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Abstract

Objective: We previously reported that genetic variants in SORCS1 increase the risk of AD, that over-expression of SorCS1
reduces c-secretase activity and Ab levels, and that SorCS1 suppression increases c-secretase processing of APP and Ab
levels. We now explored the effect of variation in SORCS1 on memory.

Methods: We explored associations between SORCS1-SNPs and memory retention in the NIA-LOAD case control dataset
(162 cases,670 controls) and a cohort of Caribbean Hispanics (549 cases,544 controls) using single marker and haplotype
analyses.

Results: Three SNPs in intron 1, were associated with memory retention in the NIA-LOAD dataset or the Caribbean Hispanic
dataset (rs10884402(A allele:b = 20.15,p = 0.008), rs7078098(C allele:b = 0.18,p = 0.007) and rs950809(C alle-
le:b= 0.17,p = 0.008)) and all three SNPs were significant in a meta-analysis of both datasets (0.002,p,0.03). The
corresponding A-T-T haplotype for these SNPs was associated with lower scores in both datasets (p = 0.02,p = 0.0009), and
the complementary G-C-C haplotype was associated with higher scores in NIA-LOAD (p = 0.02). These associations were
restricted to cases.

Conclusions: Variation in intron 1 in SORCS1 is associated with memory changes in AD.
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Introduction

The putative culprit in Alzheimer’s disease (AD) is the amyloid

b (Ab) protein. It is produced by b-secretase (BACE) cleavage of

the amyloid precursor protein (APP) at the N-terminus of the Ab
peptide followed by c-secretase cleavage of the membrane-bound

C-terminal APP fragment [1]. APP and the secretases are integral

transmembrane proteins, and are dynamically sorted into the

plasma membrane and the membranes of intracellular organelles

[2,3]. As a consequence, sorting mechanisms that cause APP and

the secretases to colocalize in the same cellular compartment are

expected to play important roles in the regulation of Ab
production.

We and several other groups have recently reported [4,5,6] that

variants in the sortilin-related VPS10 domain containing receptor

1 (SORCS1), which maps to chromosome 10q23–25, are associated

with AD. We also demonstrated that over expression of SorCS1

reduces c-secretase activity and Ab levels, and that suppression of

SorCS1 increases c-secretase processing of APP and the levels of

Ab. SORCS1 belongs to the mammalian Vps10p-domain sorting

receptor family, which is a group of five type I membrane

homologues (SORL1, Sortilin, SorCS1, SorCS2, and SorCS3)

[7,8,9,10]. The common characteristic of these receptors is an N-

terminal Vps10p domain, which either represents the only module

of the luminal/extracellular moiety or is combined with additional

domains. The individual receptors bind and internalize a variety of

ligands, such as neuropeptides and trophic factors, and Sortilin

and SorLA mediate trans-Golgi network-to-endosome sorting.

Their prominent neuronal expression, several of the identified

ligands, and recent results support the notion that members of this

receptor family have important functions in neurogenesis,

plasticity-related processes, and neuronal activity [11,12] but their

precise function remains elusive.

Based on these findings we hypothesized that genetic variants in

the 59 end in SORCS1 might be associated with changes in

memory performance, the cognitive domain predominately
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affected in AD. The goal of the present study was to investigate

whether or not genetic variation in SORCS1 was associated with

memory retention in two independent datasets that have sufficient

power to detect modest effect sizes.

Methods

Participants
Written informed consent was obtained from all subjects

included. Recruitment for the Caribbean Hispanic Study was

approved by the Institutional Review Board of the Columbia

University Medical Center. Recruitment for the NIALOAD Study

was approved by the relevant institutional review boards of the

participating centers (ie. the IRBs of Boston University, Columbia

University, Duke University, Indiana University, Massachusetts

General Hospital, Mayo Clinic, Mount Sinai School of Medicine,

Oregon Health & Science University, Rush University Medical

Center, University of Alabama at Birmingham, University of

California Los Angeles; University of Kentucky; University of

Pennsylvania; University of Pittsburgh; University of Southern

California; University of Texas Southwestern; University of

Washington; Washington University Medical Center; University

of Miami; Northwestern University; Emory University).The study

was conducted according to the principles expressed in the

Declaration of Helsinki.

The two datasets included a) 162 Caucasian cases and 670

controls from the NIA-LOAD study [13] and b) 549 cases and 544

controls from a Caribbean Hispanic dataset that have been

described in detail elsewhere [14]. The clinical characteristics of

these datasets are summarized in Table 1. The diagnoses of

‘probable’ or ‘possible’ AD were defined according to the National

Institute of Neurological and Communication Disorders and

Stroke–Alzheimer’s Disease and Related Disorders Association

(NINCDS-ADRDA) diagnosis criteria at clinics specializing in

memory disorders or in clinical investigations. Persons were

classified as ‘‘controls’’ when they were without cognitive

impairment or dementia at last visit. Informed consent was

obtained from all participants using procedures approved by

institutional review boards at each of the clinical research centers

collecting human subjects.

Cognitive assessments
For both studies, all participants underwent a standardized

neuropsychological test battery that examined multiple domains

[15]. In the Caribbean Hispanic Study, orientation was evaluated

using parts of the modified Mini-Mental State Examination [16].

Language was assessed using the Boston Naming Test [17], the

Controlled Word Association Test [18], category naming, and the

Complex Ideational Material and Phrase Repetition subtests from

the Boston Diagnostic Aphasia Evaluation [19]. Abstract Reason-

ing was evaluated using WAIS-R Similarities subtest [20], and the

non-verbal Identities and Oddities subtest of the Mattis Dementia

Rating Scale [21]. Visuospatial ability was examined using the

Rosen Drawing Test [22], and a matching version of the Benton

Visual Retention Test [23]. Memory was evaluated using the

multiple choice version of the Benton Visual Retention Test [23]

and the seven subtests of the Selective Reminding Test [24]: total

recall, long-term recall, long-term storage, continuous long-term

storage, words recalled on last trial, delayed recall, and delayed

recognition. This neuropsychological test battery has established

norms for the same community [25]. In the NIA-LOAD Study,

cognition was measured with a battery of 7 brief tests [26].

Working memory was assessed with Digit Span Forward [27],

Digit Span Backward [27], and Digit Ordering [28]. Two

measures of episodic memory were included: immediate and

delayed recall of story A from the Wechsler Memory Scale-

Revised [27]. Semantic memory was assessed by asking persons to

name members of two semantic categories (Animals, Vegetables)

in separate 1-min trials [26,28,29]. While all subjects recruited into

the NIA-LOAD study underwent standard neuropsychological

assessment that contributed to the diagnosis of AD, the

standardized neuropsychological test battery especially designed

for the NIA-LOAD study was integrated in the study at a later

stage (year 2004). Therefore only 832 subjects of the originally

recruited case-control sample (n = 1877) have standardized

neuropsychological data and contributed to the final analytic

NIA-LOAD sample included in the present analysis.

Genotyping
Both study sites provided the results from genotyping of SORCS1

SNPs that were part of its genome-wide studies described

previously [13,14]. For the NIA-LOAD study, SNPs were

genotyped using the Illumina Human610Quadv1_B BeadChips

(Illumina, San Diego, CA, USA). For the Caribbean Hispanic

study, SNPs were genotyped using the Illumina HumanHap 650Y

chip. Genotyping of APOE polymorphisms (based on SNPs rs7412

and rs429358) for all samples was performed at PreventionGe-

netics.

Statistical methods
First, for both datasets a memory savings score was calculated

by dividing Delayed Free Recall by Trial 6 Recall (Caribbean

Hispanic Study) or by Story (NIA-LOAD Study) multiplied by 100

and expressed as a percent. Using the means and standard

deviations from the control samples, we then transformed the

resulting savings scores into z-scores. Then, we restricted the

genotyping data to the SNPs that were overlapping in both

datasets (110 overlappimg SNPs spanning 590 kb). SNP marker

data were assessed for deviations from Hardy-Weinberg equilib-

rium (HWE) in controls. Independently for each dataset,

multivariate linear regression analyses were used to assess

genotypic and allelic associations with the memory savings scores,

adjusting for Population stratification, sex, APOE-e4 and age-at-

onset or age-at-examination. The False Discovery Rate (FDR)

[30], which controls the expected proportion of incorrectly

Table 1. Characteristics of the study samples.

Caribbean Hispanic
Study(n = 1,093)

NIA-LOAD Case
Control(n = 832)

Characteristics

Affected with AD 549 162

Unaffected 544 670

Age

Onset: affecteds 79.9868.0 71.666.9

Age at last exam:
unaffecteds

78.8766.4 76.168.4

Sex

Proportion of females (%) 69.7 62.3

APOE allele frequency (%)

e4 18.2 31.2

e3 75.1 63.3

e2 6.8 5.5

doi:10.1371/journal.pone.0024588.t001
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rejected null hypotheses (type I errors), was used to account for the

error in multiple comparisons. PLINK (http://pngu.mgh.harvard.

edu/,purcell/plink/) was used to perform a meta-analysis of both

datasets.

We used Haploview (http://www.broad.mit.edu/mpg/haploview/

index.php) to assess linkage disequilibrium (LD). Haplotype blocks

were defined using the confidence intervals algorithm. The default

settings were used in these analyses, which create 95% confidence

bounds on D9 to define SNP pairs in strong LD. Analyses assessing

associations between haplotypes and the memory savings score, were

carried out using a window of three contiguous SNPs using PLINK

v1.07 (http://pngu.mgh.harvard.edu/,purcell/plink/) for case-con-

trol data. We performed all analyses first for cases and controls

combined, and then for the case and control groups separately.

We also performed a meta-analysis of both datasets for single

marker and haplotype analyses. To determine the strength of

associations between the individual SORCS1 SNPs (or haplotypes)

and the memory savings score, we calculated a pooled OR for

each marker/haplotype using fixed and random effects models

using PLINK. We first performed meta-analyses of unadjusted

results from the individual datasets, and then repeated the meta-

analyses using the results from the individual datasets adjusting for

Population stratification, sex, APOE-e4 and age-at-onset or age-

at-examination. The p-values for each SNP/haplotype were

corrected for multiple testing using the False Discovery Rate

(FDR). Between-dataset heterogeneity was quantified using the I2

metric for inconsistency and its statistical significance was tested

with the chi-square distributed Q statistic. I2 is provided by the

ratio of (Q2df)/Q, where df = the number of degrees of freedom

(one less than the number of combined datasets); it is considered

large for values above 50% and Q is considered statistically

significant for p = 0.10.

Results

Table 1 shows the characteristics of the study populations. In

the NIA-LOAD dataset, 11 SNPs were significantly associated

with the memory savings score after correction for multiple testing

(rs10491052, rs11192998, rs7091546, rs10509823, rs1887635,

rs6584784, rs7078098, rs950809, rs596577, rs7083707,

rs7922128; 0.006,p,0.04) and in the Caribbean Hispanic

dataset two SNPs were associated (rs10884402 (p = 0.007) and

rs2149196 (p = 0.04)). rs10884402 (A allele associated with lower

scores in the Caribbean Hispanics, table 2), and rs7078098 and

rs950809 (C alleles associated with higher scores in the NIALOD

dataset) constitute a block of three adjacent SNPs that are 2.4 kb

apart and are in LD in both datasets (figures 1a and 1b). In a meta-

analysis of both datasets, all three SNPs were significantly

associated with the savings score (table 2): corresponding to the

separate analyses of both datasets, the A allele of rs10884402 was

associated with lower scores, while the C alleles of rs7078098 and

rs950809 were associated with higher scores. When the analyses

were stratified by AD status, the associations of all 3 SNPs was

driven by cases and not present in the controls (table 2). When the

analyses were stratified by APOEe4 carrier status, the associations

were similar in both APOE groups.

Consistent with the single marker analyses, in the 3-SNP sliding

window haplotype analyses the corresponding ATT haplotype for

SNPs rs10884402|rs7078098|rs950809 were associated with

lower scores in both datasets (table 3). In addition, the

complementary GCC haplotype was associated with higher scores

in the NIA-LOAD dataset. Again, these associations held up in

meta-analyses of both datasets, were driven by cases, and not

influenced by APOe4 carrier status.

Discussion

The findings reported here suggest that genetic variation in

SORCS1 is associated with memory performance. Three intron 1

SNPs (rs10884402, rs7078098 and rs950809) were associated in

the NIA-LOAD and Caribbean Hispanic datasets with memory

retention in single marker and haplotype analyses. In addition, all

three SNPs were significantly associated in a meta-analysis

including both datasets. When the analyses were stratified by

AD status, these associations were restricted to cases.

Our results are consistent with previous reports that genetic

variations in SORCS1 are associated with AD and could affect APP

processing [4,5,31]. Memory is the cognitive domain predomi-

nantly affected by AD, and is associated with changes in Ab levels

[32,33,34]. The three identified SNPs associated with memory

retention are in LD and it seems likely that they point to the same

disease associated variant. Of note, they are located between

108,782,932–108,785,365 bp in intron 1, and are thus in close

genetic distance to the SNPs that were associated with AD in our

Table 2. Single marker associations of SNPs rs10884402, rs7078098 and rs950809 with the memory savings score.

NIA-LOAD Caribbean Hispanics Meta-analysis

SNP name bp Role Alleles
minor
allele b SE P b SE P b p

ALL rs10884402 108,782,932 Intron 1 A/G A 20.10 0.07 0.129 20.15 0.06 0.008 20.13 0.003

rs7078098 108,783,778 Intron 1 C/T C 0.18 0.07 0.007 0.03 0.05 0.623 0.09 0.035

rs950809 108,785,365 Intron 1 C/T C 0.17 0.06 0.008 0.09 0.05 0.075 0.12 0.002

Controls rs10884402 108,782,932 Intron 1 A/G A 20.08 0.05 0.118 0.03 0.06 0.580 20.03 0.419

rs7078098 108,783,778 Intron 1 C/T C 0.09 0.05 0.092 20.03 0.06 0.562 0.03 0.407

rs950809 108,785,365 Intron 1 C/T C 0.09 0.05 0.090 20.02 0.06 0.681 0.04 0.326

Cases rs10884402 108,782,932 Intron 1 A/G A 20.21 0.28 0.463 20.15 0.07 0.026 20.15 0.019

rs7078098 108,783,778 Intron 1 C/T C 0.60 0.26 0.023 0.09 0.07 0.182 0.12 0.061

rs950809 108,785,365 Intron 1 C/T C 0.51 0.25 0.041 0.12 0.07 0.067 0.15 0.021

b= beta coefficient, SE = standard error, p = p-value. All models are adjusted for Population Stratification, sex, APOE-e4 and age-at-onset or age-at-examination. SNPs
significant at a 0.05 a-level are underlined. All p-values are corrected for multiple testing using the False Discovery Rate (FDR) [30].
doi:10.1371/journal.pone.0024588.t002
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Figure 1. LD patterns of SNPs rs10884402, rs7078098 and rs950809. a) NIA-LOAD dataset (controls). b) Caribbean Hispanic dataset (controls).
doi:10.1371/journal.pone.0024588.g001
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previous report (located at 108,719,950–108,868,606 bp in intron

1), rs601883 reported by Li et al. [4] (at 108,904,435 bp in intron

1) and rs600879 reported by Grupe et al. (at 108,913,108 bp in

intron 1) [31]. The fact that the associations were present only in

cases in the stratified analyses suggests that the causative

variation(s) identify an endophenotype, cognitive decline, rather

that AD per se.

A limitation of this study is that we used only baseline measures

of cognition rather than change in cognition over time. However,

the principle of Mendelian Randomization in genetic association

studies overcomes the issue of reverse causation as the inheritance

of genetic variants is independent of -that is randomized with

respect to- the inheritance of other traits.

Although the identity of the specific AD and memory associated

sequence variations in SORCS1 remain to be determined, our

results support a role for SORCS1 in AD and suggest that genetic

variation in or close to intron 1 in SORCS1 might affect AD risk

and memory performance. Additional studies will be needed to

determine whether carriers of alleles associated with differential

risk for AD and cognitive performance are indeed protected and

that protection arises because of high levels of expression of

SorCS1.
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