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Purpose: The expression of human epidermal growth factor receptor 2 (HER2) in breast
cancer is critical in the treatment with targeted therapy. A 3-block-DenseNet-based deep
learning model was developed to predict the expression of HER2 in breast cancer by
ultrasound images.

Methods: The data from 144 breast cancer patients with preoperative ultrasound images
and clinical information were retrospectively collected from the Shandong Province Tumor
Hospital. An end-to-end 3-block-DenseNet deep learning classifier was built to predict the
expression of human epidermal growth factor receptor 2 by ultrasound images. The
patients were randomly divided into a training (n = 108) and a validation set (n = 36).

Results: Our proposed deep learning model achieved an encouraging predictive
performance in the training set (accuracy = 85.79%, AUC = 0.87) and the validation set
(accuracy = 80.56%, AUC = 0.84). The effectiveness of our model significantly exceeded
the clinical model and the radiomics model. The score of the proposed model showed
significant differences between HER2-positive and -negative expression (p < 0.001).

Conclusions: These results demonstrate that ultrasound images are predictive of HER2
expression through a deep learning classifier. Our method provides a non-invasive,
simple, and feasible method for the prediction of HER2 expression without the manual
delineation of the regions of interest (ROI). The performance of our deep learning model
significantly exceeded the traditional texture analysis based on the radiomics model.

Keywords: breast cancer, ultrasound, deep learning, DenseNet, human epidermal growth factor receptor 2
INTRODUCTION

Human epidermal growth factor receptor 2 (HER2) is an important biomarker and a target in the
therapy used in approximately 30% of breast cancer patients (1, 2). Although HER2-enriched cancers
may have a worse prognosis, they can be effectively treated with therapies targeting HER2 protein,
such as Herceptin (chemical name: trastuzumab), Perjeta (chemical name: pertuzumab), and Kadcyla
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(chemical name: T-DM1 or ado-trastuzumab emtansine) (3).
Breast cancer molecular subtypes are categorized in clinical
practice by immunohistochemical markers.

The recent literature shows that radiomics features extracted
from medical images may predict patient outcomes (4–6). Breast
cancer diagnosis in clinical practice is performed using a type of
radiation-free medical imaging approach, and ultrasound imaging
plays a significant role (7–10). The association of peritumoral
radiomics features extracted from magnetic resonance imaging
(MRI) and the expression of HER2 was established (11).

In recent years, besides the development of compressed
sensing (12, 13), wavelet transform (14), and dictionary learning
techniques (15–17), deep learning approaches have become
popular in the field of medical image processing with the
development of optimization techniques and the improvement in
computational devices (18). The deep learning method-based
classification has a positive impact in precision medicine, since it
can improve the effectiveness of computer-assisted clinical and
radiological decision (19). Existing literature describes the use of the
deep learning method to predict medical targets, such as EGFR
mutation status in lung cancer (20), and recurrence in high-grade
serous ovarian cancer (21, 22).

Deep learning automatically generates the representations
that are expressed in terms of other, simpler representations
through gradient descent and back-propagation. The abstract
mapping from the raw data to the target label is built as a training
result (23). DenseNets developed for image tasks have several
advantages: avoid the vanishing-gradient, reuse features, and
reduce the number of parameters (24). DenseNet (24) exceeds
AlexNet (25), GoogLeNet (26), VGG (27), and ResNet (28) in the
ImageNet classification task.

In this study, a dense-block-based deep learning model was
developed to predict HER2 expression based on preoperative
ultrasound images. This proposed method like other supervised
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deep learning models is an end-to-end workflow. The model
requires only a rectangle region of the tumor without the precise
delineation of the tumor boundary or human-defined features,
while conventional radiomics methods depend on feature
engineering. The interobserver error can be reduced and the time
for manual segmentation can be saved through our method. The
proposed deep learning model can automatically learn HER2
expression features from ultrasound images through back-
propagation and optimization algorithm (23). An ultrasound
image dataset collected from the Shandong Cancer Hospital and
Institute was provided to train and evaluate our deep learningmodel.
MATERIAL AND METHODS

This work used a DenseNet-based deep learning model to predict
breast cancer molecular subtypes from the ultrasound images.
The workflow is shown in Figure 1.

Patients
This retrospective study was approved by the ethics review board.
Preoperative ultrasound images of 144 patients were collect from
the Shandong Cancer Hospital and Institute. The collected
ultrasound images were obtained by an experienced radiologist
using a broadband 42–46-Hz transducer (Philips Healthcare
System, Amsterdam, Netherlands). Most of the images were
cross-section images, the remaining were longitudinal sections.
For consistency, only cross-section ultrasound images were used.
The whole dataset was randomly divided into a training set and a
validation set through the hold-out method. The training set and
the validation set were mutually exclusive.

In clinical practice, the molecular subtypes can suggest candidate
drugs for the treatmentof thesepatients (29). Immunohistochemistry
(IHC) is the most common clinical approach for immunostaining.
FIGURE 1 | Overall structure of the developed DenseNet-based deep learning classifier. Being fed a tumor image, the deep learning model predicts the probability
of the expression of HER2.
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Since IHC can accurately identify the molecular subtypes of breast
cancer by high specificity, in this work, the molecular subtype were
identified by IHC. The resulting score of 0, 1+, 2+, and 3+ in the IHC
staining represented the amount of HER2 protein on the surface of
the cells in a breast cancer tissue sample. The score 0 or 1+ indicate
“HER2 negative.” The score 2+ is called “borderline.” The score 3+
indicates “HER2 positive.” If the result of IHC is uncertain, the
fluorescence in situ hybridization (FISH) was carried out.

Our inclusion criteria of the data were as follows: (1)
pathologically confirmed breast cancer; (2) available
preoperative ultrasound image data; (3) pathological
IHC examination of tumor specimens; and (4) no history
of preoperative therapy. Our exclusion criteria were as
follows: (1) ultrasound images were too ambiguous to be
analyzed and (2) invasive biopsy was performed before the
ultrasound examination.

A rectangle region of interest (ROI) containing the entire
tumor was manually selected by radiologists. The ROI was
enough due to the strong capability of the information
extraction of the deep learning model. Consequently, the
precise drawing of the tumor border was not necessary.

Development of the Deep Learning Model
In comparison with previous popular network architectures,
DenseNets leverage shortcut connections enhance the
information flow to provide better effectiveness. The shortcut
connection can be defined as follows:

xk = Hk(½x0,  x1,…,  xk−1�) (1)
where [x0, x1,…, xk−1] refers to the concatenation of the deduced
feature maps in the kth layers (24).

Before training the network, several data preprocessing
procedures were carried out: ROI selection, image cropping,
and image resizing. In each ultrasound image, a rectangle region
containing the whole tumor and the tumor borderline was
selected. Although tumors have different sizes, all ROI
including tumors were scaled to the same size (64 × 64 pixels)
by bilinear interpolation before being fed into the network.
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The structure of themodel was designed in an attempt to achieve
better results. Our proposed network was composed of three dense
blocks. Two types of dense block were present among these three
dense blocks (see Figure 1) in our network. Block type 1 contained 4
layers, while block type 2 contained 32 layers. Both the two types of
dense block employed shortcut connections from each layer to all
subsequent layers. The details of the two types of dense blocks are
shown in Figure 1. The detailed structure of the entire network is
indicated in Supplementary Table 1.

The deep learning model was implemented based on the
TensorFlow (30) framework and Python 3.5 (31). The trained
model gradually becomes stable as the batch size increases, resulting
in less overfitting. The weighting coefficient for the classification was
adjusted for the imbalanceof theclasses.Weightingcross-entropywas
used as the loss function in our implementation. This approach could
help us avoid downsampling or upsampling of the original data; thus,
our data distribution was close to the real clinical data. The weight
coefficient was tuned, and then a series of experiments were
performed. The best configuration was related to the label
distribution of the training data. The detailed parameter setting for
training the model is indicated in Supplementary Table 2.

Visual Analysis of the Model
The shallow convolutional layer learned low-level simple features
such as the horizontal and diagonal edges. A deeper convolutional
layer learned more complex features such as tumor shape. The
features learned by the low-level layers were intuitive, while the
learned features becamemore abstract with the layers deepening and
could gradually be related to the molecular subtypes.

The class activation map method was used to generate an
attention map of the trained model for visualization (32, 33).
This method helped to visualize and highlight the discriminative
image parts detected by the feature extractor, which contributed
to the predicted class scores on any given image. The examples of
attention map are shown in Figure 2. The positive filter tended
to focus on the boundary of the tumor or the high echo region. In
the HER2 case, the positive filter indicated the HER2+ category,
FIGURE 2 | Class activation heat map: the attention map of the trained model for predicting HER2 expression.
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while the negative filter corresponded to the HER2- category.
The positive filter needed to collect more information from a
larger area to make a decision than the negative filter.

Statistical Analysis
Statistical analysis was performed using a Python language-based
toolkit including SciPy (34), scikit-learn (35), and WORC
packages. The Mann–Whitney U-test (36) was used to
compare the age difference, while a chi-square test (37) was
used to compare the difference in other factors. The DeLong test
was used to evaluate the difference of the receiver operating
characteristic (ROC) curves among different models. A p-value <
0.05 was considered statistically significant.
RESULTS

Clinical Characteristics of the Patients
The clinical characteristics of the patients are listed in Table 1. No
significant difference was found between the training and
validation cohorts in terms of age, TNM stages, and BI-RADS.
These clinical characteristics were also used to build a clinical
model for the comparison with the proposed deep learning model.

Prediction Performance of the Proposed
Deep Learning Model
A 3-dense-block-based deep learning model using preoperative
ultrasound images was proposed in this study to predict HER2
expression in patients with breast cancer. Our deep learningmodel
showed promising results of accurate predictions. The DL model
Frontiers in Oncology | www.frontiersin.org 4
achieved anAUCof 0.87 in the training cohort (accuracy = 85.19%,
sensitivity = 75.53%, specificity = 90.54%, PPV = 78.12%, NPV =
88.16%) and AUC of 0.84 in the validation cohort (accuracy =
80.56%, sensitivity = 72.73%, specificity = 84.00%, PPV = 66.67%,
NPV= 87.5%). The result of the experiment allowed us to conclude
that the performance of the deep learning model significantly
exceeded the traditional radiomics model. Moreover, the deep
learning score between HER2+ and HER2- type groups in the
training cohort andvalidationcohortwas significantlydifferent (p<
0.01; Figure 3). A radiomicsmodel was also built for comparison to
predict the Luminal type. The PyRadiomics toolkit was used to
extract image features, and then six features were selected by the
recursive feature elimination. Finally, a random forest including 90
trees was built in the radiomicsmodel for prediction.Deep learning
features were extracted from the last convolutional layer (global
average pool) for cluster analysis (see Figure 4). The clustering
figure suggested that the deep learning features have different
responses to positive and negative cases.

Comparison Between the Deep Learning
Model and Other Methods
A clinical model and a radiomics model were built as a
comparison to the proposed deep learning model. The clinical
model considered age, stage, and BI-RADS as features and
employed a support vector machine as the classifier. In the
radiomics model, 961 features were extracted through the
PyRadiomics toolkit. A random forest classifier was built for
the prediction of HER2 expression in the radiomics model.

The quantitative effectiveness is shown in Table 2, and the
ROC curves are shown in Figure 5, which suggested that our
TABLE 1 | Clinical characteristics of patients in the primary and validation cohorts.

Factors Total Testing cohort Training cohort p-value

Subjects n 144 108 36
Age (years) 53.5 ± 10.6 40 ± 11.3 49 ± 7 0.535
T stage
T1 55 47 (44.1) 8 (22.2)
T2 82 54 (50) 28 (77.8) 0.361
T3 4 4 (2.9) 0 (0)
T4 3 3 (2.8) 0 (0)

N stage
N1 77 63 (57.9) 14 (38.4)
N2 41 28 (26.3) 13 (38.3) 0.236
N3 23 17 (15.8) 6 (15.4)

M stage
M0 138 105 (97.3) 33 (91.0)
M1 6 3 (2.6) 3 (9.0) 0.337

Total stage
I 44 31 (29.6) 11 (30.0)
II 70 52 (48.6) 18 (50.0) 0.347
III 32 25 (22.9) 7 (20.0)
IV 1 1 (0.9) 0 (0)

BI-RADS
III 11 (7.6) 7 (6.5) 4 (11.1)
IV 100 (69.4) 79 (73.2) 21 (58.3) 0.718
V 33 (22.0) 22 (20.3) 11 (30.6)
February 2022 | Volume 12 | Article
(1) Data are presented as mean ± SD, or n (%) unless otherwise stated.
(2) The Mann–Whitney U-test was used to compare the age difference. The chi-square test was used to compare the difference in other clinical factors.
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proposed deep learning model significantly exceeded the clinical
model (AUC = 0.55, accuracy = 68.52%, sensitivity = 52.94%,
specificity = 75.68% in the training set; AUC = 0.51, accuracy =
63.89%, sensitivity = 54.55%, specificity = 68.02% in the testing set;
p < 0.05) and the radiomics model (AUC = 0.78, accuracy =
71.29%, sensitivity = 55.88%, specificity = 78.38% in the training
set; AUC = 0.74, accuracy = 72.22%, sensitivity = 72.72%,
specificity = 72.00% in the testing set; p < 0.05). The confusion
matrix shown in Figure 6 reveals that the deep learning model
achieved a lower confusion degree in comparison with the clinical
model and radiomics model.
DISCUSSION

This work proposed a DenseNet-based deep learning model to
predict HER2 expression in patients with breast cancer
Frontiers in Oncology | www.frontiersin.org 5
through preoperative non-invasive ultrasound images. The
deep learning model was trained in the training cohort,
which included 108 patients and was validated in the
validated cohort, which included 36 patients. The proposed
model was highly effective in the training cohort (accuracy =
85.79%, AUC = 0.87) and the validation cohort (accuracy =
80.56%, AUC = 0.84), exceeding the clinical model and
radiomics model. The related tumor area representing HER2
expression status could be obtained by our model using the
class activation map.

HER2 is a critical biomarker and its expression helps to
make personalized treatments for breast cancer patients.
Patients whose HER2 is positive should receive trastuzumab
(marketed as Herceptin) which is effective only in cancers
where HER2 is overexpressed (38). In clinical practice, IHC is
widely used to evaluate the expression of HER2. HER2
expression is positive when the result of IHC is 3+, while
FIGURE 4 | Cluster analysis of deep learning features.
FIGURE 3 | Deep learning model score HER2 classifier.
February 2022 | Volume 12 | Article 829041
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HER2 is negative when IHC is 0 or 1+. In 2+ cases by IHC,
fluorescence in situ hybridization (FISH) should be employed
to confirm the final expression of HER2 (39). However, the IHC
and FISH methods require an invasive approach to collect a
sample and they are time-consuming. Due to the possibility of
positional deviation, an invasive biopsy may fail, and wrong
results may be obtained. The prediction of HER2 through
preoperative ultrasound images using deep learning could
compensate for the above lack.
Frontiers in Oncology | www.frontiersin.org 6
Recently, the texture analysis-based radiomicsmethod has been
used for the diagnosis of the breast cancer (40). Before building a
predictive model, ROI must be delineated by radiologists, and then
texture features should be manually extracted. However, the
delineation of the tumor boundary influences the extracted
feature values. The deep learning model needs only an
approximate rectangle ROI of the tumors rather than the accurate
delineation of the boundaries compared to the conventional texture
analysis-based radiomics which requires feature engineering (41).
FIGURE 5 | The receiver operating characteristic curve (ROC) of the HER2 on the training set and the testing set.
A B C

FIGURE 6 | Confusion matrix: (A) clinical model; (B) radiomics model; (C) DL model.
TABLE 2 | Predictive performance of each model for HER2.

Prediction target AUC Accuracy Sensitivity % Specificity % PPV % NPV %

Clinical model training set 0.55 68.52% 52.94% 75.68% 50.01% 77.78
Clinical model validation set 0.51 63.89% 54.55% 68.02% 42.86% 77.27%
Radiomics model training set 0.78 71.29% 55.88% 78.38% 54.29% 79.45%
Radiomics model validation set 0.74 72.22% 72.72% 72.00% 53.33% 85.71%
Deep learning model training set 0.87 85.19% 73.53% 90.54% 78.12% 88.16%
Deep learning model validation set 0.84 80.56% 72.73% 84.00% 66.67% 87.5%
February 2022 |
 Volume 12 | Article
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Theproposeddeep learningmodelwith amulti-block structure and
shortcut connections extracts features from raw image pixels to
abstract maps without time-consuming handcrafted feature
engineering. The model takes raw ultrasound images as input and
then predicts HER2 expression.

Despite the promising effectiveness of the proposed deep
learning method, this study has some limitations. First, the
ultrasound images to build the model were collected from only
one manufacture (Philips). Ultrasound signals emitted from
different transducers produced by different manufacturers may
lead to distinct image features. Hence, building a more general
model should be considered in the future. Second, only one type
of ultrasound image was used to build the model. In the future,
the feature concatenation of convolutional operation in the
neural network should be explored to build a two-branch
model. Other types of images such as the color Doppler
ultrasound or mammography may be considered for the two-
modal model to increase the predictive performance. The
combination of the deep learning-based tumor auto-detection
and deep learning-based radiomics will be considered in the
future to obtain a complete clinical diagnostic software.
CONCLUSIONS

The above results demonstrate that features of pretreatment
ultrasound images are related to HER2 expression. Our
proposed deep learning model significantly exceeded the
traditional texture analysis-based radiomics model. Our
method without manual delineation of ROI is non-invasive,
simple, and feasible.
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