in pCR cases than in non-pCR cases was observed (two
sample Wilcoxon rank sum test, p= 0.017, n= 3 for non-pCR
cases, n= 7 for pCR cases; Fig. 4a). To explore these data further,
limma24, a more advanced statistical method specifically designed
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for differential expression analysis of small sample size studies,
was employed. (Supplementary Data 5). Differential ERBB2 RNA
expression was again not seen for any comparison (Supplemen-
tary Fig. 7). However, there was significant pCR-specific down-
regulation for both ERBB2 protein (limma; p= 0.002, n= 7 for
pCR; p= 0.63; n= 2 for non-pCR; and p= 0.029 for pCR, n= 7,
vs. non-pCR, n= 2) and phosphoprotein levels (p= 0.000014,
n= 7 for pCR; p= 0.88, n= 2 for non-pCR; and p= 0.0086 for
pCR, n= 7, vs. non-pCR, n= 2) (Supplementary Data 5). Dif-
ferential analysis of individual phosphorylation sites also reveal
pCR-specific significant downregulation of several phosphosites
on proteins from the ERBB2 pathway, including sites on ERBB2
and SHC1, an adaptor that binds to ERBB225 (Fig. 4b). Most of
the significant changes that were at least 2-fold and those that
affected the ERBB2 pathway were observed in the site-level
phosphoproteomics data (Fig. 4b; Supplementary Fig. 7).

Given the well-understood kinase signaling cascades down-
stream of ERBB222, a recently published tool for pathway analysis
of phosphosites, PTM-SEA, was applied to the phosphoproteo-
mics data15 (PTMsigDB: https://github.com/broadinstitute/
ssGSEA2.0). Figure 4c shows significant phosphosite signatures
for the comparisons tested (on- vs pre-treatment changes in pCR
only and in non-pCR only) (Supplementary Data 6). Supple-
mentary Fig. 8 shows a heatmap of phosphoproteome driven
signatures that were significantly differentially regulated (FDR <
0.05) upon treatment in either of the two groups. While the
inferred activities of CDK1 and CDK2 kinases (KINASE
−PSP_CDK1, KINASE−PSP_CDK2) were upregulated in the
non-pCR patients, downregulation of mTOR activity (KINASE-
PSP_mTOR) was most prominently exclusive to the pCR cases
upon treatment.

Exploration of response features in individual non-pCR cases.
To explore candidate biological processes that may contribute to
inadequate response to therapy in non-pCR cases, RNA, protein
and phosphoprotein outlier analyses on data from each pre-
treatment core from the non-pCR cases with respect to the set of
pre-treatment pCR cores were performed. Specifically, Z-scores
were calculated for each gene/protein in a given individual non-
pCR core relative to the distribution established from all of the
pre-treatment pCR cores. The Z-scores of ERBB2 protein
expression in non-pCR cases were consistent with the observa-
tions noted above; ERBB2 RNA, protein and phosphoprotein
levels in patients BCN1326, BCN1331 and BCN1335 were out-
liers with negative Z-scores while ERBB2 expression in patients
BCN1369 and BCN1371 lay within the normal distribution of the
pCR cases (Fig. 5a, Supplementary Fig. 9). Z-scores derived from
the outlier analysis for each of the data points (RNA, proteome
and phosphoproteome; see Supplementary Data 7A) were

used for single sample Gene Set Enrichment Analysis (ssGSEA).
Figure 5b highlights a subset of immune-centric and oncogenic
signaling pathways that show differential enrichment in the non-
pCR cases. The expanded list is available as Supplementary
Data 7B. Consistent, significantly enriched pathway-level differ-
ences across replicate cores and multiple data types from a single
patient was observed (Fig. 5b), confirming that microscaled
proteogenomics data obtained from cores in a clinical setting
yield reproducible results. Interestingly, distinct biological path-
ways show differential enrichment in each of the individual non-
pCR cases relative to the pCR class (Fig. 5b, Supplementary
Data 7B).

Of the complex patterns revealed by differential pathway
analysis, immune-related and interferon signaling pathways
showed consistent upregulation across the data sets in samples
from two of the three cases with lower expression of ERBB2,
BCN1326 and BCN1331. In contrast, these pathways show
variable downregulation for the remaining non-pCR cases. To
further explore these findings, the expression of T-cell receptor
(CD3 isoforms and CD247) and immune checkpoint (PD-L1,
PD1, and CTLA4) genes were analyzed and immune profiles
from the RNA-seq data were generated using established tools
(Cibersort, ESTIMATE, and xCell). Examination of immune
profile scores and of expression of T-cell receptors and targetable
immune checkpoint regulators supported the presence of an
active immune response in BCN1326 relative to other samples
(Fig. 5c, Supplementary Fig. 10). Similarly, immune profile scores
also indicate that BCN1331 had an activated immune micro-
environment, and PD1 RNA expression was higher in this patient
than in any other case (Fig. 5c). The five non-pCR cases were
stained for the pan T-cell marker CD3 to validate these
proteogenomic findings (Fig. 5d). Consistent with the active
immune microenvironment (Fig. 5c), both BCN1326 and
BCN1331 demonstrate tumor T-cell infiltration. In contrast, a
predominant peri-tumoral or “immune-excluded” inflammatory
reaction was observed in BCN1335, and a complete paucity of
T-cells (immune-desert) was observed in the two resistant
proteogenomically confirmed ERBB2+ cases, BCN1371 and
BCN1369, consistent with the lack of immune signaling (Fig. 5b).

Other variable differential features in resistant cases included
PI3K/AKT/mTOR and MAPK signaling, all of which represent
potential therapeutic opportunities. ERBB2 pathway activation in
BCN1331 is unexpected given the very low level of ERBB2 protein
but could be explained by expression of EGFR or phosphorylated
EGFR (Fig. 3e). MYC targets were consistently upregulated at the
protein and phosphoprotein levels in BCN1326 and BCN1335,
and the androgen response pathway was upregulated at all levels
in BCN1371. Consistent with the elevated AR signaling observed
in BCN1371 (Fig. 5b), this tumor exhibits histologic features of an

Fig. 4 Downregulation of ERBB2 and mTOR signaling in cases with pCR. a Effect of anti-ERBB2 treatment on ERBB2 RNA, protein, and phosphoprotein
levels for each patient with on-treatment data. p-values were calculated by paired Wilcoxon signed rank tests for on-treatment vs. pre-treatment ERBB2
expression for each group. The pCR vs. non-pCR p-values are derived from Wilcoxon rank sum tests comparing log2 fold changes of on-treatment to pre-
treatment levels from pCR patients to those from non-pCR patients. For patients with multiple cores, the mean expression value was used. n= 3 for all non-
pCR; n= 6 for pCR RNA or n= 7 for pCR protein and phosphoprotein. Boxplots are centered on the median and show first and third quartiles for each
group. Asterisk indicates patient BCN1369 that didn’t receive Pertuzumab. b Scatter plot showing differential regulation of individual phosphosites before
and after treatment in pCR and in non-pCR cases. Shown are the on-treatment vs. pre-treatment log2 fold changes in non-pCR (y-axis) vs. the log2
changes in pCR samples (x-axis) for phosphosites with p-value < 0.05 by limma analysis of differential expression in either group (n= 7 for pCR; n= 2 for
non-pCR). Blue and green circles indicate phosphosites in pCR and non-pCR, respectively that show significant differential regulation in either group alone.
Purple circles indicate significantly regulated phosphosites in both sets of patients. The orange diamond outlines highlight phosphosites on proteins in the
KEGG ErbB signaling pathway (hsa04012). The transparency of each point reflects its significance after BH-adjustment (adjusted p < 0.05 is solid, and
more transparent points have higher adjusted p-values). c PTM-SEA was applied to the signed -Log10 p-values from limma differential expression analysis
of on- vs. pre-treatment phosphosite levels from pCR (upper panel) and non-pCR (lower panel) cases. The volcano plots show the Normalized Enrichment
Scores (NES) for kinase signatures. Brown circles indicate signatures with significant FDR ( < 0.05).
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apocrine cancer with intensely eosinophilic cytoplasm and AR
expression (Supplementary Fig. 11 middle and lower panel).
Interestingly, BCN1331 also expressed AR by IHC without
activation of an androgen response signature or apocrine features
(Fig. 5b, Supplementary Fig. 11), consistent with the disconnect
between AR expression and AR signaling in breast cancer noted

by others26. Also, for patient BCN1371, we did not observe
significant upregulation of PI3K signaling (Fig. 5b) despite
PIK3CA mutation (E545K), consistent with the disconnect
between PIK3CA mutation and effects when signaling assessed
by reverse phase protein array (RPPA)19,27. Table 1 summarizes
the proteogenomic features observed for each non-pCR case.
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Candidate resistance mechanisms and treatment alternatives.
To further explore therapeutic resistance pathways in the pro-
teogenomic data, association analyses between patient-centric
RNA, protein and phosphoprotein outliers and the published
literature was performed (Supplementary Fig. 12). For each gene
or protein, the terms “breast cancer” and “resist OR recur” were
used to search for previously studied associations between the
outlier genes and breast cancer resistance. Genes with highest
filtered PubMed citation counts include well-studied genes such
as ESR1, BRCA1/2, TP53, EGFR and AKT1 in addition to ERBB2
(Supplementary Data 8). As expected, ERBB2 was among the
most prominent negative protein and phosphoprotein outliers
in BCN1326, BCN1331, and BCN1335 that were associated with
the keyword “resistance” (Supplementary Fig. 12). Furthermore,
the TOP2A RNA and protein expression also stood out as being
strongly associated with “resistance” in BCN1335, the case for
whom the amplified locus may to be driving TOP2A rather than
ERBB2 expression (Supplementary Fig. 12; Fig. 3d). The most
prominent proteomics outlier for patient BCN1369, MUC6, was
not associated with citations containing the keyword “resis-
tance” (Supplementary Fig. 12). Nonetheless, multiple mucin
family members were outliers with high protein expression
specifically in this patient, two of which had citations associated
with “resistance” (Supplementary Fig. 12). The consistently high
levels of mucin protein expression in patient BCN1369 are
clearly discernible in the heatmap shown in Fig. 5e. This

observation is notable because mucin expression has been pro-
posed to mask ERBB2 epitopes and prevent trastuzumab bind-
ing, as shown previously in cell lines10,28,29.

Since therapeutic hypotheses could not be explored directly in
non-pCR patients our previously published proteogenomic
analysis of a PDX panel was analyzed to determine if any of
the molecular features of the resistant tumors in the DP1 study
were phenocopied in ERBB2+ patient-derived xenografts (PDX)6.
Interestingly, WHIM35 has high expression of mucin proteins
compared to WHIM8 (Supplementary Fig. 13A) indicating a
phenocopy of BCN1369 (Supplementary Fig. 13B). Consistent
with cell line-based studies reported in the literature30–33

trastuzumab induced tumor regression in mucin negative
WHIM8 but not in mucin positive WHIM35 (Fig. 5f). Drawing
from the observation that BCN1369 also exhibited elevated PI3K-
Akt-mTOR signaling (Fig. 5b), together with a recent report that
showed mTOR mediated MUC1 induction in multiple breast
cancer cell lines30, these PDX models were additionally treated
with the small molecule mTOR inhibitor everolimus. Everolimus
in combination with ERBB2-targeted therapy induced significant
regression (Fig. 5f) in the trastuzumab-resistant WHIM35 model.

Discussion
Here we report a successful microscaled proteogenomics
demonstration project in patients with ERBB2+ breast cancer.

Fig. 5 Proteogenomics analysis of baseline untreated non-pCR cases. a Outlier analysis was performed to identify differentially regulated mRNA, proteins
or phosphoproteins in each pre-treatment sample from non-pCR cases relative to the set of pre-treatment samples from all pre-treated pCR cases. Shown
is the ERBB2 protein distribution across all patients; brown and green bars indicate the frequencies for each protein level bin in pCR and non-pCR cores,
respectively. The line shows the normal distribution of pCR samples from which the Z-score for each non-pCR sample was derived. Corresponding Z-
scores levels are indicated in red. b Heatmap showing normalized enrichment scores (NES) from single sample Gene Set Enrichment Analysis (ssGSEA) of
outlier Z-scores from non-pCR cases. Shown are a subset of differentially regulated pathways with false-discovery rate less than 25% (FDR < 0.25). c
Heatmap showing expression levels of key immune-checkpoint and T-cell marker (CD3) genes and of RNA based immune and stroma scores from
ESTIMATE, Cibersort, and xCell. d Photomicrographs showing anti-CD3 immunohistochemical staining profiles of non-pCR cases (original magnification:
20 × ). e Heatmap showing Mucin protein expression across all pre-treated patients. f WHIM8 and WHIM35 PDX models were treated with vehicle,
trastuzumab, everolimus or the combination of trastuzumab and everolimus. The graph shows the mean-tumor volume at several timepoints (N= 15
(before 1 week), N= 12 (1 week to 4 weeks), N= 9 (after 4 weeks)) after tumor implantation and subsequent treatment, and error bars show standard
error of mean.

Table 1 Summary of proteogenomic features from non-pCR cases.

Patient ID RNAseq-
PAM50
subtype and
ER status

ERBB2 amplicon
structure by WES

Druggable
mutations

Differential pathways (relative
to pCR cases) UP
(upregulated), DOWN
(downregulated)

TILs and immune
microenviroment
proteomics

Treatments
received

BCN1326 Basal
ER+

ERBB2 not amplified
Low ERBB2 expression

MYC UP
Mitosis UP
Interferon signaling UP

Infiltrating TILs
PDL1 high
Phospho-PD1 high

Doc, CP, T, P

BCN1331 HER2-E
ER+

Broad lower-level ERBB2
amplification
Low ERBB2 expression
(pseudo-amplified)

ERBB2/3 UP
MAPK UP
PI3K UP
mTOR UP
Interferon signaling UP

Infiltrating TILs
PD1 RNA and Phospho-
PD1 high

Doc, CP, T, P

BCN1335 RNA failure
ER+

Amplicon driving TOP2A
Low ERBB2 expression
(pseudo-amplified)

BRCA1, R1788
> stop
VAF= 30%

MYC UP
Cell cycle UP

Peri-tumoral TILs Doc, CP, T, P

BCN1371 HER2-E
ER-

Amplified PIK3CA
E545K
VAF= 73.5%

AR transcription UP
ERBB2/3 DOWN
MAPK DOWN
PI3K DOWN
mTOR DOWN

No TILs Doc, CP, T, P

BCN1369 HER2-E
ER-

Amplified ERBB2/3 UP
MAPK UP
PI3K UP
mTOR UP
MUCIN expression UP

No TILs Pac, T

Doc Docetaxel, CP Carboplatin, T Trastuzumab, P Pertuzumab, Pac Paclitaxel
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Prior efforts at proteomic and phosphoproteomic analysis of
needle core biopsies used one-shot analysis14,34,35 or off-line SCX
fractionation combined with a super-SILAC approach to quantify
~2000–5000 proteins and ~3800 phosphorylation sites per core.
None of these prior studies incorporated genomic analyses into
their work flows. In contrast, our approach to core biopsy analysis
provides deep-scale genomic, proteomic and phosphoproteomic
analysis, identifying more than 25,000 phosphorylation sites in
PDX tissue, >17,000 sites in core biopsy tissue, and 11,000 pro-
teins in both for integrative multi-omics analyses.

We illustrate the potential microscaled proteogenomics in a
proof-of-principle breast cancer clinical study designed to detect
the immediate effects of inhibiting the ERBB2 pathway. Despite a
very small cohort size, we were able to detect statistically sig-
nificant downregulation of ERBB2 protein and phosphosite levels
and perturbations in phosphosite signature for downstream
mTOR targets specific to samples associated with pCR. Of the 7
(out of 21 total ERBB2 sites identified in Supplementary Data 4)
phosphosites from ERBB2 with complete data across the cohort,
all showed downregulation in pCR cases (Supplementary Data 5).
Of the 21 sites identified, only two have been characterized in
detail in cell lines (www.phosphosite.org). These are pY-1248, a
known auto-activation site36, and pT-701, which may serve as a
negative feedback site37, although their in-vivo roles are largely
unexplored. The role of downregulation of ERBB2 phosphoryla-
tion in response to treatment is complicated by the observed
downregulation of ERBB2 protein levels, but from a biomarker
perspective these are secondary questions that do not negate the
primary conclusion that we were able to make a valid pharma-
cokinetic observation. As important, our ability to resolve com-
plexity in this setting to assess inhibition of ERBB2 signaling is
also revealed by downregulation of a signature of target sites for
mTOR, a kinase activated downstream of ERBB2, specifically in
pCR patients (Fig. 4c).

An initial proteogenomic focus on ERBB2 is readily justified
given the biological variability within tumors designated ERBB2
positive. The testing guidelines are designed to offer as many
patients anti-ERBB2 treatment as possible, even though it is
recognized that this “catch-all” approach likely includes a number
of actual negative cases38. Our analysis is not intended to be
definitive or clinically actionable as the sample size is small and
our pipeline is research-based. However, these preliminary ana-
lyses suggest three classes of resistance mechanisms to ERBB2-
directed therapeutics can be detected. The false ERBB2+ are
exemplified by case BCN1326. This case was initially diagnosed by
FISH but ERBB2 protein was not over-expressed when re-
analyzed using standard IHC (IHC 1+). Three independent pre-
treatment and three post treatment biopsies were analyzed, which
helps rule out tumor heterogeneity as a likely cause of the mis-
diagnosis. The second class of potential misclassification is pseudo
ERBB2+, represented by cases BCN1331 and BCN1335. In these
cases, there was evidence for amplification of ERBB2, but pro-
teogenomic evidence suggested that ERBB2 is not a strong driver
including: (a) lower levels of ERBB2 protein and phosphoprotein
compared to pCR cases; (b) low expression from other genes
within the minimal ERBB2 amplicon (STARD3, PDAP3 and
GRB7); and (c) a paucity of expression of dimerization partners
ERBB3 and ERBB4. An orthogonal measurement of ERBB2 levels
using single shot parallel reaction monitoring hints at a more
efficient approach than the TMT multiplex assay that ultimately
could form the basis of a clinical assay (Supplementary Fig. 6). The
third resistance class demonstrates lack of pCR despite proteo-
genomic evidence for true ERBB2 positivity. Here proteogenomic
analysis provided candidate mechanisms of resistance to consider,
such as the upregulation of mucin proteins, active androgen sig-
naling or the lack of an antitumor immune response.

We emphasize our purpose herein is not to make definitive
clinical conclusions, but to illustrate the wide range of resistance
biology that microscaled proteogenomics methodologies can
reveal, thus promoting further investigation. We acknowledge
that the therapeutic alternatives suggested in this pilot study
require considerable further study. For example, for BCN1335 the
proteogenomic profile (both DNA and protein) suggests that
TOP2A is a more likely driver, with higher amplification and
protein expression than ERBB2. Other therapeutic hypotheses
were raised by evidence for active androgen receptor signaling in
BCN1371 (Fig. 5b) and mucin expression in BCN1369 (Fig. 5e).
For both examples, there is prior evidence for a role in resistance
to trastuzumab but persistent controversy regarding the clinical
actionability of these proposed mechanisms29,39,40.

The PDX experiments we describe are designed to illustrate
how proteogenomic analyses could be used to identify individual
PDX that phenocopy hypothetical resistance mechanisms
observed in clinical specimens, thus promoting preclinical
investigation of alternative treatments that could drive clinical
trial design3,6. While a clinical trial of everolimus in ERBB2+
breast cancer demonstrated an improvement in progression free
survival (PFS) when added to the combination of vinorelbine and
trastuzumab but the trial failed because of toxicity. Our results
suggest that the use of everolimus in this setting could be
reconsidered in ERBB2+ mucin+ tumors41.

Another important feature of the microscaled proteogenomic
analysis presented herein is the ability to assess the immune
microenvironment. This is a critical aspect of breast cancer
diagnostics with the approval of the PDL1 inhibitor atezolizu-
mab in PDL1+ advanced TNBC42. PDL1 IHC is used as a
predictive biomarker for atezolizumab, but the optimal
approach to the analysis of the immune microenvironment
remains under investigation43. BCN1326 and BCN1331, exam-
ples where the diagnosis of ERBB2 positive status was chal-
lenged by proteogenomic analysis, displayed proteomic evidence
for PDL1, phospho-PD-L1, and phospho-PD1 expression,
consistent with the infiltrating TIL patterns that were observed.
Thus, in the future, PD1 and PDL1 assessment by proteoge-
nomics could be considered for prediction of PDL1/PD1 anti-
body efficacy.

While the microscaled proteogenomic methods are deployed
here in the context of a clinical study in breast cancer, they are
patently extensible to any other solid tumor. The analyses
described are not designed for clinical use, although potentially
the time required to go from core needle biopsy to actionable
results (2 to 4 weeks) is similar to next generation DNA and RNA
sequencing. Analysis time can be reduced with automation of
sample processing, the use of faster instrumentation and ortho-
gonal gas phase fraction such as FAIMS44–46. Furthermore, the
protocol as presented can be readily adapted for use as a diag-
nostic tool by redirecting some of the denatured protein obtained
using the BioTExt procedure to PRM assays developed for targets
delineated in larger clinical discovery datasets, as illustrated for
ERBB2 (Supplementary Fig. 6).

In conclusion, our study provides the methodology for pro-
teogenomic analysis of core biopsy material from cancer patients.
The small cohort size prevents any definitive conclusions
regarding the clinical utility; however, we have demonstrated that
the identification of relevant proteogenomic features in core
biopsies is a feasible exercise. We can now seek definitive clinical
conclusions through analyses involving larger numbers of
patients.

Methods
Patient-derived xenografts and drug treatment. For PDX studies, all animal
procedures were approved by the Institutional Animal Care and Use Committee at

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-14381-2 ARTICLE

NATURE COMMUNICATIONS |          (2020) 11:532 | https://doi.org/10.1038/s41467-020-14381-2 |www.nature.com/naturecommunications 11

http://www.phosphosite.org
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Baylor College of Medicine (Houston, TX, USA) (protocol# AN-6934). 2–3 mm
tumor pieces from PDX tumors were engrafted into cleared mammary fat pads of
3–4 weeks old SCID/bg mice (Envigo) and allowed to grow without exogenous
estrogen supplementation until tumors reached 200–250 mm3. The human tissue
used for PDX generation was collected at Washington University St Louis and with
appropriate patient consenting. For the core and bulk comparison experiment, two
non-adjacent cores were first obtained from the PDX models, immediately
embedded in optimal cutting temperature (OCT) medium and snap-frozen in
liquid nitrogen. Following coring, tumors were surgically resected, and the tumor
bulk were snap-frozen in liquid nitrogen. For treatment experiments, mice were
randomized into 4 groups receiving (i) vehicle or control; (ii) everolimus (5 mg per
kilogram (kg) body weight in chow daily); (iii) trastuzumab (30 mg per kg body
weight weekly by intraperitoneal injection) or iv) a combination of trastuzumab
and everolimus (administered as described in (ii) and (iii)). There were n= 15 mice
per arm. Tumor volumes were measured by caliper every 3–4 days. For all animal

experiments, tumor volumes were calculated by V ¼ 4
3 � π � Length

2

� �2
� Width

2

� �
.

Baseline samples were collected on the day of randomization and treatment start
date followed by sample collection at 1-week and 4-week post-treatment. Animals
were sacrificed when tumors reached 1500 mm3 or at the study end time-point.

DP1 Clinical Data. Following informed consent, patients diagnosed ERBB2 posi-
tive via diagnostic breast biopsy were enrolled in the National Surgical Adjuvant
Breast and Bowel Project (NSABP) Biospecimen Discovery Project (DP1) for
ERBB2+ breast cancer (https://clinicaltrials.gov/ct2/show/study/NCT01850628).
In accordance with consent, regular cancer care and optional additional 14-gauge
needle biopsies preserved in optimal cutting temperature (OCT) fixative were
collected at diagnostic breast biopsy and 48 to 72 h following chemotherapy and
anti-ERBB2 therapy. Blood samples were also collected and compacted to a frozen
pellet before the start of standard treatment, up to 3 weeks after the first dose but
before the second dose, and at the time of surgery and sent to Washington Uni-
versity (St. Louis, MO) for research purposes.

Biopsy samples, blood samples, and medical information (including pathology
reports) were collected and labeled with a study number, which was a unique code
assigned to samples and medical information. This unique code number, which is
linked to the patient’s name, was kept separate from other sample information.
Sample was given a separate unique BCN number for each patient (i.e.,
BCN“XXXX”) upon enrollment in the study. All subsequent sample derivatives
were associated with the corresponding BCN number.

Patients were able to withdraw samples without any penalty or loss of benefits
entitled. However, in order to protect the anonymity of the databases, DNA
sequences or other information that came from samples were not removed once
entered into databases to prevent the risk of identification.

Biopsy Trifecta Extraction embedding and sectioning. 14-gauge needle human
biopsies were embedded in OCT fixative and stored at −80 °C. Utilizing a cryostat
maintained between −15 to −23 °C, each biopsy was sectioned at 50 microns.
Six (6) 50-micron curls were alternated amongst three (3) 1.5 mL microcentrifuge
tubes assigned for denatured protein-DNA, native protein-DNA, or RNA extrac-
tion. At the start of sectioning and after an interval of six (6) curls were sectioned, a
5 micron curl was mounted on a slide for Hematoxylin and Eosin (H&E) staining
and histopathological confirmation. This process was repeated until six (6) 50-
micron curls were collected in all tubes per sample. The samples were then shipped
from Washington University (St. Louis, MO) to Baylor College of Medicine
(Houston, TX) for subsequent processing. The tumor content percentages of each
biopsy H&E slide (TC1, TC2, TC3, and TC4) were recorded and calculated to form
a mean tumor content (avgTC) for that biopsy. Those biopsies with an avgTC less
than 50% were removed from further processing.

Immunohistochemistry. Tissue sections on charged glass slides were cut to 5 µm
and deparaffinised in xylene and rehydrated via an ethanol step gradient. Perox-
idase blocking, heat-induced antigen retrieval, and primary antibody incubation
were performed per standard protocol under the following abbreviated conditions:
ERBB2 (SP3, Neomarkers) 1:100, Tris pH 9.0; AR (441, sc-7305, Santa Cruz) 1:50,
Tris pH 9.0; Muc1 (sc-7313, Santa Cruz) 1:150, Citrate pH 6.0; CD3 (polyclonal,
A0452, Dako) 1:100, Tris pH 9.0. All primary antibodies were incubated at room
temperature for 1 h followed by standard chromogenic staining with the Envision
Polymer-HRP anti-mouse/3,3′diaminobenzidine (DAB; Dako) process. Immuno-
histochemistry scoring were performed using established guidelines, when appro-
priate. All IHC results were evaluated against positive and negative controls.

BioTExt denatured protein extraction. 1 mL of cold 70% ethanol (EtOH) was
added to tubes assigned for denatured protein. Each tube was quickly pulse-
vortexed for 30 s and briefly centrifuged at 20,000 x g for 5 min at 4 °C. The 70%
EtOH was carefully aspirated. 1 mL of cold NanoPure water was added, and the
tube was quickly pulse-vortexed for 30 s and briefly centrifuged at 20,000 x g for
5 min at 4 °C. The NanoPure water was carefully aspirated. 1 mL of cold 100%
EtOH was added, and the tube was quickly pulse-vortexed for 30 s and briefly
centrifuged at 20,000 x g for 5 min at 4 °C. The 100% EtOH was carefully aspirated.

100 µL of denatured protein lysis buffer (8 M urea, 75 mM NaCl, 1 mM EDTA,
50 mM Tris-Cl pH 8.0, 10 mM NaF, Phosphatase inhibitor cocktail 2 (Sigma;
P5726), Phosphatase inhibitor cocktail 3 (Sigma; P0044), Aprotinin (Sigma;
A6103), Leupeptin (Roche; 11017101001), PMSF (Sigma; 78830)) was added to
each sample, which was then transferred to a micro-sonicator vial. All samples
were incubated on ice for 10 min. Following incubation, samples were individually
sonicated in the S220 Ultrasonicator for 2 min at peak power: 100.0, duty factor:
10.0, cycles per burst: 500. Lysates were transferred to 1.5 mL labeled tubes and
centrifuged at 4 °C, maximum speed (20,000xg), for 30 min. Lysate supernatants
containing denatured proteins were transferred to a new labeled tube. The
remaining precipitated pellets were snap frozen for subsequent DNA isolation.
Quality control of the denatured protein was validated via mass spectrophotometer
analysis.

BioTExt DNA extraction. DNA was isolated via QIAamp DNA Mini Kit (Qiagen;
51306). DNA pellets were equilibrated to room temperature. 100 µL of Buffer ATL
and then 20 µL of proteinase K were added to each sample and mixed by vortex.
Samples were then incubated at 56 °C for 3 h in a shaking heat block. Following
incubation, samples were briefly centrifuged. 20 µL of RNase A (20 mg per mL) was
added to each sample, which was then pulse-vortexed for 15 s and incubated for
2 min at room temperature. Samples were briefly centrifuged then pulse-vortexed
for 15 s and incubated at 70 °C for 10 min. Following a brief centrifugation of the
sample, 200 µL of Buffer AL was added to the sample, which was then pulse-
vortexed for 15 s and incubated for an additional 70 °C for 10 min. Following
another brief centrifugation, samples were carefully applied to a corresponding
QIAamp Mini spin column placed in a collection tube without wetting the rim. The
spin columns with sample were centrifuged at 6000xg for 1 min and then placed in
a new collection tube while discarding the original filtrate. 500 µL of Buffer AW2
was added to spin columns without wetting the rim. Spin columns were centrifuged
at maximum speed (20,000xg) for 3 min. Following centrifugation, the spin col-
umns were placed in new collection tubes and once again centrifuged at maximum
speed for 1 min. Spin columns were then placed in new 1.5 mL micro-centrifuge
tubes. 100 µL of Buffer AE was added to each spin column and incubated at room
temperature for 5 min while in a shaking heat block. The final DNA isolates were
collected in their corresponding 1.5 mL tubes following centrifugation at 6000xg for
1 min. DNA quality control was validated via Picogreen analysis.

BioTExt RNA extraction. 1 mL of TRIzol Reagent (Thermo Fisher Scientific;
15596026) was added to each RNA-designated tube of cryo-sectioned curls, which
was immediately inverted three times followed by transfer of its contents to a
sonicator vial. Samples were individually sonicated in the S220 Ultrasonicator for
2 min at peak power: 100.0, duty factor: 10.0, cycles/burst: 500. All samples were
then incubated for 5 min and then transferred to 1.5 mL microcentrifuge tubes.
Following addition of 200 µL of chloroform, each sample was incubated for 3 min
and then centrifuged at 12,000xg for 15 min at 4 °C. The supernatants were dis-
carded. The pellet was air dried in the micro-centrifuge tube for 10 min. The pellet
was re-suspended in 20 µL of RNase-free water and incubated at 56–60 °C in a
heat block for 10–15 min. RNA was isolated using RNeasy Mini kit (Qiagen;
74106). 10 µL of Buffer RDD and 2.5 µL of DNase I (Qiagen; 79254) was added to
each sample. The sample volume was then brought up to 100 µL with RNase-free
water, and the sample incubated at room temperature for 10 min. 350 µL of Buffer
RLT was added and mixed well with each sample. Thereafter, 250 µL of 100 %
EtOH was mixed with each sample, and the mixture was quickly transferred to an
RNeasy MinElute spin column (Qiagen; 74106) and placed in a 2 mL collection
tube, which was then centrifuged at 12,000xg for 15 s. The flow through was
discarded, and 500 µL of 80% EtOH was added to each spin column. The columns
were centrifuged at 12,000xg for 2 min. The flow through was discarded and the
column in placed in a new 2 mL collection tube. The samples were centrifuged at
full speed for 5 min with the lid of the spin column open. Following centrifugation,
the spin column was placed in a 1.5 mL micro-centrifuge tube, and 14 µL of RNase-
free water was directly added to the center of the spin column membrane. The spin
columns were centrifuged at max speed for 1 min to elute the RNA. RNA quality
control was validated via Picogreen analysis.

BioTExt native protein extraction. 100 µL of native protein lysis buffer (50 mM
HEPES pH 7.5, 150 mM NaCl, 0.5% Triton X-100, 1 mM EDTA, 1 mM EGTA,
10 mM NaF, 2.5 mM NaVO4, Protease inhibitor cocktail, Phosphatase inhibitor
cocktail) was added to each native protein sample, which was then transferred to a
micro-sonicator vial. Each lysate tube was assigned a trackable Mass Spectrometer
label. Lysate concentration measured via Bradford assay of 10 µL of each sample
mixed with 800 µL of deionized water. 200 µL of Bradford reagent was added to
each deionized water plus lysate aliquot. Each sample was inverted and transferred
to assigned cuvettes. Lysates were measured via a spectrophotometer with a cor-
responding blank sample.

Genomic data generation and QC analysis. DNA from core biopsies and
germline blood samples was PicoGreen quantified. Samples that met the minimum
PicoGreen quantified input requirements (≥300 ng DNA, preferred concentration
10 ng/μL) proceeded into the Somatic Whole Exome workflow by which DNA was
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processed for Somatic Whole Exome Sequencing. This process included library
preparation, hybrid capture, sequencing with 76 bp paired-end reads, sample
identification QC check, and product-utilized ligation-based library preparation
followed by hybrid capture with the Illumina Rapid Capture Exome enrichment kit
with 38Mb target territory.

All libraries were sequenced to attempt to meet a goal of 85% of targets covered
at greater than 50x coverage (+/− 5%) for tumor samples utilizing the Laboratory
Picard bioinformatics pipeline. All sequencing was performed by the Laboratory on
Illumina instruments with 76 base pair, paired‐end sequencing. The Laboratory
Picard pipeline aggregated all data from a particular sample into a single BAM file
that included all reads, all bases from all reads, and original/vendor-assigned
quality scores.

DNA samples were additionally processed for Fluidigm Fingerprint Checks. By
genotyping a panel of highly polymorphic SNPs (including SNPs on chromosomes
X and Y), a unique genetic ‘fingerprint’ is generated for each sample. These
genotypes are stored in the sample tracking database and compared automatically
to genotypes from the production pipeline to ensure the integrity of sample
tracking.

Identification of mutations by whole exome sequencing. VarScan2 was used to
identify germline mutations (SNPs and INDELs) from the germline BAM files and
somatic mutations by comparing the tumor BAM file to the germline BAM file for
each patient. Annovar was then used to separately annotate SNP and INDEL vcf
files from VarScan for germline and somatic mutations from each patient. Muta-
tions with “non-synonymous SNVs”, “stopgain”, “stoploss”, and “splicing” anno-
tations that affect the protein coding sequences of genes were extracted from the
resulting SNP multianno files and combined into a single text file for all patients.
Similarly, INDELs annotated as occurring in the exons of genes were extracted
from each INDEL multianno file and combined into a single file. The somatic SNPs
and INDELs were combined into a single mutation by patient table (unique
mutations; Supplementary Data 3A) and a single mutated gene by patient table
(Supplementary Data 3B).

Analysis of copy number alterations. We used the R Package CopywriteR
(version 1.18.0)47, which uses off-target wholes exome sequencing (WXS) reads,
to infer copy number values. All the tumor and normal WXS data had sufficient
(>5 million) off-target reads for SCNA detection as recommended by the software.
The circular binary segmentation (CBS) algorithm implemented in the CopywriteR
package was used for copy number segmentation with the default parameters.
From the segmentation results, we use a straightforward weighted-sum approach to
summarize the chromosome instability for each sample5. Specifically, the absolute
log2 ratios of all segments (indicating the copy number aberration of these seg-
ments) within a chromosome were weighted by the segment length and summed
up to derive the instability score for the chromosome. The genome-wide chro-
mosome instability index was derived by summing up the instability score of all
22 autosomes. Next, we used GISTIC2 (version 2.0.2348) to retrieve gene-level copy
number values (Supplementary Data 3C) and call significant copy number
alterations in the cohort (integer calls). The stringent threshold (2 or −2) of the
integer call results were used to define genes with copy number aberration.

RNA-sequencing data generation and analysis. RNA was quantified via Ribo-
Green, and RNA quality was measured by the RQS (RNA Quality Score). Samples
that did not meet the minimum RiboGreen quantified input requirements (≥500 ng
RNA, preferred concentration 10 ng/μL, RQS > 5.5) were held for further evalua-
tion. RNA samples of sufficient quality were processed for Long-Insert Strand-
Specific Transcriptome Sequencing. Library preparation utilizes a unique high-
quality, high-throughput, low-input process using the Illumina TruSeq RNA
protocol, which generates poly-A mRNA libraries from total RNA using oligo dT
beads. The RNA sequencing library construction includes poly-A selection, cDNA
synthesis and library construction using the strand specific Illumina TruSeq Pro-
tocol. Each RNA sample entering library construction receives an aliquot of
(ThermoFisher) ERCC Controls. All libraries are sequenced to attempt to meet a
goal of 50 M reads aligned in pairs (+/− 5%) at 101 bp read length using the
Illumina platform as measured using our Picard bioinformatics pipeline. The
Picard pipeline aggregates all data from a particular sample into a single demul-
tiplexed, aligned BAM file which includes all reads, all bases from all reads and
original/vendor assigned quality scores.

The SamToFastq function from Picard tools was used to convert the BAM file
to fastq files for each sample. The RSEM tool was used to calculate both estimated
read counts (RSEM) and Fragments Per Kilobase of transcript per Million mapped
reads (FPKM) for each gene from the fastq files49. For the analyses described in the
manuscript, non-0 RSEM data for each sample was upper-quartile normalized, and
genes with 0 read counts across all samples were removed (0 reads treated as NA).
ESTIMATE, Cibersort, and xCell were used to infer stroma content (ESTIMATE
and xCell), immune infiltration (all), and tumor immune cell profiles (Cibersort
and xCell) using upper quartile normalized RSEM data, and log2 transformed
upper quartile normalized RSEM data was used for the outlier and LIMMA
analyses described below50-52.

Experimental design for MiProt. For the CPTAC workflow, the 4 PDX models
were analyzed in process replicates (8 TMT channels) along with 2 common
reference (CR) samples in a TMT ten-plex format. The first common reference
(CR1) was constructed from equal proportions of peptides derived from the 4
cryopulverized PDX bulk tumors. The second common reference (CR2) had been
used in a prior proteogenomic breast cancer PDX study that included these four
models6. For the MiProt workflow, 8 individual cores comprising 2 cores per model
(8 TMT channels) were analyzed along with 2 common references in TMT ten-plex
format. The first CR (CR3) was composed of equal proportions of peptides from
the 8 cores, while the second CR was an aliquot of the bulk CR (CR1), described
above. Protein and phosphosite expression were reported as the log ratio of each
sample’s TMT intensity to the intensity of an internal common reference includes
in each plex, either CR1 for the CPTAC workflow or CR3 for the MiProt workflow.
For analyzing patient derived core needle biopsies, the TMT-eleven-plex format
were used, where the first 9 channels contained peptides from 9 core needle
biopsies and the last two channels (131 N, 131 C) contains two different CRs.
Channel 131 N contained CR4 that was constructed from equal proportion of
peptides from all the 14 patients. Channel 131 C contained CR5 that has been
previously used to characterize a large cohort of breast cancer subtypes (https://
cptac-data-portal.georgetown.edu/cptac/study/disclaimer?accNum=S039). For this
manuscript, all ratios were calculated relative to CR4. For both PDX and clinical
core analyses, samples within a TMT11 plex were randomized to reduce batch
effects (Supplementary Data 1).

Proteomic sample preparation for MiProt analysis. Protein lysates in 8 M Urea
were treated with 1 mM DTT for 45 min followed by 2 mM iodoacetamide (IAA)
for an additional 45 min. 8 M Urea was diluted to a final concentration of 2M with
50 mM Tris-HCL pH 8.5. Protein lysates were incubated with endopeptidase LysC
(Promega) at a concentration of 1:50 (μg of LysC to μg of Proteins) for 2 h followed
by overnight incubation with Trypsin (Promega) at a concentration of 1:30 (μg of
Trypsin to μg of Proteins). Both enzymatic digestions were performed at room-
temperature. Following protein digestion, peptides were acidified to a final con-
centration of 1% Formic acid followed by purification using 50 mg Sep-Pak car-
tridge (Waters). Peptides were eluted off the Sep-Pak cartridge with 50%
acetonitrile and 0.1% formic acid. Peptide concentration was measured using
280 absorbance using a Nanodrop (Thermo Scientific). For qualitative assessment,
0.5 μg peptides were run on a nLC1200 coupled to Q-Exactive+ LC-MS setup
(Thermo Scientific). Eluted peptides were snap-frozen and dried using a speed-vac
apparatus. For the CPTAC workflow, a total of 300 μg peptides were labeled
with 800 μg TMT reagent as described previosly8. For the MiProt workflow a total
of 25 μg peptides in 100 μL of 50 mM Hepes pH8.5 was labeled with 200 μg TMT
reagent (8-fold excess). TMT and peptide mixture were incubated at room-
temperature for 1 h. Prior to the quenching of excess TMT reagent, a total of 1 μL
per sample was stage-tipped onto a C18 disc (EMPORE C18) and a total of 0.5 μg
of peptides was run on a 30 min gradient to assess TMT labeling efficiency. In
addition, 2 μL from each sample were pooled together and desalted. A total of
0.5 μg peptides were run on a 110 min gradient to assess mixing ratios. We allowed
partial TMT labeling to be over 99%, fully TMT labeling to be over 94% and mixing
ratios to be within +/− 15% compared to the common internal reference (CR),
which was 131 N for TMT10-plex setup and 131 C for TMT11-plex setup. Excess
TMT reagent was quenched using 6 μL of 5% Hydroxylamine (Sigma) followed by
a 15 min incubation. All the samples within a plex were mixed based on the mixing
ratios to achieve equal amounts for all channels. Peptides were purified using a 100
mg Sep-Pak cartidge (Waters) and dried down using a speed-vac apparatus.

Basic reverse fractionation and phosphoenrichment. For basic phase reverse
(bRP) fractionation, ~250 μg of peptides were dissolved in 500 μL of 5 mM
ammonium formate and 5% acetonitrile. An offline Agilent 1260 LC coupled to 30
cm and 2.1 diameter column running at a flow-rate of 200 μL per minute was used
for bRP fractionation. Peptides were fractionated into 72 fractions and finally
concatenated into 24 fractions. A total of 2 μg peptides per fraction was transferred
into the mass-spectrometer vial for whole proteome analysis, but only 0.5 μg per
fraction was injected for whole proteome analysis. The 24 fractions were further
concatenated (by pooling of every 6th fraction) into 4 fractions (~62 μg peptides
per fraction) for phosphopeptide enrichment.

The CPTAC workflow has been described before2. In brief, for the CPTAC
workflow, 3000 μg of peptides were dissolved in 1000 μL of 5 mM ammonium
formate and 5% acetonitrile. Offline fractionation was performed as described
above using a 30 cm and 4.6 diameter column. A total of 72 fractions were
concatenated into a total of 24 fractions and 0.5 μg peptides per fraction were
analyzed for whole cell proteomics. The 24 fractions were further concatenated into
a total of 12 fractions (by pooling of every 2nd fraction yielding ~250 μg per
fraction) for IMAC based phosphopeptide enrichment.

Phosphopeptide enrichment was done using Fe3+ immobilized metal affinity
chromatography (IMAC). For this, Ni-NTA (Qiagen) beads were washed three
times with HPLC grade water followed by incubation with 100 mM EDTA (Sigma)
for 30 min to strip Ni2+ off the beads. The beads were washed 3 times with HPLC
grade water followed by incubation with FeCl3 (Sigma) for 45 min. Beads were
again washed with HPLC grade water followed by resuspension of Fe3+ loaded
agarose beads with resuspension buffer containing methanol, acetonitrile and
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0.01% acetic acid at 1:1:1 ratio. For both CPTAC and MiProt workflows, dried
down peptides were resuspended to a final volume of 500 μL in 50% acetonitrile
and 0.1% trifluoroacetic acid (TFA) and supplemented with 97% acetonitrile
and 0.1% TFA to a final concentration of 80% acetonitrile and 0.1% TFA. A total of
20 μL of 50% slurry was used per fraction for phosphopeptide enrichment. IMAC
beads and peptides were incubated at room temperature for 30 min on a tumble-
top rotator. Beads were spun down and resuspended with 200 μL of 80%
acetonitrile and 0.1% TFA and transferred directly onto a conditioned C18 stage-
tips. Phosphopeptides were eluted off the beads using 500 mM K2HPO4, pH 7
buffer onto C18 stage-tip, washed with 1% formic acid and finally eluted into a
mass spectrometer LC vial using 50% acetonitrile and 0.1% FA.

Proteomic data acquisition and processing. A Proxeon nLC-1200 coupled to
Thermo Lumos instrumentation was used for proteome and phosphoproteome
data acquisition. Peptides were run on a 110 min gradient with 86 min of effective
gradient (6 to 30% buffer B containing 90% ACN and 0.1%FA). For phospho-
proteomics analysis of cores, a second injection was performed and analyzed over a
145 min gradient with 120 min of effective gradient (6 to 30% buffer B containing
90% ACN and 0.1% FA). The acquisition parameters are as follows, MS1: reso-
lution- 60,000, MS1 injection time: 50 s, MS2: resolution: 50,000, MS2 injection
time: 110 s, AGC 5E4. Data acquisition was performed with a cycle time of 2 s.

Raw files were searched against the human (clinical samples) or human and
mouse (PDX samples) RefSeq protein databases complemented with 553 small-
open reading frames (smORFs) and common contaminants (Human:
RefSeq.20111003_Human_ucsc_hg38_cpdb_mito_259contamsnr_553smORFS),
(Human and Mouse:RefSeq.20160914_Human_Mouse_ucsc_hg19_mm10_
customProDBnr_mito_150contams) using Spectrum Mill suite vB.06.01.202
(Broad Institute and Agilent Technologies) as previously described in detail6. For
TMT quantification, the ‘Full, Lys only’ option that requires lysine to be fully
labeled while allowing under-labeling of peptides N-termini was used.
Carbamidomethylation of cysteines was set as a fixed modification, and N-terminal
protein acetylation, oxidation of methionine (Met-ox), de-amidation of asparagine,
and cyclization of peptide N-terminal glutamine and carbamidomethylated
cysteine to pyroglutamic acid (pyroGlu) and pyro-carbamidomethyl cysteine were
set as variable modifications. For phosphoproteome analysis, phosphorylation of
serine, threonine, and tyrosine were allowed as additional variable modifications,
while de-amidation of asparagine was disabled. Trypsin Allow P was specified as
the proteolytic enzyme with up to 4 missed cleavage sites allowed. For proteome
analysis, the allowed precursor mass shift range was −18 to 64 Da to allow for
pyroGlu and up to 4 Met-ox per peptide. For phosphoproteome analysis, the range
was expanded to −18 to 272 Da, to allow for up to 3 phosphorylations and 2 Met-
ox per peptide. Precursor and product mass tolerances were set to ±20 ppm and
peptide FDR to 1 % employing a target-decoy approach using reversed protein
sequences42. For PDX analyses, the subgroup-specific (SGS) option in Spectrum
Mill was enabled as previously described6.This allowed us to better dissect proteins
of human and mouse origin. If specific evidence for BOTH human and mouse
peptides from an orthologous protein were observed, then peptides that cannot
distinguish the two (shared) were ignored. However, the peptides shared between
species were retained if there was specific evidence for only one of the species, thus
yielding a protein group with a single subgroup attributed to only the single species
consistent with the specific peptides.

For generation of protein and phosphopeptide ratios, reporter ion signals were
corrected for isotope impurities and relative abundances of proteins, and
phosphorylation sites were determined using the median of TMT reporter ion
intensity ratios from all PSMs matching to the protein or phosphorylation site.
PSMs lacking a TMT label, having a precursor ion purity <50%, or having a
negative delta forward-reverse score (half of all false-positive identifications) were
excluded. To normalize quantitative data across TMT10/11plex experiments, TMT
intensities were divided by the specified common reference for each phosphosite
and protein. Log2 TMT rations were further normalized by median centering and
median absolute deviation scaling.

Parallel reaction monitoring. Two unique peptides for ERBB2 protein
(VLQGLPR and GLQSLPTHDPSPLQR) were used for PRM analysis. Peptides
used for proteome analysis were analyzed by Orbitrap Fusion Lumos mass spec-
trometer coupled with the EASY-nLC1200 system (Thermo Fisher Scientific) for
PRM analysis. 1 μg of peptides was loaded to a trap column (150 μm× 2 cm,
particle size 1.9 μm) with a max pressure of 280 bar using Solvent A (0.1% formic
acid in water) and then separated on a silica microcolumn (150 μm× 5 cm, particle
size, 1.9 μm) with a gradient of 4–28% mobile phase B (90% acetonitrile and 0.1%
formic acid) at a flow rate of 750 nl per min for 75 min. Both data-dependent
acquisition (DDA) and PRM modes were used in parallel. For DDA scans, a
precursor scan was performed in the Orbitrap by scanning m/z 300–1200 with a
resolution of 120,000 at 200m/z. The most 20 intense ions were isolated by
Quadrupole with a 2m/z window and fragmented by higher energy collisional
dissociation (HCD) with normalized collision energy of 32% and detected by ion
trap with rapid scan rate. Automatic gain control targets were 5 × 105 ions with a
maximum injection time of 50 ms for precursor scans and 104 with a maximum
injection time of 50 ms for MS2 scans. Dynamic exclusion time was 20 s (±7 ppm).
For PRM scans, pre-selected peptides were isolated by quadrupole with a 0.7m/z

window followed by HCD with normalized collision energy of 32%, and product
ions (MS2) were scanned by Orbitrap with a resolution of 30,000 at 200m/z. Scan
windows were set to 4 min for each peptide. For relative quantification, the raw
spectrum file was crunched to mgf format by Proteome Discoverer 2.0 software
(Thermo Fisher Scientific) and then imported to Skyline along with the raw data
file. We validated each result by deleting non-identified spectra and adjusting the
AUC range. Finally, the sum of the area of at least six strongest product ions for
each peptide was used for the result.

Network-based gene function prediction. Co-expression network construction
using mRNA and protein expression data and network-based gene function pre-
diction for KEGG pathways were performed21 and implemented in OmicsEV
(https://github.com/bzhanglab/OmicsEV).

Outlier analysis. The data for each gene or protein from the set of baseline
samples from the patients that showed pathological complete response was used to
establish a normal distribution for that gene/protein. For each gene, a Z-score for
each baseline sample from the non-pCR case was calculated by determining the
number of standard deviations the expression value in the non-pCR deviated from
the mean of this distribution. Genes/proteins with low variance (variance < 1.5) and
that did not have a normal distribution, by Shapiro-Wilk test, in the patients
showing pathological complete response were removed prior to subsequent ana-
lysis. For phosphoprotein level outlier analysis, the mean level of all phosphosites
for each protein was evaluated. Pathway analysis using single sample Gene Set
Enrichment Analysis (ssGSEA) and the MSigDb gene sets was carried out on the
outlier Z-scores for each dataset in each non-pCR sample using the parameters
described below.

Differential analysis using limma. The limma R package was used to analyze the
set of patients with both on-treatment and pre-treatment cores in order to compare
on-treatment vs. pre-treatment expression in pCR and non-pCR patients separately
in each dataset (RNA, protein, phosphoprotein (mean phosphosite level for each
protein), and phosphosite datasets) and to compare on-treatment vs. pre-treatment
changes in expression in pCR patients to non-pCR patients. Samples from
BCN1368 and BCN1369 were excluded from this analysis because of they did not
receive the full treatment regimen (didn’t get pertuzumab). Phosphosite level data
for this analysis was first processed by taking the mean of all peptides containing
each fully localized site as determined by Spectrum Mill. For this analysis, duplicate
cores for a given patient were included but the limma duplicateCorrelation func-
tion was used to derive a consensus for each patient for the differential analysis.
Each gene (or site) in each dataset was fitted to a linear model with coefficients for
each group (on-treatment pCR, pre-treatment pCR, on-treatment non-pCR, and
pre-treatment non-PCR) and each plex (to account for batch effects), and mod-
erated T-tests for each comparison were carried out by limma using the residual
variances estimated from the linear models. PTM-SEA was applied to signed, log10
transformed p-values from this analysis using the parameters described below.

Geneset enrichment and PTM-signature enrichment analyses. Pathway analysis
was performed using single sample Gene Set Enrichment Analysis (ssGSEA) and
post-translational modification signature enrichment analysis (PTM-SEA). Protein
and phosphosite measurements of technical replicates were combined by taking the
average across replicates before subsequent analysis. Pathway level comparisons of
bulk and core material were based on signed, log10-transformed
p-values derived from a moderated two-sample T-test using the limma R-package
comparing luminal and basal tumors separately for bulk and core samples. For
proteome data we first applied the two-sample moderated T-test for each protein and
resulting transformed p-values (see above) were collapsed to gene-centric level for
ssGSEA by retaining the most significant p-value per gene symbol. Phosphosite-level
data were subjected to limma-analysis to derive transformed p-values (see above) for
each phosphorylation site. Sequence windows flanking the phosphorylation site by 7
amino acids in both directions were used as unique site identifier. For PTM-SEA, only
fully localized phosphorylation sites as determined by Spectrum Mill software were
taking into consideration. Phosphorylation sites on multiply phosphorylated peptides
were resolved using methods described in Krug et al15.

Pubmed crawling. An in-house Python script was used to drive queries using
NCBI-s E-utilities, and resulting freely available information (title, abstract, key-
words) were saved to a local SQL database. For each publication, a case-insensitive
text search for “resist” OR “recur” AND “breast cancer” was performed, with
positive hits retained and tallied for each gene. Publications with over 100 different
gene associations were excluded to avoid false positives from high-throughput
studies. The results are available in Supplementary Data 8.

Additional statistical analyses and R code. T-tests, Shapiro-Wilk tests and
Wilcoxon rank sum and signed rank tests were performed using base R (http://
www.R-project.org/). Spearman correlation analyses were performed
using the R Hmisc package (https://CRAN.R-project.org/package=Hmisc).
Heatmaps were generated using the heatmap.2 function in the gplots R package
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(https://CRAN.R-project.org/package=gplots) and Morpheus (https://github.com/
cmap/morpheus.R) and R code will be made available upon request.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The genomics data have been deposited in the dbGAP database under the accession code
phs001907.v1.p1. The proteomics data used in this study is available CPTAC portal at the
link https://cptac-data-portal.georgetown.edu/cptac/s/S051. The source data underlying
all main figures and Supplementary Figs. are provided as a Source Data file 1–8 and is
appropriately cited in the result section. A reporting summary for this article is available
as a Supplementary Information file.

Code availability
All codes used in this study are published and are appropriately cited throughout the text.
The code used for outlier analysis will be available upon request.

Received: 13 September 2019; Accepted: 31 December 2019;

References
1. Archer, T. C. et al. Proteomics, post-translational modifications, and

integrative analyses reveal molecular heterogeneity within medulloblastoma
subgroups. Cancer Cell 34, 396–410 (2018).

2. Mertins, P. et al. Proteogenomics connects somatic mutations to signalling in
breast cancer. Nature 534, 55–62 (2016).

3. Mundt, F. et al. Mass spectrometry-based proteomics reveals potential roles of
NEK9 and MAP2K4 in resistance to PI3K inhibition in triple-negative breast
cancers. Cancer Res. 78, 2732–2746 (2018).

4. Zhang, B. et al. Proteogenomic characterization of human colon and rectal
cancer. Nature 513, 382–387 (2014).

5. Vasaikar, S. et al. Proteogenomic analysis of human colon cancer reveals new
therapeutic opportunities. Cell 177, 1035–1049 (2019).

6. Huang, K.-L. et al. Proteogenomic integration reveals therapeutic targets in
breast cancer xenografts. Nat. Commun. 8, 14864 (2017).

7. Matsunuma, R. et al. DPYSL3 modulates mitosis, migration, and epithelial-to-
mesenchymal transition in claudin-low breast cancer. Proc. Natl Acad. Sci.
USA 115, E11978–E11987 (2018).

8. Mertins, P. et al. Reproducible workflow for multiplexed deep-scale proteome
and phosphoproteome analysis of tumor tissues by liquid chromatography-
mass spectrometry. Nat. Protoc. 13, 1632–1661 (2018).

9. Slamon, D. J. et al. Human breast cancer: correlation of relapse and survival
with amplification of the HER-2/neu oncogene. Science 235, 177–182 (1987).

10. Vu, T. & Claret, F. X. Trastuzumab: updated mechanisms of action and
resistance in breast cancer. Front Oncol. 2, 62 (2012).

11. Li, S. et al. Endocrine-therapy-resistant ESR1 variants revealed by genomic
characterization of breast-cancer-derived xenografts. Cell Rep. 4, 1116–1130
(2013).

12. Thompson, A. et al. Tandem mass tags: a novel quantification strategy for
comparative analysis of complex protein mixtures by MS/MS. Anal. Chem. 75,
1895–1904 (2003).

13. Zecha, J. et al. TMT labeling for the masses: a robust and cost-efficient, in-
solution labeling approach. Mol. Cell Proteomics 18, 1468–1478 (2019).

14. Zhao, X. et al. Quantitative proteomic analysis of optimal cutting temperature
(OCT) embedded core-needle biopsy of lung cancer. J. Am. Soc. Mass
Spectrom. 28, 2078–2089 (2017).

15. Krug, K. et al. A curated resource for phosphosite-specific signature analysis.
Mol. Cell Proteomics 18, 576–593 (2018).

16. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based
approach for interpreting genome-wide expression profiles. Proc. Natl Acad.
Sci. USA 102, 15545–15550 (2005).

17. McShane, L. M. et al. REporting recommendations for tumour MARKer
prognostic studies (REMARK). Eur. J. Cancer 41, 1690–1696 (2005).

18. Zhang, H. et al. Integrated proteogenomic characterization of human high-
grade serous ovarian cancer. Cell 166, 755–765 (2016).

19. Cancer Genome Atlas N. Comprehensive molecular portraits of human breast
tumours. Nature 490, 61–70 (2012).

20. Ferrari, A. et al. A whole-genome sequence and transcriptome perspective on
HER2-positive breast cancers. Nat. Commun. 7, 12222 (2016).

21. Wang, J. et al. Proteome profiling outperforms transcriptome profiling for
coexpression based gene function prediction. Mol. Cell Proteomics 16,
121–134 (2017).

22. Roskoski, R. Jr The ErbB/HER family of protein-tyrosine kinases and cancer.
Pharm. Res 79, 34–74 (2014).

23. Hsu, J. L. & Hung, M. C. The role of HER2, EGFR, and other receptor tyrosine
kinases in breast cancer. Cancer Metastasis Rev. 35, 575–588 (2016).

24. Ritchie, M. E. et al. limma powers differential expression analyses for RNA-
sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

25. Dankort, D. et al. Grb2 and Shc adapter proteins play distinct roles in Neu
(ErbB-2)-induced mammary tumorigenesis: implications for human breast
cancer. Mol. Cell Biol. 21, 1540–1551 (2001).

26. D’Arcy, C. & Quinn, C. M. Apocrine lesions of the breast: part 2 of a two-part
review. Invasive apocrine carcinoma, the molecular apocrine signature and
utility of immunohistochemistry in the diagnosis of apocrine lesions of the
breast. J. Clin. Pathol. 72, 7–11 (2019).

27. Stemke-Hale, K. et al. An integrative genomic and proteomic analysis of
PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer Res. 68,
6084–6091 (2008).

28. Farahmand, L., Merikhian, P., Jalili, N., Darvishi, B. & Majidzadeh-A, K.
Significant role of MUC1 in development of resistance to currently existing
anti-cancer therapeutic agents. Curr. Cancer Drug Targets 18, 737–748 (2018).

29. Namba, M. et al. Anti-KL-6/MUC1 monoclonal antibody reverses resistance
to trastuzumab-mediated antibody-dependent cell-mediated cytotoxicity by
capping MUC1. Cancer Lett. 442, 31–39 (2019).

30. de Boer, H. R. et al. Quantitative proteomics analysis identifies MUC1 as an
effect sensor of EGFR inhibition. Oncogene 38, 1477–1488 (2019).

31. Carraway, K. L. et al. Muc4/sialomucin complex in the mammary gland and
breast cancer. J. Mammary Gland Biol. Neoplasia 6, 323–337 (2001).

32. Nagy, P. et al. Decreased accessibility and lack of activation of ErbB2 in JIMT-
1, a herceptin-resistant, MUC4-expressing breast cancer cell line. Cancer Res.
65, 473–482 (2005).

33. Mercogliano, M. F. et al. TNFalpha-induced mucin 4 expression elicits
trastuzumab resistance in HER2-positive breast cancer. Clin. Cancer Res. 23,
636–648 (2017).

34. Dazert, E. et al. Quantitative proteomics and phosphoproteomics on serial
tumor biopsies from a sorafenib-treated HCC patient. Proc. Natl Acad. Sci.
USA 113, 1381–1386 (2016).

35. Guo, T. et al. Rapid mass spectrometric conversion of tissue biopsy samples
into permanent quantitative digital proteome maps. Nat. Med. 21, 407–413
(2015).

36. Akiyama, T. et al. The transforming potential of the c-erbB-2 protein is
regulated by its autophosphorylation at the carboxyl-terminal domain. Mol.
Cell Biol. 11, 833–842 (1991).

37. Chen, C. H. et al. MEK inhibitors induce Akt activation and drug resistance by
suppressing negative feedback ERK-mediated HER2 phosphorylation at
Thr701. Mol. Oncol. 11, 1273–1287 (2017).

38. Loi, S. et al. Effects of estrogen receptor and human epidermal growth factor
receptor-2 levels on the efficacy of trastuzumab: a secondary analysis of the
HERA trial. JAMA Oncol. 2, 1040–1047 (2016).

39. Gordon, M. A. et al. Synergy between androgen receptor antagonism and
inhibition of mTOR and HER2 in breast cancer. Mol. Cancer Ther. 16,
1389–1400 (2017).

40. Raina, D. et al. Targeting the MUC1-C oncoprotein downregulates HER2
activation and abrogates trastuzumab resistance in breast cancer cells.
Oncogene 33, 3422–3431 (2014).

41. Andre, F. et al. Everolimus for women with trastuzumab-resistant, HER2-
positive, advanced breast cancer (BOLERO-3): a randomised, double-blind,
placebo-controlled phase 3 trial. Lancet Oncol. 15, 580–591 (2014).

42. Schmid, P. et al. Atezolizumab and nab-paclitaxel in advanced Triple-negative
breast cancer. N. Engl. J. Med. 379, 2108–2121 (2018).

43. Caldwell, C. Jr et al. Identification and validation of a PD-L1 binding peptide
for determination of PDL1 expression in tumors. Sci. Rep. 7, 13682 (2017).

44. Hebert, A. S. et al. Comprehensive single-shot proteomics with FAIMS on a
hybrid orbitrap mass spectrometer. Anal. Chem. 90, 9529–9537 (2018).

45. Pfammatter, S., Bonneil, E., McManus, F. P. & Thibault, P. Accurate
quantitative proteomic analyses using metabolic labeling and high field
asymmetric waveform ion mobility spectrometry (FAIMS). J. Proteome Res.
18, 2129–2138 (2019).

46. Schweppe, D. K. et al. Characterization and optimization of multiplexed
quantitative analyses using high-field asymmetric-waveform ion mobility
mass spectrometry. Anal. Chem. 91, 4010–4016 (2019).

47. Kuilman, T. et al. CopywriteR: DNA copy number detection from off-target
sequence data. Genome Biol. 16, 49 (2015).

48. Mermel, C. H. et al. GISTIC2.0 facilitates sensitive and confident localization
of the targets of focal somatic copy-number alteration in human cancers.
Genome Biol. 12, R41 (2011).

49. Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq
data with or without a reference genome. BMC Bioinformatics 12, 323 (2011).

50. Yoshihara, K. et al. Inferring tumour purity and stromal and immune cell
admixture from expression data. Nat. Commun. 4, 2612 (2013).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-14381-2 ARTICLE

NATURE COMMUNICATIONS |          (2020) 11:532 | https://doi.org/10.1038/s41467-020-14381-2 |www.nature.com/naturecommunications 15

https://CRAN.R-project.org/package=gplots
https://github.com/cmap/morpheus.R
https://github.com/cmap/morpheus.R
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001907.v1.p1
https://cptac-data-portal.georgetown.edu/cptac/s/S051
www.nature.com/naturecommunications
www.nature.com/naturecommunications


51. Newman, A. M. et al. Robust enumeration of cell subsets from tissue
expression profiles. Nat. Methods 12, 453–457 (2015).

52. Aran, D., Hu, Z. & Butte, A. J. xCell: digitally portraying the tissue cellular
heterogeneity landscape. Genome Biol. 18, 220 (2017).

Acknowledgements
This work was done in collaboration with the U.S. National Cancer Institute’s Clinical
Proteomic Tumor Analysis Consortium (CPTAC) and supported by grants NIH/NCI
U24-CA210986 (to S.A.C. and M.A.G.), NIH/NCI U01 CA214125 (to S.A.C. and M.J.
E.), NIH/NCI U24CA210979 (to D.R.M.), NIH/NCI U24 CA210954 (to B.Z.), NIH/
NCI U10 CA180860 (to D.M. and M.J.E.) and NIH/NCI U54CA233223 (M.J.E.).
Tissue acquisition was partly supported by the Breast Cancer Research Foundation
(BCRF) grant to M.J.E. M.J.E. was also supported by Cancer Prevention & Research
Institutes of Texas Scholar (CPRIT) established investigator recruitment award CPRIT
RR140033. M.J.E. is a Susan G. Komen Scholar and McNair Medical Foundation
Fellow and B.Z. is a Cancer Prevention & Research Institutes of Texas Scholar in
Cancer Research (CPRIT RR160027) and McNair Medical Institute Scholar. The
authors would like to thank Broad Genomics platform for their assistance with
genomic sequencing, Shayan Avanessian and Michael Burgess for technical support
and Rena Mao for help with immunohistochemistry. We also thank the Alvin J.
Siteman Cancer Center at Washington University School of Medicine and Barnes-
Jewish Hospital in St. Louis, MO. and the Institute of Clinical and Translational
Sciences (ICTS) at Washington University in St. Louis, for the use of the Tissue
Procurement Core, which provided clinical cores. The Siteman Cancer Center is
supported in part by an NCI Cancer Center Support Grant #P30 CA091842 and the
ICTS is funded by the National Institutes of Health’s NCATS Clinical and Transla-
tional Science Award (CTSA) program grant #UL1 TR002345. All subjects provided
written consent to research according to a protocol approved by human subjects
research boards at the institutions where the patients were accrued. Animal research
was conducted under a Protocol approved and monitored by the Baylor College of
Medicine Animal Use and Care Committee. This study was also approved by an
institutional review board committee at Broad Institute, Baylor School of Medicine
and University of Washington at St. Louis, and the NSABP Foundation. Inc. All
patients provided consent for proteogenomics analyses.

Author contributions
Conceptualization—S.S., K.H., M.A.G., S.A.C. and M.J.E.; Clinical trial and sample col-
lection—D.M., M.W., C.M., F.O.A., M.R., J.H., S.J. and M.J.E.; Histopathology—G.M.;
Data generation and experimentation—S.S., B.K., K.H., P.S. and A.G.; Lead data analysis
—S.S., E.J. and M.E.J.; Data analysis and interpretation—S.S., E.J., K.K., B.K., A.B.S., D.C.,
M.A., C.H., N.N., Y.D., B.W., S.V., R.S., A.M., T.H., K.C., D.R.M., C.P., G.M., B.Z., D.R.
M., M.A.G., S.A.C. and M.J.E.; Intellectual contribution—All authors; Manuscript
drafting—S.S., E.J., M.A.G., S.A.C. and M.E.J.; Manuscript editing—All authors; Funding
acquisition—B.Z., D.M., M.A.G., S.A.C. and M.E.J.

Competing interests
M.J.E. reports Ownership and Royalties associated with Bioclassifier LLC though sales by
Nanostring LLC for the Prosigna breast cancer prognostic test. He also reports Ad Hoc
consulting for AstraZenica, Novartis, Sermonix, Abbvie, Pfizer. Foluso Ademuyiwa
reports institutional research grants from Seattle Genetics, Abbvie, Pfizer, Immunome-
dics, Neoimmunetech, RNA diagnostics, polyphor and consulting income from immu-
nomedics, Astra Zeneca, Eisai, Best doctors, Advanced Medical. D.M. reports speaking
and consulting income from Clovis and AstraZeneca. C.M. reports research funding
from Puma Biotechnology, Pfizer and Eisai and consulting fees from Novartis, Pfizer and
Eli Lilly. C.P. reports ownership and royalties associated with Bioclassifier LLC though
sales by Nanostring LLC for the Prosigna breast cancer prognostic test. M.R. reports
consulting income from Genentech/Roche, Daiichi, Macrogenics and Novartis. Reseach
Funding from GSK and Pfizer. R.S. reports institutional research grants from AstraZe-
neca, GlaxoSmithKline, Gilead Sciences, and PUMA Biotechnology. She also reports a
previous Ad Hoc consulting for Eli Lilly and current consulting/advisory income from
Macrogenics. B.Z. reports research funding from Bristol-Myers Squibb. The remaining
authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-
020-14381-2.

Correspondence and requests for materials should be addressed to S.S., S.A.C. or M.J.E.

Peer review information Nature Communications thanks the anonymous reviewers for
their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2020

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-14381-2

16 NATURE COMMUNICATIONS |          (2020) 11:532 | https://doi.org/10.1038/s41467-020-14381-2 | www.nature.com/naturecommunications

https://www.ncbi.nlm.nih.gov/nuccore/CA210986
https://www.ncbi.nlm.nih.gov/nuccore/CA214125
https://www.ncbi.nlm.nih.gov/nuccore/CA210954
https://www.ncbi.nlm.nih.gov/nuccore/CA180860
https://www.ncbi.nlm.nih.gov/nuccore/CA091842
https://doi.org/10.1038/s41467-020-14381-2
https://doi.org/10.1038/s41467-020-14381-2
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Microscaled proteogenomic methods for�precision�oncology
	Results
	Biopsy Trifecta Extraction protocol
	Development and evaluation of a microscaled proteomics protocol
	Microscaled proteogenomic analyses applied to clinical cores
	Proteogenomic analysis of the ERBB2 locus
	Phosphoproteomic analysis of acute on-treatment samples
	Exploration of response features in individual non-pCR cases
	Candidate resistance mechanisms and treatment alternatives

	Discussion
	Methods
	Patient-derived xenografts and drug treatment
	DP1 Clinical Data
	Biopsy Trifecta Extraction embedding and sectioning
	Immunohistochemistry
	BioTExt denatured protein extraction
	BioTExt DNA extraction
	BioTExt RNA extraction
	BioTExt native protein extraction
	Genomic data generation and QC analysis
	Identification of mutations by whole exome sequencing
	Analysis of copy number alterations
	RNA-sequencing data generation and analysis
	Experimental design for MiProt
	Proteomic sample preparation for MiProt analysis
	Basic reverse fractionation and phosphoenrichment
	Proteomic data acquisition and processing
	Parallel reaction monitoring
	Network-based gene function prediction
	Outlier analysis
	Differential analysis using limma
	Geneset enrichment and PTM-signature enrichment analyses
	Pubmed crawling
	Additional statistical analyses and R code
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




