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Identification, cost evaluation, 
and prioritization of urban traffic 
congestions and their origin
Nimrod Serok1, Shlomo Havlin2 & Efrat Blumenfeld Lieberthal1*

The increasing urbanization in the last decades results in significant growth in urban traffic congestion 
around the world. This leads to enormous time people spent on roads and thus significant money 
waste and air pollution. Here, we present a novel methodology for identification, cost evaluation, 
and thus, prioritization of congestion origins, i.e., their bottlenecks. The presented work is based on 
network analysis of the entire road network from a global point of view. We identify and prioritize 
traffic bottlenecks based on big data of traffic speed retrieved in near-real-time. Our approach 
highlights the bottlenecks that have the most significant effect on the global urban traffic flow. 
We follow the evolution of every traffic congestion in the entire urban network and rank all the 
congestions, based on the cost they cause (in Vehicle Hours units). We show that the macro-stability 
that represents the seeming regularity of traffic load both in time and space, overshadows the 
existence of meso-dynamics, where the bottlenecks that create these congestions usually do not 
reappear on different days or hours. Thus, our method enables to identify in near-real-time both 
recurrent and nonrecurrent congestions and their sources.

The twenty-first century can be characterized as the century of the cities. Since 2008, more than 50% of the 
world’s population lives in urban areas. The increasing urbanization process (with urban population annual 
growth rate of about 1.8, based on the world bank estimations) is accompanied by the growing usage of vehicles, 
which leads to a significant increase in traffic congestion in cities around the world1–4. The price of congestion 
is the enormous time spent on roads5–8, as well as the increasing fuel consumption, air pollution, and Carbone 
Dioxide emission6–8. Current technological development gave hope that autonomous cars will solve congestion 
problems as they were expected to reduce the number of private cars by increasing car-sharing. Recent stud-
ies, however, suggest that this is not the case9–12. There exists extensive work in various disciplines, e.g. urban 
planning2, traffic13–15, complexity, and networks16–22 that aims at reducing traffic congestion generally, and in 
urban areas in particular.

The work on identifying traffic bottlenecks has been developed from studying freeway bottlenecks, through 
urban active bottlenecks, and lately, with the availability of big data—to near real-time identification of traffic 
bottlenecks. Many studies on freeway identification of traffic bottlenecks suggested evaluating traffic attributes 
such as flow, speed, or the differences between the travel duration in the road upstream and downstream23–26. 
These methods, however, cannot be applied directly to urban areas due to the different patterns of the road net-
work (e.g. freeways have no intersections of traffic lights) and the travel behavior on it. Hence, other methods 
were proposed to identify urban bottlenecks27–34. For example, Lee et al.27 implement a mining model which 
defined spatiotemporal traffic bottleneck (STB), and thereafter developed three methods to identify STBs in urban 
networks. Tao et al.29, used the Cell Transmission Model (CTM) theory, where the Average Journey Velocity 
was selected as the measurement of congestion. The availability of big data, retrieved from traffic flow sensors, 
intrigued new methodologies that use data-driven techniques to identify urban bottlenecks. These works propose 
new methodologies that may be developed into tools, and implemented in real traffic control systems to relieve 
congestion and enhance the network performance. Such works employed correlation tests and the implementa-
tion of a Dynamic Bayesian network to overcome the lack of data for the entire urban street network (e.g.,26,30–34). 
Ma et al.33 combined complex network theory with a user equilibrium model to analyze the evaluation process of 
traffic bottleneck. Chen et al.26 proposed a method to identify traffic bottlenecks by modeling causal relationships 
between traffic flow sensors located in urban areas. For that, they estimated transfer entropy among these sensors, 
and constructed causality graphs to identify traffic bottlenecks and discover congestion propagation patterns.
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Existing traffic–management solutions that optimize traffic lights address each intersection individually and 
use bottom-up solutions such as synchronization and slotting to mitigate local congestion. Currently, there is 
a lacuna in providing an approach that prioritizes specific bottlenecks over the others, in order to optimize the 
entire road network in near-real-time, as well as to provide a dynamic road pricing that charges each vehicle 
according to its unique effect on the entire system. As explained by Hamilton: “When a holistic view of traffic 
management is taken, individual junction efficiencies can suffer to improve the state of the network as a whole… 
A strategic view of the entire urban network, with improved detection and communication technologies, is 
required to enter the next evolution of urban traffic control”35. Recent work has tried to address the optimiza-
tion of traffic management solutions, for example, Backfrieder et al.36 developed a forecasting algorithm that 
identifies expected bottlenecks before a traffic jam emerges. It is based on origin–destination data of the vehicles 
and assumes utilization of vehicle-to-X communication for transmission of contemporary vehicle data such as 
route source and destination or current position, as well as for the provision of the routing advice for vehicles. 
Zhao et al.37 also focused on urban bottlenecks. They divided the urban road network into a uniform orthogo-
nal grid and identified sources of traffic jams in specific cells. Li et al.38 developed a method to identify traffic 
jams bottlenecks based on the percolation process while using big data, retrieved in real-time, of traffic speeds. 
They address the issue of how local traffic flows organize collectively into a global urban flow and refer to this 
process as "traffic percolation". Hamedmoghadam et al.39 studied the way heterogeneity of flow demand affects 
the network flow dynamics under congestion. They used a percolation approach to identify the bottlenecks with 
the highest impact on the network flows.

In this present work, we developed a methodology to follow in near-real-time and simultaneously the evolu-
tion of every traffic congestion in the entire urban network, and rank all the traffic congestions, based on their 
cost (in vehicle hours (VH) units). We find that non-recurrent traffic congestions dominate the urban traffic and 
therefore an efficient real-time identification of traffic congestions is critically needed. Our method is innovative 
as it uses a new strategy, which overcomes the challenges that the near-real-time identification problem poses. 
Specifically, our method is innovative in two main aspects: (1) It does not aim at predicting the location of future 
traffic bottlenecks but identifies them as they emerge. Thus, it allows to accurately follow simultaneously all bot-
tlenecks’ dynamics and evolution in near real-time even during intervention in the system, for example, by using 
an adaptive traffic light control system. Moreover, as our method is not based on the identification of historical 
patterns, it considers all types of bottlenecks—recurrent as well as non-recurrent; and (2) By identifying and 
prioritizing simultaneously all the bottlenecks in the network, at different times, it highlights which bottlenecks 
have the most significant effect on the urban traffic flow. These advantages can be implemented in planning 
transportation systems and reduce urban traffic congestion.

Similar to30,31,33,38,39 we address the traffic urban flow as a directed weighted network. We suggest to identify 
traffic bottlenecks based on the definition coined by40: “The main feature of a bottleneck is that its downstream 
is in free flow and its upstream is jammed”. Thus, our method is based on the idea that if a bottleneck causes its 
upstream to be congested, the bottleneck must have been congested prior to it. Hence, for the definition of a 
bottleneck, time is as important as space.

Results: Spatio‑temporal dynamics of traffic bottlenecks—macro 
and meso‑dynamics
We applied our method of identifying bottlenecks on three datasets of two urban areas (London, Tel Aviv, and the 
center of Tel Aviv—without the Ayalon Highway). We start by presenting the dynamics of the traffic bottlenecks, 
then demonstrate the importance of the global nature of the proposed method. We used data of near-real-time 
speeds to identify, at each time unit, the street segments that caused the traffic congestions (i.e. the traffic conges-
tion’s bottleneck) and the streets that were affected by them later, as a result of the spillover process to the traffic 
congestion’s upstream. Each street that becomes congested may affect other streets in its upstream (but not in 
its downstream), i.e. each road segment that acts as a bottleneck is linked to other congested streets that lead to 
it. This process creates a tree-shaped structure, where the bottleneck is regarded as its trunk.

To follow the spatio-temporal dynamics of the system, we combine all the different traffic congestions (repre-
sented as Jam Tree (JT)) with the same street acting as their trunk (source) throughout the entire examined week 
and refer to them as Repetitive Jam Trees (RJTs). The cumulative cost caused by an RJTs represents the sum of 
the cost of all the JTs they contain at a specific time window (e.g., day or week): TotalCostRJT =

∑

TotalCostJT . 
For elaboration on the method and the way we calculate these quantities see Section methods and materials.

To address the dynamics of bottlenecks we present the analysis through two forms of order: scaling char-
acteristics versus local meso dynamics. We found, that while the data correspond to scaling laws in a macro 
resolution41,42 when zooming into the spatio-temporal behavior of the bottlenecks and their trees, they vary both 
in their location and in the time they occur.

Macro‑stability.  Previous work found  universal laws in urban traffic congestion42–48. Some studies even 
identified a high degree of regularity in the measured speed of the street segments41,42. Others focused on the 
time evolution of urban congestion45,47, but not through the analysis of bottlenecks. At large scales, traffic dynam-
ics and congestions have been found predictable41,42 and their weights follow power-law distributions45,47. With 
this in mind, we analyzed the bottlenecks’ dynamic at the macro-scale to find if they present such regularities as 
well. We analyzed three temporal scales: the largest scale is a work week (that includes all the examined working 
days), the intermediate scale is a 24-h day, and the microscale is the different hours of the day.

Large scale—a 5‑day work‑week.   We explored the behavior of the traffic congestions of the different datasets 
throughout the entire work-week and examined several attributes of the systems: the duration of the traffic 
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congestions, their size (in terms of the number of road segments), and their cost (in VH units). Figure 1 shows 
that the distributions present similar behavior for all three datasets. For all datasets, the Probability density func-
tions (PDFs) present, well approximated, power-law distributions. This implies that despite the different infra-
structure and transportation facilities in these two cities, there may be common characteristics in London and 
Tel Aviv in terms of their traffic macro-dynamics. While these similarities concern the scaling of probabilities 
of having a bottleneck of a given size, they do not provide an answer to the question: “do the same bottlenecks 
repeat in time and space?” To try and answer this question, we analyzed the intermediate and short time scales 
as presented next.

Intermediate scale—Days.   We examined the PDF of Max.Cost(t)RJT for each dataset separately in each of the 
examined days (Fig. S1A–C) and found similar results. The data of London and Tel Aviv (including the Ayalon 
Highway) present a better fit to a power-law function than the data of Tel Aviv center (without the Ayalon high-
way). This may be, due to the fact, that the London dataset includes main roads (such as A501), which might 
have a similar effect on traffic dynamics as the Ayalon Highway. It is worth noting the resemblance between 
different days on each dataset.

Short scale—hours.   Lastly, we examined the dynamics of the RJTs in the different datasets and studied their 
behavior at different hours, days, and cities. By constraining the TotalCostRJT Eq. (4) to different time spans, 
we were able to evaluate their cost at different hours. For that, we sum the right-hand side of Eq. (4) between t1 
and t2, where t1 and t2 correspond to the earlier and later times that define the examined time window. All three 
datasets present PDFs that correspond to power-law distributions with exponents between 1.8 and 2.4, where the 
morning rush-hours present slightly higher values than the afternoon rush-hours in all these cases (Fig. S1D-F). 
While the Ayalon Highway introduces costs that reach 1,000 VH per hour in both morning and afternoon rush-
hours, in London the maximal cost per hour reaches 100 VH in the morning rush-hours, and in Tel Aviv Center, 
these values are even lower and reach 40VH per hour in the morning rush-hours.

We found that the characteristics of the macro-stability indeed align with previous findings, which may be 
explained by the fact that while different cities have different physical constraints, historical development, and 
socio-economic processes, urban road networks were developed based on similar principles, i.e., similar param-
eters of demand (urban travel) and supply (road infrastructure)4.

The results of the analysis of all these three temporal scales (large, intermediate, and short) show that the 
probability of having traffic congestion of a given cost is scale-free for all cities and in all time spans. Such PDFs 
can be useful for forecasting the existence of costly traffic congestion s (above a certain threshold) and the volume 
of their costs at different time scales. However, the values of these congestions (in VH units) and the exponents 
that govern their decrease with size, depend on spatio-temporal features and represent the different attributes of 
the different areas. These attributes can relate to the morphology of the street network45,47 or other factors such 
as different types of transportation methods available in each location, working hours norms, etc. Furthermore, 
while the distributions remain similar on different days in the same city, it is important to study, as we wish here, 
whether and how much the roads involved in the jam trees remain the same on different days. With this question 
in mind, we analyzed the meso-dynamics of the traffic networks.

Figure 1.   Analysis of the PDFs of the RJTs in London, Tel Aviv, and Tel Aviv Center (based on the data of all 
5 days). (A) PDF of average cost, Ave.CostRJT =

TotalCostRJT
N

 , where N represents the number of JTs in the SJT; 
(B) PDF of duration (in minutes).
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Meso‑dynamics.  While the bottlenecks cost appears at all the temporal scales in different time windows 
and the traffic load seems regular both in space and time, when zooming into the meso-dynamics of the traffic 
congestions, we unveil local characteristics that reflect shifts in the location of bottlenecks over time. These find-
ings reinforce the need to develop a new framework for urban transportation, that is based on big data.

We analyzed the repetition of bottlenecks on different days and found that most of the bottlenecks are irregu-
lar and the same bottlenecks usually do not repeat daily (Fig. 2A–C). In all three datasets, close to 60% of all bot-
tlenecks appear only in one day of the week. About 20% appear in two days and less than 10% of the bottlenecks 
with the same level of cost, appear in three days. Even when ignoring their cost levels (see Fig. S2), the number 
of bottlenecks that appear once or twice exceeds 60%. Thus, we see that most heavy traffic congestions do not 
repeat daily. Although in all three datasets the bottlenecks with the heaviest cost appear slightly more frequent 
(the percentage of bottlenecks with cost higher than 100 VH increases for bottlenecks that repeated in 4 or 5 of 
the days), there exist also many heavy bottlenecks that occurred only once or twice during the examined week. 
Thus, most of the bottlenecks are not predictable. These results also hold when assuming different thresholds for 
the bottlenecks’ TotalCostRJT (see Fig. S2). We also compared the above results to the analysis of the bottlenecks’ 
duration (in terms of hours) and found a similar behavior. i.e., bottlenecks that lasted longer tend to repeat 
slightly more frequently than the shorter ones (see Fig. S2). In other words, the heaviest bottlenecks (in terms of 
their duration and cost in VH units) are slightly more predictable than the short and less costly ones that occur 
on different days and locations. Nevertheless, as seen in Fig. 2, the number of bottlenecks that repeated 4–5 days 
is only 10–15% of all bottlenecks, whereas the heavy-loaded ones occupy less than 10% of them. These results 
are supported by the correlations between the occurrence of bottlenecks in space in time which show similar 
results (see Figs. S3 and S4 for elaboration).

We examined the variation of the TotalCost(t)RJT of the heaviest repeated bottlenecks on different days and 
at different hours and found that the hourly cost of these bottlenecks in all three datasets changes significantly 
on different days and hours in both size and rank (see Fig. 2D–F). These variations are more moderate in Lon-
don, where the top five heaviest bottlenecks remain at the highest ranks (even though their cost significantly 
changes). In Tel Aviv, the situation is similar in terms of ranks, but the costs vary more significantly. This may be 
explained by the impact of the Ayalon Highway on the system, as explained earlier. When excluding the Ayalon 
Highway, Tel Aviv Center presents instability in terms of its bottlenecks’ ranks and costs. This holds for all the 
three examined time spans (see Fig S5).

Figure 2.   Top: the repetition of RJTs in (A) London (B) Tel Aviv Center (C) Tel Aviv. The X-axis represents 
the TotalCostRJT of the bottlenecks and the Y-axis represents the percentage of the bottlenecks with different  
TotalCostRJT repeated during the measured week. Bottom: the changes in the average TotalCost(t)RJT (Eq. 4) 
per hour (in VH units) for the 10 heaviest bottlenecks in (D) London (E) Tel Aviv Center (F) Tel Aviv in 5 days, 
during �t = 4 h from t1 = 5 pm to t2 = 9 pm. These values have been obtained from Eq. 3 by summing the right-
hand side between t1 and t2.
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We also analyzed the cost caused by all JTs for different resolutions of measurement units T (see Materials 
and Methods section for elaboration). We found, for all 3 datasets, that when T increases (i.e. the resolution 
of the examination decreases) both the sum of the cost of all JTs and their variance decrease (see Fig. S6). This 
indicates that when increasing the time intervals between measurements, the data becomes flattened and impor-
tant information (in this case the cost caused by traffic congestion) is lost. This strengthens the importance of 
following traffic dynamics in fine time scales.

Next, we examined the dynamics of the bottlenecks that affected the jammed trees. For that, we analyzed 
(for each street that was part of any of the traffic congestions during our examination time window) the number 
of different bottlenecks it was connected to. Figure 3A–C shows for each of these streets (in all three datasets), 
the number of different bottlenecks they were connected to during the 5 days (x-axis), the median distance 
between these bottlenecks (y-axis), and their relative TotalCostRJT (colored symbols). These results show that 
congested streets are connected to a different number of bottlenecks (ranging between 1 and 22) regardless of 
their cost. However, the bottlenecks in London and Tel Aviv Center are located relatively in proximity to each 
other (their median distance is less than 1 KM) while the bottlenecks in Tel Aviv are spread over a wider area 
(up to 2.4 KM), which can be explained by the length of the Ayalon Highway (see above). This means, that while 
the traffic congestion can be associated with a specific area in the city, and even with some specific streets38,40, 
the location of the bottlenecks that causes the congestion changes constantly on different days and hours. This 
result suggests that constant, pre-defined solutions for traffic reduction cannot be the only solution to manage 
urban traffic congestion and strengthen the necessity of near real time analysis based on big data in order to 
improve urban traffic flow. Based on our proposed method, when a trunk is dissolved, the tree can continue to 
exist with another branch acting as its trunk. To further validate our results, we follow the distribution of the 
Max.Cost(t)RJT (maximal measured costs for Eq. 3) of each tree between all the branches that acted (at any time) 
as its trunk. Figure 3 (D-F) shows that in more than 80% of the cases where a tree has more than one trunk during 
its entire duration, there is a single dominant trunk that holds more than 80% of the tree CumulativeCost(t)JT 
(Eq. 3). In other words, in most cases, there is only a single trunk that is responsible for the JT. This analysis 

Figure 3.   Top: the streets that were included in any of the JT during the examined week. The X-axis represents 
the number of different bottlenecks each street was connected to, the Y-axis represents the median distance 
between these bottlenecks, and the colors represent the relative percentage TotalCostRJT (Eq. 4) of each street, 
in comparison to the other streets in the dataset. The control group is calculated by allocating a number of 
random bottlenecks to each street as the number of different bottlenecks it was connected to. (A) London (B) 
Tel Aviv Center (C) Tel Aviv. Bottom: the distribution of the frequency of the relative CumulativeCost(t)JT
(Eq. 3), i.e., for each tree, the value of the trunk with the highest CumulativeCost(t)JT , divided by the sum of the 
CumulativeCost(t)JT of all the branches that acted as trunks for this tree are presented for (D) London (E) Tel 
Aviv Center (F) Tel Aviv. The colors represent the level of costs of the JTs.
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denotes the trunks as having a unique role in the evolution of traffic congestions, and thus emphasizes the need 
to address causality between the trunks and their JTs. We also calculated the same frequencies for the duration 
of the different trunks and found similar results (see Fig. S7).

The importance of a global perspective of urban traffic bottlenecks.  We present HaShalom Inter-
change as an example of the significance of considering the entire road network simultaneously and not analyz-
ing traffic congestion at the local level. i.e., a single or a few adjacent junctions (see Fig. 4). This area connects 
several main roads as shown in Fig. 4. In our analysis, we focus on Ayalon South Highway (B, C, and E), Namir 
North (F), Kaplan West (G), Giv’at HaTahmoshet West (A), and HaSHalom West (D).

The analysis of the traffic congestion in this area is based on the real data, collected on March 21st, 2018, 
during the morning rush hours. When looking at the traffic congestion at 8:45 all the street segments (with the 
exception of E—Ayalon South) are congested. When analyzing the traffic congestion in this area locally, one can 
assume that road segment G (Kaplan West) may be the reason for the congestion that includes A, B, C, D, and 
I, as these roads connect to G. However, when analyzing the evolution of the JTs we found that G became con-
gested only at 8:00, while A and D were the first road segments to become congested at 6:45, followed by B, and 
C (both at 7:15). Road segment I was naturally not affected by A, but it also became congested at 6:45 (an hour 
and 15 min before G). Further investigation reveals that A was not congested due to the congestions in F or L as 
well, as these roads became congested only at 7:45 an hour and 15 min after A became congested (see Fig. S8).

When converting these data into CumulativeCost(t)JT (in VH units, Fig. S8), from the time each road became 
congested until 8:45 am, we found the cost of G was 2VH, while the costs of A and I were 23 VH and 157 VH, 
respectively. The costs of F and L were 25 VH and 26 VH, respectively. Looking at these costs at the time of the 
examination, one might assume it is more important to address the congestions in I, however, the cost of the 
JT with A acting as its bottleneck (i.e. A, B, C, and D) was much higher, that is 284 VH, suggesting it is more 
important to address the congestion in A first. In fact, B and C are two lanes of the Ayalon Highway that lead 
to the HaShalom interchange. Thus, it also makes sense that congestion that affects this major highway causes 
larger damage than local urban congestion and should be addressed with higher priority.

The above example demonstrates that by solving the traffic congestion based on the analysis of individual 
junctions, one can miss the real bottlenecks that have the most significant effect on the overall road network. 
Naturally, the ability to prioritize the impact of different JTs in the city is not limited only to JTs that reach the 
same junction but can account for all JTs located in different areas of the city as well.

Conclusions
We showed that although some universal power-laws distributions that appear daily, govern the macroscopic 
spatio-temporal behavior of sizes of traffic congestions, there are also unique behaviors that indicate that local 
attributes affect traffic dynamics as the same traffic bottlenecks usually do not reappear on different days. In 
other words, the macro-stability, presented by the scaling characteristics of the traffic bottlenecks that represent 
the seeming regularity of traffic load both in time and space, overshadows the existence of rich meso-dynamics, 
where the bottlenecks that create these JT loads, change significantly their location in time and space. This means 
that in order to manage traffic congestions in different locations and at different times and determine priorities 
of which ones should be addressed first, there is a need to implement unique solutions that track traffic and 
evaluate the relative effect of each bottleneck in real-time on the entire road network.

Urban traffic, like any other complex network, is composed of many elements and their interactions (e.g. 
street connectivity, land uses, public transportation, traffic light control system, etc.). Due to the numerous 

Figure 4.   HaShalom Interchange on March 21st, 2018 at 8:45 am. (A) Aerial photo of the roads; (B) topological 
representation of the roads network, where the nodes represent junctions (with or without traffic lights), the 
links represent the road segments, and the weight of the links represents their CumulativeCost(t)JT (in VH 
units) from the time they became congested until 8:45 am. The areal photo was obtained from the Tel Aviv 
municipality GIS website: (https://​gisn.​tel-​aviv.​gov.​il/​iview​2js4/​index.​aspx).

https://gisn.tel-aviv.gov.il/iview2js4/index.aspx
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elements that affect urban traffic, it is almost impossible to predict its behavior. Thus, any intervention in a traf-
fic light control system may lead to unexpected effects in other parts of the city, i.e. solving congestion in one 
location may divert the congestion to another place. This is one of the reasons for an urgent need of developing 
new, dynamic, real-time solutions that are based on big data that is retrieved, analyzed, and implemented in real 
systems in real-time (or near real-time). Such systems will keep adapting themselves based on the dynamics 
of the system, providing better solutions for improving urban traffic congestion. Such a dynamic optimization 
process is complicated and yet to be developed. This is due to the circular causality between the traffic lights and 
the actual traffic. However, in the era of the big-data revolution, it is only reasonable to assume that despite the 
computational challenges, such solutions could be developed. The proposed methodology here is a step toward 
such a goal, as it identifies simultaneously all traffic bottlenecks as soon as they emerge; it allows to accurately 
follow their propagation in near real-time even while intervening in the system, for example, by using an adaptive 
traffic light control system. Thus, our method can extend existing systems where big data are used to identify 
traffic congestions. Our methodology can assist in identifying and prioritizing the bottlenecks based on their 
cost (e.g., in human-hours units). This might require more accurate and detailed datasets, however, in the era 
of smartification of the cities, that can be obtained by IoT (Internet of Things) technologies (i.e., sensors) or 
ICT (Information and Communication Technologies, i.e., real-time navigation apps). By using such data, our 
framework could be used to develop new planning tools that allow increasing road supply by means of prior-
itizing the improvement of specific bottlenecks over the others. This can be done based on the bottlenecks’ cost 
(as shown in this work) or based on other considerations such as evacuation during extreme events, helping 
emergency vehicles reach their destination faster, etc. Additionally, such a system can help reduce the demand by 
means of a dynamic road-pricing tool that is based on the relative cost each bottleneck causes. As this method is 
based on real data, it will be able to constantly feedback itself and better control and mitigate traffic congestion. 
Implementation of this method may be a part of real-life systems, leading to a breakthrough in dealing with 
urban traffic around the world.

Materials and Methods
To identify traffic bottlenecks, we converted datasets of urban areas to dynamic, directed traffic networks where 
each node represents a junction, and each link represents a street segment between two junctions. The direction 
of the links represents the allowed traffic on that street segment, and the weight of the link at time segment t  , 
W(t) represents the temporal traffic relative speed, i.e. the ratio between the temporal speed and the speed at 
its maximal flow. We defined a street segment as currently congested if ( W(t)) < 1 (see Fig. S9 for elaboration). 
Next, we construct for a given time t  a new dynamic weighted network, where W ′(t) is the cumulative continu-
ous time each link has been considered as congested at t  (see Fig. 5) and used the following process to create 
tree-shaped clusters of congested links:

Figure 5.   Clusters of JTs. The numbers represent the number of measurements each street segment was 
congested. (A) All the colored streets are part of one JT where the red street represents its trunk: its duration 
(12 successive measurements that represent 3 h) is the longest, which indicates it was the first street with traffic 
load in this JT. (B) Two JTs (represented by red and blue colors). The red JT does not include the street that 
has been loaded for 2 measurements, as the time gap between this street and its adjacent one is larger than the 
pre-defined threshold θ (see the upper green circle). The blue JT cannot be considered as part of the red JT, as 
the duration of its trunk is longer than that of its adjacent street in the red JT (see the lower green circle). When 
a bottleneck is released but the JT that follows it remains congested, the next street segment with the longest 
duration becomes the new trunk of the JT and carries the cost of the remaining branches of the JT.
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1.	 At each time t  , we identify the links with the highest weight W ′ (i.e. that have been congested the longest 
time) and define them as potential trunks of a jam-tree (JT). Next, we identify the branches of the JT by 
adding links or other trunks, connected to each trunk, with W ′

≤ W ′

trunk . By doing so, we identify links that 
became congested no more than a predefined parameter θ , in this case—defined as 2 measurement units, 
after the trunk. The value of θ is only used to limit the connections of new branches to a JT; in other words, 
it reflects the maximal duration that a congested street segment is considered as the cause for the congestion 
in its upstream. High values of θ allow a street segment to connect to its downstream longer times after its 
downstream became congested. This leads to larger JTs on one hand but reduces the probability of causality 
on the other. In other words, in our analysis, if a street segment became congested no more than 30 min 
after its trunk we can assume that the traffic load in these links resulted from the trunk of the JT. To test this 
assumption, we compared the result of the analyses of the real data to those of a control random model. The 
results of this comparison present a qualitative difference, which strengthens our assumption of causality 
(see Fig. S10 for elaboration). By using this definition, we consider the street segment that acts as the trunk 
as a bottleneck of the JT. Note, that we chose θ = 2 as our datasets had 15 min time-intervals and thus, our 
analysis considered the macro-dynamics of urban traffic. For other datasets with higher resolution of shorter 
time intervals, different values of θ can be used.

2.	 We continue assigning connected links to these JTs in the same iterative process until no more connected 
links (roads) with W ′

≤ θ for the last added branches are found.
3.	 We start again at stage 1, but now we look for the link with the highest weight W ′ , that has not been assigned 

to an existing (JT).
4.	 We continue this process until there are no more congested links that are not assigned to any JTs.

The resulted clusters represent JTs and the time each of their links was loaded. Examples of JTs are shown 
in Fig. 5.

While some traffic congestions can last many hours, their economic cost might be marginal, if, for example, 
they occur in peripheral small streets. To assign prioritization for traffic congestions, we measure their cost in 
vehicle hours (VH). In order to calculate the cost at different times of the JTs and the links they include, we 
introduce the following formulas.

The cost of a link Cij(t) is calculated for every measurement unit − 15 min in this case, relative to its cost Uf  , 
free-flow speed. This measurement unit demonstrates the meso-dynamics of urban traffic. Indeed, using shorter 
periods of time will allow following the micro-dynamics of urban traffic. This cost represents the time it takes 
to cross a road (link) in comparison to the time it takes to cross this road in a maximal flow (calculated for each 
link), multiplied by the number of drivers who crossed the endpoint of this link at a specific time:

here distij is the length of the link in km, qij(t) is the current flow on the link, uij(t) is the current speed on the 
link, uqoij is the speed when the flow is optimal, T represents a measurement unit which corresponds to 15 min 
(in the present case) and lij is the number of lanes in the link (i.e. the number of lanes in each street segment of 
the JT).

The momentary cost of a JT represents the sum of the costs (Eq. 2) of all the links that are included in it at a 
specific measured time:

And the cumulative cost of a JT is the cost of the JT from the moment it was created until the time (t) which 
is calculated as:

Here, bij is a branch (i.e. link) in the JT and tI is the time each branch bij was a part of the JT (in 15 min units).
Figure 6 demonstrates some examples for different CumulativeCost(t)JT , based on real data for London 

and Tel Aviv.
Lastly, to follow the spatio-temporal dynamics of the system, we combine all the different JTs that had the 

same street as their trunk throughout the entire examined week and refer to them as Repetitive Jam Trees (RJT). 
The cumulative cost of the RJTs represents the sum of all the JTs they contain at a specific time window (e.g., 
day or week):

Equations (2)–(4) allow calculating not only the cost of each JT from the moment it became congested until 
it was dissolved but also its dynamics and temporal costs at different times (see Fig. 6).

Data.  The results of our framework and analysis are demonstrated for three urban areas: London center, Tel 
Aviv center (including the Ayalon highway–the main road that crosses the city from North to South), and Tel 

(1)Cij(t) = distij ∗

(

1

uij(t)
−

1

uqmax ij

)

∗
qij(t) ∗ lij

60
T

(2)MomentaryCost(t)JT =

n
∑

bij

(

Cij(t)
)

(3)CumulativeCost(t)JT =

∑

bij

(

∑t

tI≤t
Cij(tI )

)

(4)TotalCostRJT =

∑

TotalCostJT
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Aviv Center (without the Ayalon highway). These cases were chosen as they represent cities of different scales 
(London center is 2.5 times larger than Tel Aviv center); different public transportation systems and different 
regulations that influence the driving behavior; and the exclusion of the Ayalon highway from the data of Tel 
Aviv also allows us to explore the effect of a local highway on the local transportation characteristics.

We collected from Google Directions API the speeds of 8857 road sections in London center and 2,950 road 
sections in Tel Aviv (2324 of which are of Tel Aviv Center), every 15 min over a week’s time. The data for London 
center was collected between the dates 21-27/3/2018 and the data for Tel Aviv center has been collected between 
the dates 12-18/2/2017). We developed an algorithm that considers additional road segments (for which we did 
not have data) based on interpolating the data collected for their adjacent road segments and ended up with 
18,050 road sections in London, 5425 road sections in Tel Aviv, and 3871 road sections in Tel Aviv Center. For 
each case, we analyzed the data of 5 working days only (Mon-Fri in London and Sun-Thursday in Tel Aviv). This 
is because the results indicate that the dynamics of these systems are significantly different during the weekends.

Data availability
For contractual reasons, we cannot make the empirical data from Google Direction available. However, all data 
from our analysis are available at GitHub: https://​github.​com/​nimro​dSero​kTAU/​bottl​enecks-​prior​itiza​tion.

Code availability
The code of our analysis is also available at GitHub: https://​github.​com/​nimro​dSero​kTAU/​bottl​enecks-​prior​
itiza​tion.

Received: 2 March 2022; Accepted: 25 July 2022

Figure 6.   Graphical representation of the JTs: snapshots of JTs in (A, B) London center and (C, D) Tel Aviv 
and the CumulativeCost(t)JT of the entire congestion, associated to each bottleneck, during morning rush 
hours (up) and evening (bottom). While some traffic congestions appear in both morning and afternoon rush 
hours (e.g., Marylebone street in London, or the Ayalon Highway in Tel Aviv), Others are congested in only one 
of the rush hours. For example, Victoria Embankment road between Black friars Bridge and Waterloo Bridge 
(see black circle) is heavily congested only in the morning rush-hour snapshot; and Pinkas St. in Tel Aviv (see 
blue circle) is congested only in the evening rush hours snapshot). The maps were created using Snazzy Maps 
(https://​snazz​ymaps.​com/​help), Rhino5 https://​www.​rhino​3d.​com/​downl​oad/​archi​ve/​rhino/5/​latest/), and 
Grasshoper plugin (https://​www.​grass​hoppe​r3d.​com/​page/​downl​oad-1).

https://github.com/nimrodSerokTAU/bottlenecks-prioritization
https://github.com/nimrodSerokTAU/bottlenecks-prioritization
https://github.com/nimrodSerokTAU/bottlenecks-prioritization
https://snazzymaps.com/help
https://www.rhino3d.com/download/archive/rhino/5/latest/
https://www.grasshopper3d.com/page/download-1
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